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Scope and Purpose-Many-way matrices represent data received from many recipients, by a variety of 
scales, moments of time, different objects, situations, etc., depending on the specifics of the system under 
consideration. It is usually possible to evaluate such multimode data matrices by non-linear procedures 
of factor analysis, which are complicated methods that may not yield a satisfactory and/or reasonable 
solution. In this work, several simple linear approaches are considered that give solutions for very large 
matrices. We apply these methods to a problem of choice of university by applicants; that is, we evaluate 
a 3-way matrix using real data about university choice according to several attributes by high school 
graduates in Israel. 

Abstract-This paper presents and analyses several methods for the evaluation of information given in 
the form of many-way matrices. These methods are based on the least squares approximation of a matrix 
by a many-vector product which can be represented as a nonlinear eigenvector problem. Using real data 
about university choice by high school graduates in Israel, we develop and compare the following three 
families of methods: parallel proportional profiles, various types of methods based on the use of cyclic 
matrices (canonical correlations, principal components, and planes’ approximation), and minimization of 
relative deviations. 

1. INTRODUCTION 

Considerable attention is being focused today in the areas of economics, biology, political science, 
management, and other social and behavioral sciences to the evaluation of data represented by 
tables with many entries, or inputs, that is, data organized in a multi-facet matrix. This is due to 
the great complexity of the systems being investigated in these branches of human interest, and 
the development of computer capability which makes it possible to work with such information. 
Multi-facet matrices of data have been analysed in statistics as early as 1904, when Pearson studied 
complex correlation tables for multivariate distributions ([13], Chap. 33). Such tables are utilized 
in the processing of categorical data, multifactor cross-variance analysis, design of experiments, 
and sample surveys ([14], Chaps. 35,38,39). In factor analysis, many-facet matrices usually represent 
measurements, or observations, of various attributes of objects in different periods of time [l 11. 
Different directions in multidimensional tables may correspond to scales, features, experts, proposals, 
concepts, situations, etc.-depending on the specific problem under consideration. Development 
of methods for the analysis of multi-facet data matrices (using all facets simultaneously) was 
originated by Tucker [27-291 in factor analysis for semantic differential problems, and in studies 
of the multivariate scaling problem [3,4]. Various approaches to the evaluation of multi-dimensional 
data and their applications are found, among others, in [S, 12, 15, 16,21,24,25]. These approaches 
are, usually, quite difficult to use in moderate and large-scale problems since they require the use 
of non-linear optimization methods. 
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In this paper we present and anaiyse several approaches to the evaluation of multimode data 
that allow the use of analytical soIutions. These solutions can be reduced to simple linear algebraic 
problems that are easy to use and interpret. For ease of exposition, we analyse in this paper a 
three-way matrix of attributes i = X, 2,. . . , n which are used for considering objects j = 1, 2, . . . , m 

by individuals k = I, 2,. . . , p, Each element of the matrix Qijk is an evaluation (estimation) given 
to the ith attribute of thejth object by the kth individual. These evaluations ~estimations) are given 
as numerical values. Our purpose here is to derive from these evaluations, Qij~, some kind of 
aggregated evaluations of weights a,, a,, . . . , u, for attributes {which may be compared), weights 

bl,bz,..., b, for objects in order to rank them in a meaningful way, and of weights cl, c2,. . . , cc 
for individuals which will allow them to be classified in groups with similar opinions. 

1. Set up of the model: Ieast squares a~~yox~~ut~on of a matrix by vectors 

Consider a 2-dimensional matrix x with n rows and m columns. Denote the elements of x by Xii 
and its approximation by the two vectors’ external product 

x = Aa*b’ + E, 11) 

where u and b are column vectors with elements Qi and b,, c-matrix of residuals in approximation 
(1). The least squares (LS) procedure for determining the vectors a and b is known as the 
Eckart-Young approximation f93: 

S = l]a/l’ = /ix - rlab’1 2 + min, (2) 

which can be written as 

S =: I: E$ = i f (Xii - Aajbj)’ + min. 
ij i=l j=l 

From the first-order conditions 

as o ds o 
-=, 
&q - = ’ 

i3bj 

with the normalization restrictions 

(3) 

we get a system of equations 

C xijbj = ~zai, i = I,..., n 
j 

C Xi++ = Ibj, j = l,,..,m 
i 

or, in matrix form, 

xfi = Ai& x”a = Ab. f?) 

Substituting one of the equations in (7) into the other we obtain the usual eigenvalue problems 

xx’s = A2a, @a) 

x’xb = izb. @b) 

The eigenvectors a and b which solve problem (i-3) correspond to the maximal eigenvafue 1’ in 
(8). If x is centered and normalized by the standard deviations of its rows, XX’ becomes a correlation 
matrix. Thus, (8a) presents the usual principal component (PC) analysis for attributes, and (8b) is 
the dual principal component method for the objects. Relations (7) can be written as a combined 
eigenvaiue problem as follows 
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Fig. 1. 3-Way matrix of data. 

The vectors a and b in (9) can be jointly obtained as the coordinate subspace of the right-hand 
side vector in (9). Multiplying (9) by the matrix in the left-hand side of (9) yields 

which is a combined representation for both equations in (8). 
Procedure (l)-(lO) was described for a 3-dimensional matrix Qijk (see Fig. 1) in [18]. Analogously 

to (1) we can approximate Qjjk in Fig. 1 by the direct product (element by element) of three vectors 

Qijk = Raibjc, + Eijk, (11) 

where &ijk is the residual of the approximation of Qijk by the three vectors a, b, and c in Fig. 1. 
2. is a normalizing constant. LS minimization of the squared Euclidean norm of zijk is given by 

The first-order conditions 

S = c &$ = c (Qijk - kZibjCk)2 -+ IIliIl. 
ijk ijk 

(12) 

as o as o as o as o 
-= , aai -= 3 c,=, ;ill= 7 

abj 
(13) 

and the restrictions of normalization 

da = 1, b’b = 1, c’c = 1, 

yield the following system of equations 

1 QijkbjCk = 2% i= l,...,n 
jk 

z Qijkaick = nbj9 j=I ,..-, m 

g Q@&j= h, k = l,...,p 

g Qijk%bjCk = 1. 

(14) 

Wa) 

(lQ9 

(1W 

(16) 
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As shown in [18], (15) can be reduced to a nonlinear eigenvalue problem 

(QWQV) 
\ 0 

where Q(b) and Q(a) are matrices with the following elements 

(17) 

Problems (15)-(16), or (17)-(18), can be solved numerically by nonlinear programming methods. 
However, if n, m and p are large integers, or if the matrix considered is of a dimension which is 
greater than 3, nonlinear programming may not be feasible. Furthermore, there are serious problems 
concerning existence, convergence and uniqueness of the solution to the nonlinear problem. 

In the rest of this paper we consider approximations to the nonlinear LS problem that result in 
linear problems with simple solutions for the vectors a, b and c. 

2. PARALLEL PROPORTIONAL PROFILES 

The principle of Parallel Proportional Profiles (PPP) was introduced by Catell [6-8, 213 (see 
also [ 161, pp. 8-9, 126127, 150-151) who suggested that factor scores will change proportionally 
from one condition (or situation, moment of time, etc.) to another. In our representation of 
information in Fig. 1 this means that the weights Ui, bj and ck must be proportional to some measure 
of weights for each ith, jth and kth layer of the matrix Q in Fig. 1. 

Here we suggest the following mathematical representation. Suppose, we solve the common eigen- 
value problem (6) for every plane of the matrix Q. For each given index, k, we have the relations 

c Qijck,bp’ = l(k)uik), i= l,...,n (19a) 

; Qijfk+zik) = Ack’b$ 

k= l,...,p, 

j=l ,‘.., m Wb) 

where Qij(k) are matrices parallel to the frontal plane in Fig. 1, and utk) and b”’ are eigenvectors 
for the kth layer. Also, we have for each plane in the direction of j 

where Qi(j)k are the 
following equations 

vertical-profile matrices in Fig. 1. The third direction yields, for each i, the 

k = l,...,p (214 
i=l n, 

““’ j = l,...,m (21b) 

k = l,...,p 

i = l,...,n 

(20a) 

(20b) 

where Qciljk are the horizontal layers of the matrix in Fig. 1. Multiplying each pair (19H21) by the 
dual vector and summing by this vector’s index, taking into consideration (5) or (14), we obtain 
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the eigenvalues 

;Q ij(k)apby’ = p, k = l,...,p 

iiQ iti)kay)cy’ = p”‘, j = l,...,m (22b) 

1 Qfijjk+f) = v’~), i = l,...,n WC) 
jk 

where all 3Ltk), p(j) and vti) are the maximal singular values (square root of the eigenvalues) of the 
plane matrices in each kth, jth and ith layer, respectively. 

The similarity of (15) and (22) is obvious. The summation of the matrix Qijk by the indices i and 
j in (22a) is made with weights u{“) and by), and in (15~) with weights ai and bj (which are constant 
over all layers k). As a result, we obtain in (22a) the vector Atk’ with p components; in (15~) we 
obtain lck, also a vector (multiplied by a normalizing constant) of size p. We have an analogous 
similarity in (22b) and (15b), and in the pair (22~) and (15a). That is, the LS approximation for a 
whole matrix by one set of vectors (12) yields relations (15) for determining the vectors a, b, and 
c, which we can interpret as mean vectors of the sets utk) and au’, btk) and b(‘), di) and c(j) respectively. 
Comparing the right-hand sides of equations (22) and (15) we can obtain expressions for these 
mean vectors a, b and c: 

/Ia, = G, i=l ) . . . ) n (234 

~bj = ~“‘, j=l ,..‘, m (23b) 

AC, = A@‘, k = l,...,p (23~) 

Thus, we obtain a result that corresponds to the PPP principle: elements ai of the vector a for 
the 3-dimensional matrix Q are proportional (23a) to the maximal singular numbers vti) (square 
roots of the maximal eigenvalues) of the 2-dimensional matrices (21) identified by the fixed index 
i as the layers of the plane matrices Qcijjk. The same is true for the other vectors: the components 
bj of b for the matrix Q are proportional to the singular numbers p(j) (23b) of the 2-dimensional 
matrices Qitijk in (2O), which can be obtained as the jth layers of the matrix Qijk. Finally, using 
(23c), the components ck of the vector c for the 3-dimensional matrix Q are proportional to the 
singular values in (19) for each kth layer Qij(kr* 

Thus, we have a very simple procedure for obtaining the vectors a, b, c for the matrix Q; i.e. for 
k = 1 we solve eigenvalue problem (19) for the first frontal layer Qijtl) of the matrix Qijk. Problem (19) 
can be reduced to the two usual eigenvalue problems in the same way that (6) was reduced to (8). 
Hence, it is sufficient to solve only one of the problems (8a) or (8b). From this solution we need 
only the maximal eigenvalue (1°‘)2. Following this scheme, and taking one frontal layer (with 
k = 1,2,..., p) after another, we can get all maximal numbers (,I(k’)2 for each k. Taking their square 
roots and dividing these singular values by the sum of the eigenvalues, we obtain the normalized 
(see (14)) eigenvector c for the matrix Q: 

l(k) 

k = l,...,p (244 

Using the same procedure in the directions i and j of the matrix Q we obtain the other normalized 
vectors 

,(i) 
a,=----, 

$, (v’h)2 

i = l,...,n (24b) 

(24~) 
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With these estimates of the eigenvectors we can calculate the singular value 1 for the 3-dimensional 
matrix using equation (16). 

The PPP principle can be easily generalized to 4, or more, dimensional matrices. For example, 
in the case of a Q-dimensional matrix we define the following LS approximation 

S = c (Qilkt - yaIbjck4)2 + min, 
ijkr 

(25) 

and similarly to (13-16) we obtain the system 

1 QijdjCkdt = Y% i=l n, ,***, 
jkt 

C Qijkt Wkdr = Ybj, j = l,...,m, 

1 Qijktaibjdt = Yck, k = l,...,p, 
ijf 

C Qij&bjCk = Ydt, t = l,...,r, 
ijk 

1 Qijkrd'jCkdr = Y- 
ijkt 

(2W 

VW 

C-W 

(264 

(27) 

The 4-way matrix Qijk, can be subsequently reduced to 3-way matrices by fixing each one of its 
indices. In this case we first obtain the eigenvalues of the 2-way submatrices, use them for constructing 
eigenvectors of 3-way submatrices (24), and obtain the singular values of these 3-way submatrices. 
These singular values are then used as components of the eigenvectors (26) of the 4-way matrix, 
which in turn yields the singular value (27) for the initial matrix Qijkt in (25). 

3. VARIANTS THAT USE CYCLIC MATRICES 

3a. Plane’s approximation 

In this section we consider a number of variants of the approximation for the 3-way matrix Q 
by planes constructed from the vectors a, b and c. 

Using the direct product of all pairs of a, b and c for approximation of all layers of Q corresponds 
to the following LS approach 

S = C 1 (Qijk - hibj)’ 1 [ + 1 1 (Qijk - A@ck)2 C (Qt,k - ‘bfk)’ 
k i.j 1 * (28) 

j i,k jk 

From (13) and normalization (14) we have 

0.a+pxb+mz’c=Q+m)a, 

px’a + 0 - b + nyc = A(p + n)b, 

mza + ny’b + 0-c = A(n + m)c, 

(294 

(29b) 

(294 

where 

c Qilk. 
Mj=l 

(304 
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(29) represents a general eigenvalue problem with a symmetric matrix on the left-hand side and a 
diagonal matrix on the right-hand side: 

(31) 

where I,, I,, I, are identity matrices of orders n, m and p. respectively. 
It is possible to redefine (28) and use the average values of the sums to obtain 

(32) 

(33) 

with the submatrices x, y and z defined in (30), and eigenvalue Jo = 21. It is interesting to note that 
if we approximate the averaged layers by plane matrices constructed from direct vector products, 
that is, using the following LS approximation 

S = G b $ Qijk - %bj A$ Qip - hck 
2 

Y (34) 
J 

we obtain precisely the same solution for a, b and c, as in (33). Eigenvalue problem (33) can be 
solved by standard methods for symmetric matrices. System (33) may also be reduced to a system 
with only two vectors. For example, from (33) we can express one vector as follows 

c = !(,a + y’b), 
c1 

(35) 

and insert it into the first two subsystems in (33). This operation results in a quadratic eigenvalue 
system for the vectors a and b 

(36) 

It is possible to transform (36) to a problem that is linear in p (see [303, Chap. 9, Pt 61). Denote 

whereby system (36) becomes: 

[r;; .“; f z~~~~~=~~~~. 

(37) 

(38) 

Eigenvector problem (38) is of order 2(n + m), while (33) is of order n + m + p. Hence, when 
p >> n + m it is preferable to solve problem (38) which is non-symmetric, but may be of a much 
smaller dimension than problem (33). For example, if 10 attributes were estimated for 5 objects by 
100 individuals (see Fig. 1) it is possible to eliminate the last direction and solve problem (38), 
which is of order 30, instead of problem (33), which is of order 115. 
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3b. Canonical correlation and principal component analysis 

In this section we consider the application of Canonical Correlation Analysis (CCA) to the 
determination of the vectors a, b, c. For each pair of the three projections (30) we can construct 
vectors of common size; for example, 

xb = [, z’c = 1, (39 

where 5 and q have n components, and may be interpreted as estimates of the vector a from the 
side of the matrix x and from the side of the matrix z. 5 and q can be constructed by maximizing 
the following canonical correlation problem 

p(b, c) = c’zxb - ;(b’x’xb - 1) - ;(c’zz’c - 1). 

Maximization of (40) results in il = ,U and the eigenvector problem (see [17]) 

(41) 

Generalizing (39)-(41) to account for all three pairs of correlations we have 

p = p(b, c) + p(a, b) + p(a, c) = c’zxb + b’yza + a’xyc, (42) 

with one normalization 

cp - a’(xx’ + z’z)a + b’(x’x + yy’)b + c’(zz’ + y’y)c - 3 = 0. (43) 

Therefore, the function for maximization is 

with p and rp defined by (42) and (43), respectively. Maximizing (44) we obtain a generalization of 
problem (41) for three vectors 

(1, 1; ZJ.(!)Zd(““Hz’z) (yyf;xfx) (zz,;y,yJ.(g). (45) 

If we add the right-hand side of (45) (without 2) to both sides of (45), we obtain the system 

( 

(xx’ + z’z) z’y’ XY a (xx’ + z’z) 0 0 a 

Yz (yy’ + x’x) x’z’ .b=v 0 (yy’ + x’x) 0 * b , 

y’x’ zx (z-r’ + Y’Y) )(! ( c 0 0 (zz’ + Y’Y) )O C 

(46) 

with eigenvalue v E A+ 1. 
The matrix on the left-hand side of (46), denoted A, is equal to the matrix of the second moments 

of the symmetric matrix of initial information which is used in (33), i.e. 

(xx’ f z’z) z'y' XY 0 x z’ 2 

A= ( YZ (yy’ + x’x) x’z’ = x’ 0 y . )i 1 (47) 

y’x’ zx (zz’ + Y’Y) z y’ 0 

Taking into account (47) we introduce the following vector of order (n + m + p) 

(48) 
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In addition, defme 

and let 

(491 

f501 

where ~1 is defined in (43). ~ptimi~t~on of (50) yields the CAA solution (46). 
If we use in (50) the normali~tion 

rp = da + b’b + c’c - 3 = 0, (51) 

instead of (43), we obtain the eigenvector problem 

which is the Principal Component (PC) solution for the maximization of the variance in (49). 

3c. Cyclic matrices: a generalization 

Consider the initial matrix Q in Fig. 1 and its three-facet matrices Xii3 yjk and rki in (30) Using 
the interpretations of these matrices we can write several equations that project each one of the 

The dual equations of (53) are 

vectors a, b and c on the other two. Namely, 

xb = &a, 

20 = &c, 

yc = A,b. 

x’a = I,b, 

2’~ = &a, 

y’b = I,c. 

The first set of equations in (53a) and (54a) are identical to equations (7) for the matrix x, 
other equations express analogous relations for y and z. Substituting in succession 
equations (53) into another we obtain 

xyza = Ia, 

zxyc = k, 

yzxb = Lb, 

154aI 

f54b) 

(54cI 

and the 
one of 

(55a) 

(55bl 

f55c) 

where the constant J is equal to a pr~uct of the constants in (53). By similar substitutions we 
obtain from (54) 

z’y’x’a = la, Wa) 

y’x’z’c = k, WV 

x’z’y’b = Ib. (56c) 

Combining equations (55) and (56) we obtain three separated eigenvector problems for the vectors 
a, b and c, 

fxyz + tryY)a = $&& f57aI 
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(yzx + x'z'y')b = jib, (5W 
(zxy + y’x’z’)c = pc. (57c) 

Each of problems (57) is defined for the sum of a matrix and its transpose, i.e. for a symmetric matrix. 
Problems (57) point to the simplest way to determine each of the vectors a, b and c independently, 

through a matrix of order n, m or p (57). Combining (57a)-(57c) yields an eigenvector problem with 
block-diagonal matrix; that is, 

( 

xyz + z’y’x’ 0 0 a a 

0 yzx + x’z’y’ 0 * b =p b . (58) 

0 0 zxy + y’x’z’ JO 0 c C 

It is possible to describe the methods in Subsections 3a and 3b above on the basis of equations (53), 
which can be written as an eigenvector problem as follows, 

with 

P is a cyclic (block-permutation) matrix of order (n + m + p). System (54) is given by 

a a 

p’* 0 0 b =g b , 

C C 

(59) 

(W 

(61) 

i.e. it is an eigenvector problem with the transposed matrix (60). The sum of (59) and (61) also 
yields an eigenvector problem with the matrix 

that is, the LS solution (33) to problem (32). 
The constructions 

and 

) (63) 

0 

Pp’ + P’P = 
I 

0 YY’ 0 + 0 XIX 0 = 0 yy’ + x’x 0 

\ 
I I 

0 0 zz’/ \ 
I I 

0 0 YlY/ \ 0 0 zz’ + y'y 
(64) 

(62) 

yield the matrices on the left and right-hand side of the CCA solution in (45). 
From the relation 

(P + p1)2 = [P2 + (PKl + [PP’ + PIP] (65) 
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which is obtained by adding the left-hand side matrices in (63) and (64), we get A in (47), which is 
the relevant matrix for the PC analysis (see (52)). Finally, problems (55) are eigenvector problems 
with the matrix 

xyz 0 0 

P3 = 0 yzx 0 

! 1 

(66) 

0 0 zxy 

Problem (56) corresponds to the transposed matrix (P’)3, and problem (57) is connected with the 
matrix P3 + (P’)3, that is, the matrix in (58). 

Note that the non-negative matrix (60) is an irreducible cyclic matrix of imprimitivity index 
k = 3; which means that for every eigenvalue I (including I,,, = r(P)-the so-called spectral radius 
of a non-negative matrix) there exist eigenvalues II = I,*exp(i2~1/3), I = 0, 1,2. It is well known 
that the matrix P3 with an imprimitivity index k = 3 is block-diagonal with equal eigenvalues for 
each block (for example, their spectral radius rk(P) = A&,). Clearly, (P’)3 and P3 have identical 
eigenvalues. 

Thus, the specific features of cyclic matrices (see, for example, [22], pp. 209-210, [l, 20, 231) 
suggest a systematic construction and simplification of different variants of solutions for many-facet 
matrices such as principal components, canonical correlations, plane approximation and their 
generalizations. 

4. THE LOGARITHMIC METHOD 

If the elements of the data matrix Qijk are positive numbers, we can apply the loga~thmic method 
(LM) to dete~ine the vectors a, b, c. This type of estimation is in [16], pp. 39, 513-514, [22, 2-J. 

Let us apply the LS minimi~tion to the relative deviations, a,, as follows 

Qi.ii - = 1 + 6,. 
lUibjCk 

Thus, we set the loss function 

F = x [ln( 1 + 6ijk)12 = C (4ij~ - p - Ei - Bj - yk)’ + min, 058) 
ijk ijk 

with the notation 

qijk = In Qijkv p = In A, tli = In Ui, Pj = In b, 

The first-order conditions of (68), subject to the normalizations 

yk = ln ck. (69) 

where cf, represents the average over other indexes (i.e., the mean value for each given t), 
Similar solution can be obtained for all many-way matrices. For example, for a 4-way matrix 
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we have 
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and 

The expressions for the other vectors are self-evident. 
From (69) we obtain the formulas for the initial vectors, 

~j=~~~~~~~ijk~“~~‘, i= 1,...,?$ VW 

j = l,...,m, (72b) 

(724 

with the normalizing term 

2 = (fi r”r i Qtjk)l'("mp'. 
i-1 j=lk=l 

(724 

Hence, each component of the vectors a, b and c is a geometric mean of the elements in the 
corresponding layer of the matrix Q, and 1 is the geometric mean of all the matrix elements. 

5. AN APPLICATION: THE QUALITY OF A UNIVERSITY 

We tested the methods presented in Sections 2-4 by the following example on the measurement 
of the quality of a university, Quality of a university is a major factor in the demand for higher 
education. Most studies use the average Scholastic Aptitude Test (SAT) score of students as a 
measure of the university’s quality (see [19]). Here we suggest that the demand for a university is 
dependent on the perceived quality of the university by the potential applicants (see [26]). The 
basic assumption in this paper is that the perceived level of overall quality of a university is a 
weighted average of n attributes. A group of p = 101 individuals (university applicants) was asked 
to evaluate n = 5 attributes of 111 = 5 universities in Israel. In addition, they were asked to evaluate 
the “overall quality” of each university, and the weight (in shares) that each of the n attributes 
should get in order to obtain their measure of overall quality of a university. The evaluations were 
made on a scale of 1 (bad, very low) to 7 (very good, very high). Let Qijk (an integer ranging from 
1 to 7) be the evaluation of attribute i for university j by the kth individual. 

The universities are Tel Aviv (UT), Ben Gurion (UB), Haifa (UH), College of management (UM) 
and Bar Ilan (UI). The attributes are: 

AC-the distance from the university to the individual’s projected location of 
residence during the forthcoming academic year. 

AA- academic level. 
AT- attitude of the faculty and administration of the university towards the students. 
AP- the possibility to study towards a higher degree in the area chosen for the B.A. 

studies. 
AS- the availability of courses and programs in the unive~ity. 

The data for individual k (k = 1,. . . , p), can be represented by the matrix shown in Fig. 2, where 
Qjk stands for the (quoted) overall measure of the quality of university j by individual k, and yk 
is the (quoted) weight that individual k gives to attribute i in forming his measure of overall quality 
for a university. 
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1 
UT 

University j 

2 3 4 5 
UB UH UM UI I 

Q,jk W, 

Qjk I 
Fig. 2. 

Table 1. Weights of attributes 

Method of estimation AG 

ATTRIBUTES 

AA AT AP AS 

W 

LM 

PC 

PPP 

0.14(5) 0.32(l) 0.19(3) 0.16(4) 0.19(2) 

0.17(5) 0.22(l) 0.22(2) 0.18(4) 0.21(3) 

0.18(5) 0.22(l) 0.20(3) 0.19(4) 0.21(2) 

0.19(5) 0.21(l) 0.21(3) 0.19(4) 0.21(2) 

NLS 1 0.19(5) 0.21(l) 0.20(3) 0.19(4) 0.21(2) 

Note: Ranks across all attributes are given in parentheses. 

Table 2. Qualities of universities 

UNIVERSITIES 

Method of estimation UT UB UH UM UI 

Tel Aviv Ben Gurion Haifa College Bar-Ban 

Q 5.94(l) 4.81(3) 4.56(4) 3.95(5) 5.31(2) 

LM 5.89(l) 4.32(4) 4.45(3) 4.30(5) 5.60(2) 

PC 5.87(l) 4.47(3) 4.42(4) 4.27(5) 5.23(2) 

PPP 5.70(l) 4.59(3) 4.47(4) 4.47(5) 5.33(2) 

NLS 5.72(l) 4.57(3) 4.49(4) 4.40(5) 5.38(2) 

Note: Ranks across all universities are given in parentheses. 

It is apparent that average (across individuals) measures of quality for each university (the 
vector a) can be obtained in several ways; that is, by using Qjk, by weighting the observations Qia 
with the quoted weights W& or by using the Qijk alone. Similarly, one can estimate the weights of 
the attributes (the vector 6) in forming the overall quality measure of the jth university by using 
wk, regressing Qik on Qij~, or by using Qij~ alone (which is the most common case since Qjk and 
Fk are, usually, unavailable in actual applications). 

Tables 1 and 2 present the estimates of a and b for the methods described in the preceding 
sections together with the weighted averages of the weights (V) and qualities (Q) that were reported 
by the individuals, where, 

(73) 
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and 

w = (IT,..., WJ, Q=(Q,,...,Q*)‘. 

That is, the k&‘s are the weights used to construct Q, and the Qjk’S are the weights used to construct 
@. The values of Q and @ can be viewed as first step approximations to the vectors b and a, 
respectively (see equations (6) and (15)). NLS stands for the general nonlinear programming method, 
see equation (12). The numbers in parentheses give the relative rank of the attribute or university, 
respectively. The vector c (which includes 101 elements), which may be interpreted as the classification 
of students according to their attitude to university quality was also computed, but is not reported 
here. 

The similarity of the results within the eigenvector methods, as well as the LM, is striking. With 
one exception, these methods yield results that are similar to the weights of the attributes and 
university qualities as quoted by the individuals in the sample. The exception is the high value that 
academic achievement received by the individuals as compared to the implied wei~ts/qu~ities 
that are calculated from individual data (Qijis only). 

6. SUMMARY 

This paper presents several methods that approximate a many-way matrix by its outer vector 
product. The nonlinear least squares (NLS) approximation of this matrix can be easily used for a 
small matrix. However, for a complex system, which is described by many directions (facets of the 
matrix) and/or many elements in each direction, the NLS method becomes infeasible even when 
evaluated by very fast computers. Thus, some approximation to the NLS, as those in Sections 24, 
must be used. 

Here we show the relations among various approximation methods and apply them to a 
medium-size problem in which we estimate 111 parameters. The outcome of the real example in 
this paper is encouraging in the sense that the results of the approximation methods are very close 
to the more general NLS method. 

Despite the proliferation of multi-mode problems in economics, political science, management, 
and marketing research (see [4, 5, 10, 24]), multi-mode methods are used only infrequently in these 
areas because they are complicated to calculate and interpret. We hope that the simple methods 
described in this paper will be helpful in solving those problems that require evaluation of multi-mode 
data, and will be useful in the promotion ofmultivariate statistical analysis for practical purposes. 
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