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Abstract 

Lindgren, F. and Geladi, P., 1992. Multivariate spectrometric image analysis. An illustrative study with two constructed examples of 
metal ions in solution. Chemometrics and Intelligent Laboratory Systems, 14: 397-412. 

A general introduction to multivariate image analysis (MIA) as a useful tool in chemistry is given, by presenting the analysis of 
two artificial examples. A compa~~n of a s~~rophotometer and a MIA system is described. Similarities between the two systems 
are discussed and the advantages of both systems are highlighted. In earlier publications, a classification of pure solid substances 
with MIA using their reflectances was introduced. This paper further develops the method by considering two examples where 
aqueous solutions of the metal ions, Co’+, Ni*+ and Cu2+, have been investigated. A chemical introduction to the problem and an 
explanation of the method is given. 

INTRODUCTION 

Digital image analysis has been around for 
some time and has made useful contributions to 
medicine, optical, electron and ion microscopy, 
satellite imaging, remote sensing, astronomy, ge- 
ology, agriculture, etc. An image is a recording of 
radiation intensity on some medium. For com- 
puter representation, there has to be some form 
of digitization. The most popular setup is the use 
of a regular grid of square elements, called pixels, 
where each pixel represents an intensi~. The grid 
itself is usually rectangular and most often square. 
This description nicely matches the storage and 
display capabilities of computers. The first at- 

tempts of digital image analysis were ways of 
using the properties of rectangular arrays of num- 
bers. Atlethods developed were filtering, noise re- 
duction, deconvolution, segmentation and mor- 
phological measurements [l-3]. 

Since the numbers in the image arrays repre- 
sent radiation intensities, it is easy to give them 
an interpretation in spectroscopic or spectromet- 
ric terms. In this case, it is well known that 
multivariate analysis is more accurate and robust 
than univariate analysis. Therefore, it can be an 
advantage to look at images in many variables. 

The field of satellite imaging 14-71 was the 
first to adopt multivariate imaging, in parallel 
with airborne imaging from airplanes and heli- 
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copters. Satellites monitoring the earth’s surface 
in four wavelength bands, and later in seven 
wavelength bands, have been around for over a 
decade. The number of bands is still increasing 
and the demands for multivariate treatment of 
the data are therefore high. The first attempts to 
use many bands (wavelengths, variables) in other 
fields were mainly limited to RGB (red, green 
and blue) color imaging. 

Nowadays, almost all methods of imaging are 
capable of generating multivariate image data. 
The number of applications and the types of 
radiation (or other physical variables) used are 
huge [8-111. Hence, there is a need for a very 
general family of methods for handling multivari- 
ate data in order to extract problem defined 
information from multivariate images, where both 
the spatial resolution and the spectral resolution 
are increasing. 

The methods and applications presented in 
this article represent a contribution towards this 
goal. The principal component analysis of multi- 
variate images that is presented and the examples 
emphasizing the necessity of meaningful spectro- 
metric content illustratively show the links be- 
tween multivariate image analysis (MIA) and 
spectrometric data analysis. 

Principal component analysis is a suitable 
method for studying the geometry of the multi- 
variate space. The method is free of assumptions, 
and the parameters are extracted without using 
any spatial information in the image. The possi- 
bility of plotting the results in two- and three-di- 
mensional scatter plots is a useful tool for ex- 
ploratory data analysis and for classifications. 

In a previous investigation [12], an experimen- 
tal setup was designed for spectrometric analysis 
of solid substances. The samples studied were 
four green organic substances (in the form of 
powders), namely rhodamine B, malachite green, 
DDCI4 and IR-26. The substances were placed 
as four piles on black velvet (background) and put 
in front of the camera. A principal component 
analysis was calculated on the generated multi- 
variate image and resulted in a four-component 
model. The substances were discriminated from 
each other by using feature space segmentation 
in the score images. Reflection from a solid sur- 

face is a complicated nonlinear phenomenon. The 
experience gained in earlier investigations will 
hopefully be useful, when introducing the method 
for analysis of liquid phases. 

In the present study, hydrous solutions of metal 
ions were investigated by multivariate image anal- 
ysis. The examples illustrate a typical spectromet- 
ric analytical application to liquid samples. The 
first example is a designed series of aqueous 
mixtures of cobalt (Co) and nickel (Ni) with grad- 
ually changing concentrations. In the second ex- 
ample, the experiment is expanded to include 
also copper (Cu). For each example, eight con- 
gruent images were generated at different wave- 
lengths (460-900 nm> to constitute the raw data 
in a multivariate image analysis. Identification 
and classifications of the different solutions were 
done using score plots and feature space segmen- 
tation. 

MULTIVARIATE IMAGE ANALYSIS IN CHEMISTRY 

It is possible to perturb molecular systems 
using different kinds of electromagnetic radia- 
tion. The degree of perturbation can be mea- 
sured in many ways. The spectrum of electromag- 
netic radiation is a medium for communication 
between the molecular systems and the macro- 
scopic world. 

In chemistry, these phenomena are widely used 
in many applications and various forms. Espe- 
cially, many analytical applications are developed 
using electromagnetic radiation for determination 
of structures and concentrations of molecules in a 
wide variety of samples. The most common tech- 
niques are based on measurements of radiation 
intensity differences before and after contact with 
a sample. The computed difference is a direct 
measurement of absorbed energy and thus of the 
concentration of the absorbing species. This is 
the basic principle for the spectrophotometer, 
today routine equipment in all analytical labora- 
tories. 

The detectors in most spectrophotometers are 
photomultipliers. The photomultiplier measures 
transmitted or reflected illumination of an irradi- 
ated sample and records one single average value 
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of absorbed radiation. The photomultiplier is a 
sensitive detector with a large spectral resolution, 
and ideal for measuring homogeneous samples. 
For heterogeneous samples, where a distribution 
of concentrations is present, photomultiplier 
measurements are rather slow. Substituting the 
photomultiplier with a TV camera may give new 
and useful advantages. The most interesting one 
is the quick measurement of spatially resolved 
intensity. 

A sample viewed by a TV camera is read into 
lines of pixels, for example, 512 lines with 512 
pixels in each line. Instead of summarizing the 
absorption of radiation by one average value, it 
can be represented by 262 144 (512 X 512) single 
observations (pixels), a high-resolution image of 
the sample. The intensity difference in the gener- 
ated image is due to a varying degree of absorp- 
tion within the viewed area. Thus, for homoge- 
neous samples the photomultiplier and the TV 
camera give the same result. For non-homoge- 
neous samples, the TV camera records the struc- 
ture of the sample so that for example patterns, 
gradients and clusters can be detected. The size 
of the viewed area (sample) can vary from micro- 
scopic (the resolution of electron microscopes) to 
macroscopic (satellite images, astronomy). If the 
wavelengths of the illuminating light are varied 
when recording many images, a collection of con- 
gruent univariate images, at different wave- 
lengths, is created. These images put together 
into a stack give a multivariate image containing 

spectral information, a spectrum for each pixel 
(see Fig. 1). 

The possibility of creating multivariate images 
in chemistry is not limited to electromagnetic 
radiation spectrometry [13]. Methods like mag- 
netic resonance imaging (MRI), secondary ion 
mass spectrometry (SIMS) and electron mi- 
croscopy, give multivariate images of elementary 
analytical content of a surface, by measuring re- 
sponse to varying pulse sequences, m/e or elec- 
tron energy loss. 

Methods for volume analysis mostly used in 
the medical field are X-ray tomography (CAT- 
scan), MRI and positron emission tomography 
(PET). These methods can also be given a multi- 
variate content leading to a chemical interpreta- 
tion regarding the object (patient) studied. 

MULTIVARIATE IMAGES AND STATISTICAL ANA- 
LYTICAL METHODS 

Traditional image analysis is concerned with 
two-dimensional (object x object) types of data 
structures. This is the classical univariate analysis 
of grey images. Algorithms for contrast enhance- 
ment, noise reduction, texture finding, segmenta- 
tion, particle morphology, etc. are the most fre- 
quently used. 

More interesting, and often even unavoidable, 
is the analysis of multivariate images (object X 

object x variable). A multivariate image can be 

Sample PhotomuItiplier 

Fig. 1. Two systems of gathering spectral information from an illuminated sample. The photomultiplier has the advantage of having 
high spectral resolution and sensitivity, but the spatial resolution is low. The TV camera has a high spatial resolution, but problems 
with sensitivity and with spectral resolution occur. The study presented in this paper takes up some of these problems. 
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viewed as a stack of univariate images, each im- 
age representing one variable. A more useful 
representation for data analytical purposes is that 
a multivariate image is an array of pixels (e.g. 
with two geometrical dimensions), each one asso- 
ciated with a Q-dimensional vector of variables 
(Q univariate images) [14-161. In this study the 
variables are images generated at different wave- 
lengths. 

In the field of chemometrics, powerful multi- 
variate statistical tools for chemical applications 
have been developed during the last decades. 
Methods such as principal component analysis 
(PCA) [ 171, principal component regression (PCR) 
[18] and partial least squares (PLS) [17-191 are 
frequently used. These methods have almost ex- 
clusively been developed and applied to two-di- 
mensional non-image data structures (objects x 
variables) [20-221. Introducing these methods into 
image analysis gives new possibilities of powerful 
multivariate image analysis. 

can find classes of similar objects (pixels) as well 
as outliers. The loading plots give information of 
similarities between variables (layers) and show 
which variables are strongly correlated with the 
estimated components. Viewing the residuals 
shows well and badly modelled areas within the 
image. This localization is typical for multivariate 
image analysis and does not play a large role in 
the PCA of most two-dimensional arrays. The 
context available after analysis in images results 
and its subjective problem related interpretation 
are assets for multivariate image analysis. 

EXPERIMENTAL 

Samples 

To find the systematic structure in the data 
set, PCA was used. PCA extracts the systematic 
information in the multi-dimensional space and 
decomposes it into a few descriptive principal 
components, orthogonal to each other. Theoreti- 
cally, PCA corresponds to a mathematical de- 
composition of the raw data matrix X into scores 
CT), also called score images, loadings (P) and 
residuals (E) [23-251. For a geometrical represen- 
tation, see Fig. 2. 

The chemical substances used in these artifi- 
cial examples are the metal ions of cobalt (Co2’), 
nickel (Ni2’) and copper (Cu2’). Products used 
were cobalt00 chloride hexahydrate (CoCl, * 
6H,O, Fluka), cupric chloride dihydrate (CuCl, * 
2H,O, Analar) and nickel chloride (NiCl,, Vit- 
rum AB). All three chemicals were of the purity 
denoted purum. Stock solutions of the three metal 
ions were made and they were calibrated to give 
equal maximal peak absorption (0.5 Abs) in the 
spectral range 460-900 nm (Fig. 3). The calibra- 
tion was carried out with a Shimadzu UV-3101 
PC spectrophotometer. 

PCA is a data compression method, since the Mixtures of these stock solutions were made 
important systematic information is condensed in according to the scheme outlined in Table 1. 
a few components and the noise part of the data Approximately 1 ml of each mixture was later 
is discarded. The evaluation of the results of a transferred into white plastic cups (20 mm diame- 
PCA is often done visually, since the sheer amount ter) and placed in front of the camera (Fig. 4). 
of numerical results makes any interpretation vir- The circular arrangement of the samples was 
tually impossible. Evaluating the score plots, one applied to compensate for camera bias and un- 
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Fig. 2. A data array X of size M X N X Q is decomposed in A principal components and a residual E. If X is a multivariate image, 
Q is the number of wavelength bands and M X N the image size. The principal component part consists of A score images and A 
loading vectors. 
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Ni 
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Fig. 3. The absorbance spectra of the three experimental 
substances, as recorded in a spectrometer with 1 nm wave- 
Iength resolution. The spectra overlap SubstantiaIIy in the 
range 460-900 nm used in the image experiments. 

even illumination in the corners and center (Fig. 
5). The background is black velvet, a material 
with low reflection. 

instrumentation and measurement 

The camera used was a DAGE-MT1 70 with a 
P8029 25.4 mm diameter leddicon (PbS) tube and 

k ~~~~~~~ 2omm ~~ i 

Fig. 4. The arrangement of the solution container. The illumi- 
nation path is shown. The radiation is fractionated into sub- 
vectors both in the surface and on the bottom of the plastic 
cup. 

an AF Nikkor 28 mm 1: 2.8 lens. The light source 
was a Zeiss Superlux with a 300 W xenon lamp 
connected to a Schott 4 mm fibre optic cable 
leading to a ring of fibre ends for creating a 
homogeneous illumination. The optic fibre sys- 
tem was modified for insertion of a filter holder. 
The filters in the filter holder were Spectron 
Optik interference filters. The wavelengths used 

Fig. 5. Example 1, a circular arrangement of the nine plastic cups containing metal ion ~lutions. This is a color RGB composite 
image of three randomly chosen univariate images, Nos. 2, 4 and 7. Sampb No. 1 is on the top and the other eight samples are 
arranged in numerical order clockwise. In the picture one can see the sharp reflectance of the illumination fibre ring as 
ellipsoid-shaped light circles. The yellow squares (SO X 50) show the selected parts of the image that were subjected to further 
analysis. The image (50 X 50 X 8) from sample No. 1 is placed in the upper left corner and the other eight images are added 
row-wise in numerical order. See Figs. 6 and 7. 
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TABLE 1 

The percentage content of different metal ions in the samples 

Example 1 Example 2 

Sample Co(%) Ni(%) Sample Co(%) Ni(%) Cu (%) 
No. No. 

1 100 0 1 100 0 0 
2 95 5 2 0 100 0 
3 80 20 3 0 0 100 
4 65 35 4 50 50 0 
5 50 50 5 50 0 50 
6 35 65 6 0 50 50 
7 20 80 7 33 33 33 
8 5 95 
9 0 100 

were 459, 498, 538, 583, 632, 683, 804 and 897 
nm. The band width of the filters is approxi- 
mately &20 nm. Using the filters in the illumina- 
tion path gives two practical advantages: avoiding 
the need for extensive refocusing after each time 
a filter is changed and allowing the use of filters 
of lower diameter than the camera lens. Digital- 
ization of the video signal was done on a 386/387 
PC host with Kontron’s IBAS hardware con- 
trolled by IBAS 2.0 software. The multivariate 
image analysis software was written in Flex, a 
Fortran dialect, using subroutines of the ERDAS 
toolkit. It operates on a 386/387 PC computer 
using a Revolution Number Nine image display 
board and a Multisync Image monitor. Pictures 
were photographed from this monitor on a 200 
IS0 color negative film. 

All images were digitized in size 512 x 512 and 
with integer values in the range O-255. 

TWO EXPLORATORY EXAMPLES 

First example 

In this work it was tried to broaden the scope 
of the method to include liquid phases. Illuminat- 
ing solutions often give a typical light scattering 
in the surface, causing sharp reflectance. This 
reflectance often affects the contrast in the image 

so that useful information is lost. As mentioned 
earlier, white plastic cups were used as carriers of 
the solutions. A basic assumption is that the 
radiation passes through the solution, is reflected 
at the bottom of the white cup and goes back 
(Fig. 4). The amount of reflected radiation de- 
pends on how great the absorption is. The path- 
way of the illumination is not easy to explain but 
a fairly rough estimate is made. The radiation is 
fractionated into sub-vectors when reaching the 
sample. Scattering appears probably both in the 
liquid surface and on the bottom of the cup. 
Thus, the reflected radiation reaching the camera 
is the sum of all appearing radiation phenomena. 
This experimental setup is investigated for two 
examples. 

In the first example, the two compounds, cobalt 
and nickel, were mixed in a gradient over nine 
samples (Table 1). The nine cups of sample solu- 
tions were arranged in a circular formation in 
front of the camera. Eight congruent images of 
size 512 X 512 were generated in the spectral 
range 460-900 nm. Every image is an average of 
ten images. This is done for equalization of the 
noise of the system. The eight univariate images 
were collected together into a stack, a multivari- 
ate image. 

The so-called raw image (Fig. 5) contains large 
areas of no interest, the background and some 
sharp circular reflectance from the illumination 
source. Therefore, areas of interest, yellow in Fig. 
5, were selected and cut out as small quadratic 
pieces (50 x 50 x 8) from the raw image. These 
nine sub-images, one for each sample, were later 
put together to give a new image (150 X 150 X 8). 

It is also possible to see (Fig. 5) an intensity 
gradient from the middle of the image towards 
the edges. This phenomenon is mainly caused by 
illumination errors and biased camera tube. 

The eight univariate images constituting the 
multivariate image are shown in Figs. 6 and 7, 
together with their wavelengths. Before running a 
PCA of the three-dimensional matrix, each image 
in the (150 x 150 x 8) stack was stretched linearly 
to fill the whole range of intensities of O-255. 
This method is not the same as the usual scaling 
to variance = 1, but has given satisfactory results 
in the past. It should be noted here that no 
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Fig. 6. Example 1, the first four images in the combined (150 X 150 X 8) multivariate raw image. The wavelengths at which the 
images were generated, 459, 498, 538 and 583 nm, are given in the figure. 

Fig. 7. Example 1, raw image number five to eight generated at 632,683,804 and 897 nm. 
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spectrometric transformation to absorbance or 
transmission of the image data was used. 

A PCA was carried out on the (150 X 150 X 8) 

pretreated image with mean centering of the vari- 
ables (images). The variables are in numerical 
order according to increasing illumination wave- 
length. The rank of the matrix found was esti- 
mated to three. The fourth component contained 
no information, just noise. Cross-validation [26] 
was not used, but by a subjective inspection of the 
PC images a fairly reasonable judgement was 
made. 

The three-component model explained 97.9% 
of the total sum of squares. Table 2 shows the 
sum of squares explained by the different compo- 
nents. Fig. 8 shows the three principal component 
images together with their resulting combination 
in a RGB composite image. The first principal 
component is in the blue (B) channel, the second 
in the green (G) channel and the third one is in 

TABLE 2 

Explained sum of squares for estimated principal components 

Example 1 Example 2 

PC No. ss (%I PC No. ss (%I 

1 58.7 1 54.0 
2 34.1 2 37.1 
3 5.1 3 6.4 

4 1.7 

the red (R) channel. It is possible to see that the 
information content decreases and the images get 
noisier at higher components. The orthogonality 
aspect of principal components is very clearly 
seen when comparing the first two score images. 
The color RGB image shows subjectively that 
there is some kind of gradient appearing in the 
image. The images can be viewed but only subjec- 
tive judgement of their content can be drawn. 

Fig. 8. Example 1, three calculated principal component images and their RGB composite image. The first principal component in 
the blue channel, the second in the green channel and the third in the red channel. 
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Fig. 9. Example 1, a scatter plot of the second component versus the first. Eight clust 
clusters is selected by a score mask. 

.ers (olive green) appear in the plot. One of the 

Fig. 10. Example 1, the selected area in the latent variable space is shown, in red, together with its representation in the image. 
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A more powerful tool is to use the scatter plot 
of principal components versus each other, also 
known as score plots. In a two-dimensional score 
plot, every single pixel is plotted, with two score 
values as its coordinates. A plot of the second 
component versus the first, for this example, 
shows that these components separate eight clus- 
ters of similar pixels (see Fig. 9). In this score plot 
we can simultaneously analyze all the revealed 
clusters and see what they represent in the origi- 
nal image. This is called latent variable space 
segmentation or feature space segmentation of an 
image. In Fig. 9 one of the classes was selected 
with a so-called score mask and Fig. 10 shows 
both the score mask and the classified area as red 
parts in the image. It is obvious that exclusively 
the quadratic sub-part from sample No. 7 is clas- 
sified. The result is very clear. Proceeding with a 
full-feature space segmentation of all eight classes 
gave the result shown in Fig. 11. The percentage 
ratio of Co*+/Ni*+ content for the classes that 
the clusters represent is given in the picture. 

Although two of the samples were not sepa- 
rated by the first two components it is very clear 
that the mixture gradient of the two compounds 

k%d.VWt.l 

Fig. 12. Loading plot of the second loading vector versus the 
first for Example 1. 

is caught by the MIA system. Especially the sec- 
ond component shows high correlation with the 
mixture gradient. Using the third component, all 
nine samples were classified apart. 

The loading plot, Fig. 12, shows that all vari- 
ables are positively correlated with the first com- 
ponent. Variables with a large influence of the 
informative second component are Nos. 2, 3 and 
6 representing the wavelengths 498, 538 and 683 
nm. 

Besides being able to discriminate in the score 
plots, it is also possible to get other information 
from the score plot (Fig. 11). The size and shapes 
of the different clusters give an idea of random 

Fig. 11. Example 1, the eight separate score masks corresponding to the clusters. The percentage ratio of Co/Ni content for the 
classes that the clusters represent are given in the figure. 
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Fig. 13. Example 2, the first four images in the combined (150 X 117 x 8) multivariate ra 
example. Sample seven is a rectangular (150 x 17) sub-area on the bottom of the image. 
generated, 459, 498, 538 and 583 nm, are given in the figure. 

w image. Samples l-6 are equal to the first 
The wavelengths at which the images 1 were 

Fig. 14. Example 2, raw image Nos. 5-8 generated at 632, 683, 804 and 897 nm. 
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Fig. 15. Example 2, the four calculated principal component images. 

and systematic error. The random error or natu- 
ral variation inside a class is given by the size of 
the cluster for that class. The systematic errors 

for a class are given by oddities in the shape. The 
skew shape of the clusters, noticed in Fig. 12, is 
probably due to illumination error or an imper- 

Fig. 16. Example 2, a RGB composite image. The second principal component in the blue channel, the third in the green channel 
and the fourth in the red channel. 
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fection in the camera tube. This feedback infor- 
mation of the instrumentation is very useful for 
further developments and improvements of the 
system. 

Second example 

TABLE 3 

Histogram peak grey values for the clusters of seven samples 
in four principal components (Example 2) 

Samples 

No. Co Ni 
(%I (%I 

Score histogram peak values 

t1 t2 t3 24 

In the second example, experimental complex- 
ity was increased by adding one compound, cop- 
per (Cu2’), to the experiment. The scheme for 
the mixtures is shown in Table 1. The design for 
the mixtures of the three compounds was chosen 
deliberately to span the whole possible space of 
variations. This makes the interpretation of the 
results and identification of irregularities easier. 
The procedure and treatment of the samples and 
raw images are equal to the first example. 

The eight images, Figs. 13 and 14, were pre- 
treated by linear stretching and with mean cen- 
tering of the variables. A PCA was calculated and 
the rank of the matrix was, by subjective judge- 
ment, estimated as four. The four-component 
model explained 99.2% of the total sum of 

Fig. 17. The scatter plots of two score images (PC2 versus Fig. 18. A three-dimensional score plot for components 2, 3 
PCl). The objects are pixels and there are so many of them and 4 (Example 2). The classes are represented by their 
that they have to be represented by density functions. The histogram peak grey value for graphical representation. It is 
density functions show clusters, gradients and outliers. Using easy to see the design of the calibration samples represented 
score plots in combination with the grey value histograms, one in this plot, with a certain amount of distortion, caused by the 
can find the peak grey values of the clusters. measurement system errors and nonlinearities. 

1 100 0 0 112 186 116 140 
2 0 100 0 145 12 132 112 
3 0 0 100 148 44 48 196 
4 50 50 0 15 50 196 158 
5 50 0 50 36 134 76 132 
6 0 50 50 36 44 48 108 
7 33 33 33 15 82 108 126 

squares. Explained sum of squares for each com- 
ponent is given in Table 2. The first component 
was not used basically because it mostly explains 
the illumination and camera errors. Fig. 15 gives 
the PC images and Fig. 16 shows a RGB compos- 
ite image of components 2, 3 and 4. 

In Fig. 17, a traditional score plot is shown 
together with two intensity histogram profiles 
corresponding to the two score vectors. The his- 
togram shows which intensities (grey values) dom- 
inate in the score images. The peak intensity 
values determined from the histogram are ap- 
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0 .2 4 .6 
Load. vect. 1 

Load. vect. 3 

Fig. 19. (a) Loading plot of the second loading vector versus 
the first for the second example. (b) Loading plot of the 
fourth loading vector versus the third for the second example. 

proximations of the score median values for ap- 
pearing clusters in the score plot. 

Using this technique for components 2, 3 and 
4, Example 2, in combination with feature space 
segmentation, gives the results in Table 3. Plot- 
ting these seven peak grey values for the used 
component in a three-dimensional plot (Fig. 181, 
gives a typical pattern of a three-component mix- 
ture design. The pure compounds give the trian- 
gle corners, the 50/50 mixtures in between and 
the mixture of all three compounds is found in 
the middle. The small deformations of the design 
are due to nonlinearities and other errors in the 
measurement. 

Fig. 19 shows the scatter plots of the loading 
vectors for all four components. Noticeable in 
Fig. 19b, is the strong influence of variable No. 1 
(459 nm) on the fourth component and variable 
No. 8 (897 nm) on the third component. The 
interpretation of the loading plot, Fig. 19a, is 
fairly the same as for the first example. 

SUMMARY AND CONCLUSIONS 

Binary mixtures of Ni and Co (Example 1) and 
ternary mixtures of Ni, Co and Cu (Example 2) 
were measured as 512 x 512 images at eight 
wavelengths in the region 460-900 nm. The mix- 
ture compositions were constructed using a de- 

sign, for ease of interpretation of the results. 
Uninteresting background and obvious errors by 
reflections of the source were eliminated by tak- 
ing 50 X 50 samples from the 512 X 512 images. 
The 150 X 150 X 8 multivariate image for Exam- 
ple 1 and the 150 X 117 X 8 multivariate image 
for Example 2 were subjected to PCA after linear 
stretching and mean centering of the variables. 

The results of the PC analyses are loading 
vectors and score images. These can be studied 
by making scatter plots: the score and loading 
plots. The loading plots were interpreted as im- 
portance of the different variables (wavelengths) 
in the models. The score plots showed clusters 
corresponding to the different mixture classes. In 
this study, binary and ternary mixtures of metal 
ions were completely classified using feature space 
segmentation in the latent variable space. 

Encouraged by the satisfactory result further 
investigations will be made. In the future we will 
expand the complexity of the samples even more, 
dealing with mixtures of more than three com- 
pounds. The method can hopefully also be ap- 
plied to a wider variety of substances. 

It has been shown that important information 
concerning the instrumental setup is put forward 
by a PCA. In this study, the total concentration of 
the included substances is constant (100%) and 
mean centering of the data is done before PC 
calculations. For such a system, the PCA on the 
first data set (Example l>, should result in only 
one significant component describing the concen- 
tration difference between the samples. Example 
2 should in an analogous manner be described by 
the first two principal components on that data 
set. As we have seen, this is not the case for the 
two examples. This means that additional infor- 
mation, besides the concentration differences of 
the samples, is present in the images. In this case, 
it seems likely that illumination errors in combi- 
nation with a biased camera tube, have added 
additional structural information to the images. 
This feedback information of the equipment and 
the instrumental setup is very useful for further 
developments and improvements of the system. 

The rank of the matrices was determined by 
step-wise viewing of the PC images for increasing 
dimensions of the model. When reaching higher 
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dimensions, the structure in the image disappears 
and just noise is displayed. This component to- 
gether with the following components are re- 
jected. Other, statistically more valid methods 
1261 exist but have not been implemented and 
applied to image data structures. Methods like, 
for example, cross-validation [26], are very com- 
puter-intensive. Using this method on very large 
data matrices, such as multivariate images 
(2000 000 data points), will definitely create a 
slow, non-interactive system. New fast algorithms 
for effective cross-validation on large matrices 
must be developed before using these methods in 
multivariate image analysis. 

The aim of the study was strictly an ex- 
ploratory study of MIA, so no thorough investiga- 
tion of the predictive capability of the models has 
been done. Di~diug the data set into sub-parts, 
training set for model development and test set 
for model validation, is the most frequently used 
approach for model validation. Comparing pre- 
dictions to true observed values for the test set 
gives a good measurement of the predictive capa- 
bility of the derived model. 

Algorithms for latent variable regression and 
calibration have recently been applied to multi- 
variate image analysis. PCR has already been 
used with success on satellite images [27]. Work is 
going on for speeding up and simplifying PLS and 
PCR algorithms for large matrices. 

Many industrial applications for univariate im- 
age analysis are already found. Especially in an 
industrial process there is a great need for quick 
automatic quality control. Image analysis systems 
can be developed for interactively analyzing prod- 
ucts differing in intensity, size or shape. The 
products with wrong features are found and re- 
jected. Introducing MIA into such a system pro- 
vides the opportunity of also finding products of 
wrong chemical content. 

Helen Bergner of the Center for Peat Re- 
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