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Abstract

In this paper, a trilinear version of the partial least squares (PLS) algorithm was used to model the performance of an

industrial fed-batch fermentation process. Trilinear data obtained from process operation were used to derive a model for the

end-process active product ingredient (API) concentration prediction. Obtained mutilinear PLS models were compared with the

correspondent bilinear models. A genetic algorithm was used to select appropriate calibration sets (to reduce the influence of

nominal batches). A validation coefficient of determination (QY
2) of 91.4% was obtained for the multilinear PLS model after

batch selection (prediction intervals were estimated using bootstrapping). Examination of the multilinear PLS model weights led

to the delimitation of a small time region (from 50 to 75 processing hours) almost exclusively responsible for the fermentation

performance.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction with sub-optimal operation increase with process
Dynamic models for industrial fermentation pro-

cesses are difficult to identify because of a wide variety

of reasons: microorganisms complex dynamics, varia-

ble and ill-defined raw materials, and dependence on

previous process stages (strain selection and pre-cul-

ture production) [10]. Common problems may include

varying inocula quality and sensor or pump failures.

Several disturbances can irreversibly influence the

microorganism metabolism and lead to low product

concentrations and sub-optimal batches—depending

on their intensity and duration. The losses associated
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scale, thus early detection of deviations or faults is

crucial in large-scale industrial bioreactors. Frequently

in industry, the performance of fermentation is directly

related with the amount of product obtained at the end

of process.

The nature of the fermentation data is trilinear

(batches� variables� time). Multivariate modelling

tools such as partial least squares (PLS) [15] are

generally used with two-way data [4]. The common

approach is to unfold the data, that is, transform a three-

way array into a two-way array preserving onemode, in

this case, the batch mode. However, an alternative

model proposed by Bro [1] can be obtained using a

trilinear (or multilinear) version of the PLS algorithm.

Bro points out some advantages of the multilinear PLS

algorithm: more parsimonious and less affected by

noise in the original variables.
d.



Table 1

Algorithms for U-PLS (bilinear) and N-PLS (trilinear)

let X = unfold(X,I,JK) and

y0= y for each factor (LV) do

U-PLS [2,8] N-PLS [1]

w =XTy Z=unfold (XTy,J,K) maxwJ,wK

t wJð ÞT
ZwK b where wJ and wK are

the first components of the

singular value decomposition of

Z

(Z=WJSWK)

w =w/NwN w =wK�wJa

t=Xw

T=[Tjt]
q=(TTT)TTy0

For each row i of X do

X =X	 twT Xi =Xi	 unfold(ti�wJ(wK)T,1,JK)

y= y0	Tq

W=[Wjw]
return to first step to

include more factors

a J K J K

T T
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2. Theory

PLS is a class of regression models based on the

calculation of latent variables or factors [4]. In PLS,

these variables are calculated to maximize the cova-

riance between the scores of an independent block (X)

and the scores of a dependent block (Y). In this paper,

the prediction of a univariate vector (y) from a three-

dimensional matrix (X) will be considered. The vector

y (I� 1) and the tensor X (I� J�K) share the batch

dimension I. The vector y contains the end-process

active product ingredient (API) concentration for I

batches and X contains the values of different variables

measured at different time instants for each batch. A

matricization operation unfold(X,a,b) with three argu-

ments is defined [6]. This operation reshapes the three-

way matrix X into a two-way matrix with a rows and b

columns. Elements are extracted columnwise. For

three-mode arrays, the first dimension is always pre-

served in the present work. In the following sections, a

bilinear and trilinear algorithms for PLS are presented.

The general multilinear PLS algorithm is called N-

PLS. In the algorithms, the symbol � denotes the

Kronecker product.

2.1. Bilinear PLS

The unfolding of the trilinear structure of X
(I� J�K) preserving the batch dimension yields a

X(I� JK) array. Hence, a bilinear PLS (U-PLS) can be

used to model y.

X ¼ TWT þ E ð1Þ

The weights matrix W, in Eq. (1), captures the

structure of the variables and time modes. The orthog-

onal loadings U-PLS algorithm is presented here for

comparison with the trilinear version which is intrinsi-

cally related to the orthogonal loading version of two-

way PLS [2,8]. A regression vector of the form

ŷ =XbU-PLS can be obtained. For the orthogonal load-

ings algorithm, ŷ =Tq =XWq, hence bU-PLS =Wq (see

Table 1). A more interesting expression is given by Eq.

(2) where only the weights and covariances are used

[5].
bU	PLS ¼ WðWTSxxWÞ	1
WTSxy ð2Þ
2.2. Trilinear PLS

A more suitable model for these data is Bro’s N-

PLS algorithm [1].

X ¼ TðWK �WJ ÞT þ E ð3Þ

The weights in Eq. (3) (WJ and WK) are related

with the variables and time modes, respectively. These

are obtained as the first left and right singular vectors

of XTy. In contrast with U-PLS, these weights are non-

orthogonal (wp
J)Twr

J p 0 and (wp
K)Twr

K p 0 for each p p r.

The analysis of the weights WJ and WK provides an

indication of the importance of each variable and time

region for the model.

For the trilinear version of the PLS algorithm, it is

also possible to compute a regression vector. Because

the weights wi are non-orthogonal, the regression vec-

tor cannot be given as Wq where W= [w1jw2j���jwr].

Nevertheless, there is a way to compute bN-PLS (Eq. (4)

refers to a model with r factors) [14].

w and w are the first column of W and W , respectively.
bN	PLS ¼ ½w1AðI 	 w1w1 Þw2A: : :AðI 	 w1w1 Þ

� ðI 	 w2w
T
2 Þ: : :ðI 	 wr	1wT

r	1Þwr�q ð4Þ
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2.3. Model predictions and cross validation

Before the projection of new data (Xnew) into the

model, it is required that the centring and scaling

coefficients (obtained from calibration data) are

applied. Predictions for each new sample (for the U-

PLS andN-PLSmodels) can be produced using Eq. (5).

ŷ ¼ ðXnew
i ; I ; JKÞbU	PLS=N	PLS ð5Þ

Selection of the appropriate number of factors is

achieved by cross validating the models. The leave-

one-block-out strategy consists of dividing the entire

data set on n blocks. The model is calibrated with each

n	 1 set of blocks and tested on the remaining block

[9]. Two measures of goodness of fit are used: the root

mean squares (Eq. (6)) and the amount of variance

predicted (Eq. (7)).

RMScv ¼
trace½ðy 	 ŷÞT ðy 	 ŷÞ�

n

" #0:5

ð6Þ

Q2
Y ¼ 1	 trace½ðy 	 ŷÞT ðy 	 ŷÞ�

traceðyTyÞ ð7Þ

2.4. Prediction intervals for PLS estimates

There are several methods to estimate prediction

intervals for PLS estimates [13]. PLS can be viewed as

combination of a projection in latent structures fol-

lowed by an ordinary regression between components.

The problem is that the number of degrees of freedom

is unknown. A bootstrap-based strategy can be used to

replace the t-student parameter with a constant that

approximates the true distribution of the residuals [9].

In the approach described by Denham [3], a con-

stant ca is estimated from n different PLS models,

where n is the number of batch samples. Each model is

obtained removing sample i. The constant ca is

obtained for a confidence level of 100(1	 a)%. A

prediction interval for an estimate ŷi is given by Eq.

(8), where se is the residual sum of squares divided by

n	 r	 1 (r is the number of factors).
PIaðyiÞ : ŷiFcase ðnþ 1Þ=nþ ðxi 	 xÞS	1
X ðxi 	 xÞT

h i0:5
ð8Þ
2.5. Batch selection

A genetic algorithm was used to select a better set

of batches to include in model calibration [11] instead

of using every available batch. If a large number of

normal operating condition (NOC) batches are

present, the model may not capture relevant informa-

tion contained in the less numerous batches operated

on non-nominal conditions (imposed steps on temper-

ature, feed rates, and aeration over time). To select the

best calibration set, different models are tested. A loss

function F =QY
2 (g+(1	 g)m/n) was maximized. The g

parameter balances the importance of the goodness of

fit and of the number of batches discarded. m is the

number of batches included and n the total number of

batches. The genetic algorithm will find a set of

batches that maximizes F, based on a leave-one-

block-out cross validation procedure. We are aware

that this method cannot avoid a certain model overfit

since the fitting error is included in the loss function.

With this strategy, we offer an alternative way to the

traditional methods of model validation (e.g., random

splitting cross validation).
3. Experimental

The performance of an industrial fed-batch fermen-

tation process was monitored as the final concentration

of the produced API, which is an antibiotic-like h-
lactam [12]. The objective is to be able to produce

estimates of the final API concentration using the data

monitored during the fermentation. Experiments are

divided in two groups: A and B. Group A contains 80

batches operated on pilot-scale bioreactors while

group B contains 22 batches operated on semi-indus-

trial bioreactors (10 times greater in volume). Previous

results suggested a notable difference between the

batches according to the scale [7] even after geometric

ratios and other engineering dimensional corrections

were introduced in all extensive measured variables.

The total duration of each batch is 132 h. A total of 10

variables was monitored during the fermentation time.

Some data pre-treatment was applied to eliminate

outliers and reduce noise. A sampling frequency of 4

h was found to be adequate. For each batch, the API

concentration was monitored and the value at the end

of the batch was stored to be used as the quality



Table 2

Cross-validation errors obtained with U-PLS and N-PLS models for

the final API concentration

RMScv U-PLS

(three factors)

N-PLS

(four factors)

Scale A 0.075 0.074

Scale B 0.052 0.052

Table 3

Amount of variance predicted of the final API concentration by the

U-PLS and N-PLS models using all available batches

QY
2 (%) U-PLS

(three factors)

N-PLS

(four factors)

Scale A 57.0 57.2

Scale B 64.3 64.3
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variable. Group A is represented by an independent

array XAwith dimensions (80� 10� 34) and a quality

variable vector yAwith dimensions (80� 1). For group

B, XB(22� 10� 34) and yB(22� 1). The data were

mean centred and slab-scaled across the variables

dimension (slab scaling consists of dividing by the

correspondent standard deviation every value in a data

slice [6].
4. Results and discussion

The analysis was performed in four steps:

(1) selection of the appropriate number of compo-

nents to include in U-PLS and N-PLS;

(2) compare the result for U-PLS and N-PLS models;

(3) build-up of a better calibration set to optimize N-

PLS models (using a genetic algorithm);

(4) analysis of N-PLS model weights.

Initially, the best number of factors was selected

by a leave-one-block-out cross validation strategy

for both data sets and considering all batches. This

was performed with U-PLS and N-PLS models. A

different optimal number of factors was determined
Fig. 1. Cross-validation charts for N-PLS models (groups A an
for each model. While for U-PLS, the best number

of components is 3; for N-PLS, the best number of

components was found to be 4. However, the RMScv
is approximately the same for U-PLS with three

factors and N-PLS with four factors (see Table 2).

Fig. 1 shows the results obtained for each scale with

N-PLS models. The difference in the optimum

number of components might be related with the

way the weights are computed in the N-PLS algo-

rithm.

The amount of variance predicted (QY
2) of the U-

PLS (three factors) and N-PLS (four factors) models is

presented in Table 3 (leave-one-out cross validation

strategy). In terms of prediction, both models seem to

be equivalent. A better amount of variance predicted

was obtained for scale B data set. These models were

obtained using all batches.

As stated before, an appropriate selection of

batches might improve the obtained models. A genetic

algorithm was used to select a better set of batches to

calibrate N-PLS models with four factors (from now

on, only the N-PLS model was used since the pre-

diction ability is very similar to the U-PLS model).

The maximization of the cost function (see Section

2.5) resulted in the selection of 47 batches (for scale

A) and 15 batches (for scale B). In Fig. 2, the selected
d B). The best number of factors is 4 for both data sets.



Fig. 2. First versus second principal components for groups A and B. Batches marked as (8) were selected by the genetic algorithm to be

included in the calibration set (the captured variance in the two principal components is 44.1% for data set A and 47.6% for data set B).
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batches for both scales are depicted (principal com-

ponents are used to map the batches). The algorithm

selected a small fraction of the available batches

presumably due to the presence of a large number

of NOC batches. It is clear from Fig. 2 that the

algorithm selected both nominal and non-nominal

batches. A large number of NOC batches are left

out from the calibration set for both data sets. Fig. 3

shows actual versus predicted values for the final API

concentration for the batches selected by the algo-

rithm. Predictions are obtained by leave-one-out cross

validation strategy (for data set A, QY
2 = 86.6% and for

data set B, QY
2 = 85.8%). These values are significantly

higher than those presented in Table 3 (where all

batches were used).

Considering a model calibrated with the selected

batches and validated with the rest, a determination
Fig. 3. Final API concentration predictions for batches of data sets A and

model with four factors, built with the remaining batches. A bootstrap str
coefficient of 82.2% was obtained for data set A and

81.8% for data set B.

The N-PLS model weights WK can be used to

determine time points that are more important for the

regression. For both data sets, it was found that the

weights are near zero after 80 h. Fig. 4 refers to the

model for scale B batches. It is clear that for the first

and second factors, the weights are more important in

the range from 0 to 80 h. This clearly shows that the

fermentation later instants do not have information to

explain the API concentration variability as expected

from a batch bioprocess such as the one considered

here. Therefore, a new set of models was built using a

sliding time window instead of the entire fermentation.

Several window lengths were tested. A 12-h window

length was found optimal for modelling both data sets

(using the selected batches for calibration and the rest
B (normalized data). Each prediction was obtained from an N-PLS

ategy was used to estimate prediction intervals.



Fig. 4. Weights for the time dimension (WK). The model was

calibrated with selected scale B batches (—— factor 1,—— factor 2,

� � � � � factor 3).
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for validation). Each model uses only three time points

to predict the final API concentration.

The results obtained for the N-PLS models using

a sliding window (for data sets A and B) are

depicted on Table 4. For the smaller scale batches,

the best model uses points around hour 44

(QY
2 = 0.82), while for the larger scale batches, the

best region is located at hour 60 (QY
2 = 0.91). It

seems that for the smaller scale tanks, the phenom-

ena that determine the performance of the fermenta-

tion happen slightly before than for the larger scale

tanks. Note that for the smaller scale batches, if

region around hour 60 was used, the QY
2 was only

0.35. Similarly, using the region around hour 44 for

the larger scale batches, the obtained QY
2 was 0.32.

The observed times in each scale correspond to the

beginning of the API production phase. It is thus

very important to improve the operation of the

process during the first process phases (exponentially

growth and transition phases)—e.g., investing in
Table 4

Amount of variance predicted for the final API concentration

QY
2 Process time (h)

12 20 28 36 44 52 60 68

Scale A 0.10 0.54 0.62 0.73 0.82 0.68 0.35 0.32

Scale B < 0 < 0 < 0 0.22 0.32 0.73 0.91 0.66

Each N-PLS model was calibrated with a data time window centered at a

The time window width was set to 12 h (t	 6,t + 6).
process optimization and process consistent opera-

tion in those process phases.
5. Conclusions

A bilinear PLS and multilinear PLS algorithms

were compared, in terms of regression performance

and parameter interpretability, using industrial fermen-

tation data. Even if both algorithms produced the same

results in terms of prediction, the multilinear model

needed one more factor. This is probably due to the

way the weights are computed.

With the implementation of a genetic algorithm, an

appropriate calibration set could be extracted from the

available batches (reducing the information redun-

dancy). The same results were obtained with two

independent data sets (different tank volumes).

The analysis of multilinear PLS weights was found

to be very important to determine a region in the

process that could explain the observed variability in

the quality variable. A 16-h difference was found

between the two scales. The optimal time region for

making significant process corrections corresponds to

the onset of API production phase. It is thus very

important to improve the process monitoring in the

observed regions to generate more precise models for

the process. To improve the production (and decrease

production variability), the process should be con-

trolled more accurately during the first half of the

fermentation.

Nomenclature

bN-PLS N-PLS regression coefficients

bU-PLS U-PLS regression coefficients

ca Statistical parameter determined by cross

validation (prediction intervals)

E PLS residuals unfolded matrix
76 84 92 100 108 116 124 132

0.30 0.14 0.15 0.17 0.18 0.17 < 0 –

0.43 0.11 < 0 < 0 < 0 < 0 < 0 –

specified time point.
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F Loss function (batch selection)

m Batches included in batch selection proce-

dure

n Number of batch samples

PIa( yi) Prediction interval for sample i

q PLS loadings for the dependent block

QY
2 Amount of predicted variance (cross valida-

tion)

r Number of components in a PLS model

RMScv Root mean squares (cross validation)

se Sum squares error divided by n	 r	 1

(cross validation)

Sxx Covariance matrix for independent block

(unfolded)

Sxy Covariance matrix between the dependent

and independent blocks (unfolded)

T PLS scores

W U-PLS weights

WJ N-PLS weights for variables mode

WK N-PLS weights for time mode

X Independent data block

X Unfolded independent data block

y Independent data vector

ŷ PLS prediction vector

g Balance parameter (batch selection)
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