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Net analyte signal plays an important role in the calcula-
tion of figures of merit for characterizing a calibration
model. Until now, its computation has only been feasible
for the direct calibration model, which requires knowledge
of pure spectra or concentrations of all contributing
species in the calibration samples. An increasingly
important calibration model is the inverse calibration
model, which also allows for quantitation if the knowledge
about the interferents is incomplete. This paper shows
that net analyte signal computation is possible for the
inverse calibration case. Application to the determination
of protein content in wheat samples by near-infrared
spectrometry is presented. Net analyte signal calculation
was used to estimate selectivities (ratio of signal available
for quantitation to the total measured signal). The selec-
tivities were found to range between 0 and 2% of the
measured reflectance signal. A new measure for outlier
diagnosis based on the correlation of the net analyte signal
to the regression coefficients vector is introduced and
tested on the same data.

Calibration relates measured variables (response measure-
ments) to objects (samples) with known properties (concentration
values) via a mathematical model. A regression model is
constructed using these data. The model is then used to predict
the same properties from the measured variables of unknown
objects. Calibration in the context of its application to chemical
analysis may be viewed as a subset of the more general regression
analysis, in which the emphasis is to have the best predictive
model.

The analyst is not only interested in the final output of the
calibration; rather, figures of merit characterizing the whole
calibration process as well as for each forthcoming sample
determined by the model are required in order for the output to
make sense. The figures of merit needed to characterize the
prediction were summarized by Kaiser:1 (a) signal-to-noise ratio,
(b) precision or relative precision expressed as percent relative
standard deviation, (c) accuracy, which is the sum of precision
and bias from the true model, and (d) net analyte signal. In
addition, three other figures of merit are useful to characterize
the calibration model: (a) expected prediction error, (b) sensitiv-

ity, which for zeroth-order data is the slope of the calibration curve,
and (c) selectivity, which accounts for the degree of interference.

Those figures of merit were introduced to characterize a
univariate model, i.e., modeling with a single detector. Lorber2

presented a generalization that allows estimation of figures of merit
for multivariate data. Further considerations to generalize for
more complicated data structure types were presented by Wang
et al.3 and by Messick et al.4 The subject has been reviewed
recently by Booksh and Kowalski5 and by Kalivas and Lang.6

Until now, the usefulness of the figures of merit in multivariate
calibration has been limited. The reason is that estimation of
those figures of merit was restricted to the classical calibration
model (when the pure spectra, or concentrations of all components
in the calibration set, are known). Unfortunately, most of the
applications in chemical analysis are of the second type of
calibration, i.e., inverse calibration, which is much less demanding
and only requires the knowledge of the concentrations of the
analyte of interest in the calibration set.

This paper shows that the calculation of the net analyte signal
is not necessarily limited by having knowledge of the pure spectra
of all components present in the calibration set. It is shown that
with a limited amount of information, typically found in complex
situations, where only the measured spectra of a set of calibration
samples and the concentrations of the analyte of interest are
available, net analyte signal computation is still feasible.

THEORY
Computation of Net Analyte Signal in Classical Univariate

Calibration. For pedagogical purposes we will start with a
discussion of the simplest form of calibration, zeroth-order
calibration (univariate calibration). The linear univariate calibra-
tion model is formulated as

where r is the response of the analyzer, c is the concentration of
analyte of interest, s is the sensitivity of the analyzer to the
presence of the analyte, d is a constant contribution to the
measured response (background or constant interfering constitu-
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ents), and ε is the measurement error. For a set of I measure-
ments (i ) 1, ..., I), the solution of the regression equation aims
to estimate s, which in the case of a linear model is equal to the
slope of the calibration curve. Because of the simple structure
of the data, it is quite easy to generalize the model to account for
nonlinearities and for various error distribution models, a feat that
is difficult if not impossible in multivariate regression.

For the purpose of characterizing the calibration, it is not
sufficient to consider the total response r, rather, the net analyte
signal rnet, calculated by rnet ) r - d is a more relevant quantity,
since it considers only the part of the signal usable for quantitation.
The net signal is the basis for further calculations such as
sensitivity, signal-to-noise ratio, and limit of detection. A related
quantity, selectivity, which is defined as the ratio rnet/r, describes
which part of the measured response is available for quantitation.

Computation of Net Analyte Signal in Classical Multi-
variate Calibration. As with zeroth-order calibration, derivation
of figures of merit is easy after a formula for calculating the net
analyte signal is derived. Because in zeroth-order calibration the
contribution of a single analyte plus a constant term is modeled,
the net analyte signal is calculated as the measured response
minus the constant term. In first-order calibration, computation
of net analyte signal is more complicated because one or more
interfering species with varying concentration may contribute to
the measured response. Lorber2 observed that the net analyte
signal of the kth analyte may be computed as the part of its
spectrum orthogonal to the contribution of other coexisting
constituents. The reasoning behind this postulation is not
arbitrary and stems from the properties of solving a set of linear
equations. The part of the spectrum that is not orthogonal to the
contribution of the others is a linear combination of their pure
spectra. Only the orthogonal part is unique to the sought-for
analyte. Therefore, only this part is useful for quantitation or, in
other words, the net analyte signal.

The part of a vector u, orthogonal to the column space of a
matrix X, is computed by

where v is the orthogonal part, the superscript “+” symbolizes
the Moore-Penrose pseudoinverse, and I is the identity matrix.
The matrix I - XX+ is a projection matrix that projects u onto
the null space of the rows of X, which is the orthogonal
complement of the column space of X. A scalar measure for the
degree of overlap is given by the ratio R ) ||v||/||u||, which is
the sine of the angle between the two vectors. In the multivariate
scenario it is an expression for selectivity, as shown below.

Having a matrix of sensitivities S (responses divided by the
concentration of the analyte in the sample), constructed from the
pure spectra sk ) (k ) 1, ..., K) measured at J wavelengths, the
part of the kth analyte sensitivities vector sk that is orthogonal to
the other constituents, may be computed as in eq 2 as

where ŝk
net is the estimated net part of the kth constituent

sensitivity vector and S-k is the matrix of sensitivities of all except
the kth analyte. The part of the unknown sample response vector
that is unique is given by

Both left-hand sides of eqs 3 and 4 contain the contribution of
only the kth analyte, which in turn means that r̂k,un

net must be
proportional to ŝk

net. This proportionality factor is actually the
sought-for analyte concentration, or

which may be rearranged as

Using the idempotent property of the projection matrix I - S-k

S-k
+ , eq 6 may be further simplified to

Equation 7 has the same form as prediction with the regression
vector â̂k, obtained by inverse multivariate calibration where the
prediction equation is

Comparing the two equations reveals the interesting identity,

This equation gives insight into the meaning of the regression
coefficients. It says that the regression coefficients are actually
proportional to the part of the pure component spectrum that is
orthogonal to the spectra of the other components in the model.
This finding is also an outcome of tensor theory7,8 where the
regression coefficients vector is identified as the contravariant
vector. Through the relationship in eq 9, it is possible to estimate
the sensitivity, defined as ||ŝk

net||. The importance of the sensi-
tivity as a contributor to prediction error and its relation to other
diagnostic measures such as the variance factor were discussed
by Kalivas and Lang6 and Faber et al.9

The situation described above, i.e., the presence of knowledge
of the pure spectra of all analytes (or equivalently, their concentra-
tions in the training samples) is considered suitable for classical
calibration. As seen, calculation of the net signal requires
knowledge of the space spanned by the other constituents, which
is generally considered to be available under classical calibration.
In inverse calibration, only knowledge of the concentrations of
the analyte of interest is enough to calculate the regression
coefficients, hence, to obtain a predictive model. Only through
the connection to regression coefficients made in eq 9 was the
calculation of a figure of merit, i.e., sensitivity, possible. Calcula-
tion of other figures of merit still requires calculation of the net
analyte signal. It is emphasized that eqs 3-9 were derived for
the vector of sensitivities, not the actual measured responses of
the pure component. In the review by Booksh and Kowalski,5

(7) Sanchez, E.; Kowalski, B. R. J. Chemom. 1988, 2, 247.
(8) Sanchez, E.; Kowalski, B. R. J. Chemom. 1988, 2, 265.
(9) Faber, N. M.; Buydens, L. M. C.; Kateman G. J. Chemom. 1994, 8, 181.
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ŝk
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net ) (I - S-kS-k

+ )run (4)

r̂k,un
net ) ĉk,unŝk

net (5)

ĉk,un ) (r̂k,un
net )Tŝk

net/||ŝk
net||2 (6)

ĉk,un ) run
T ŝk

net/||ŝk
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ĉk,un ) run
T â̂k (8)

â̂k ) ŝk
net/||ŝk

net||2 (9)
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this distinction is lacking. Therefore, it was assumed that net
analyte signal computation is possible even for inverse calibration
from its relationship with the regression vector.

Computation of Net Analyte Signal in Inverse Multivariate
Calibration. In an inverse calibration situation, the spectra at J
(j ) 1, ..., J) wavelengths (variables) are taken on I (i ) 1, ..., I)
calibration samples, giving rise to a calibration response matrix
R of dimension I × J. Additionally, it is required that the
concentrations of the kth analyte, ck, are known for all I samples.
These data are sufficient to build a calibration model.10,11

Having the same data, R and ck, it is also possible to eliminate
the contribution of the kth constituent to the spectra in R. In
other words, it is possible to calculate the space of the spectra
spanned by all constituents except the kth analyte. This is done
by solving a rank annihilation problem. First, R is rebuilt using
only A significant components, yielding the matrix R̂. This step
is often necessary in the inverse calibration setting in order to
avoid the inversion of the singular matrix RTR in the calculation
of the regression coefficients. It is the common situation in, for
example, near-infrared applications where the number of wave-
lengths J usually exceeds the number of calibration samples I. In
practice, principal component regression (PCR) or partial least
squares (PLS) are popular methods for the calculation of the
significant components. Subsequently, the rank annihilation step
in the A-dimensional space is given by

where ĉk is the concentration vector ck projected down onto the
A-dimensional space, i.e., ĉk ) R̂R̂+ck, and r̂ is a linear combination
of the rows of R̂, which should include a contribution from the
spectrum of the kth constituent. Although in the regular setting
of rank annihilation the vector r̂ is considered to be the pure
spectrum of analyte k, it is easily proven that the choice of different
linear combinations will only affect the value of R. Rank annihila-
tion will make R̂-k free from the contribution of the kth component.
It is noted that the matrix R̂-k has the same size as the original
response matrix R (and R̂) whereas S-k has one column less than
S. However, the rank of R̂-k is A-1. The scalar R is computable
as

The vector R̂+ĉk in the dominator is the estimated regression
vector â̂k of the inverse calibration model. A derivation of eq 10
is given in the Appendix.

The net analyte signal in the most general scenario is then
calculated by

Since r̂k,un
net is free from interference, it is possible to replace it by

a scalar representation without loss of information, e.g., its
Euclidean norm. With this choice of scalar representation one
obtains

It is important to note that the term net analyte signal (NAS) is
used in the literature to indicate the vector as well as its size
(norm). In this paper, the meaning should be clear from the
context.

Calibration and Prediction by Net Analyte Signal. The
possibility of computing a scalar value free from interferences from
a vector containing contributions of unknowns (eq 12) enables
the formulation of a new way to perform multivariate calibration,
Net analyte signal (NAS) calibration. The regression step involves
I calculations of NAS for all calibration samples, such as in eq 12,

where ri is the spectrum of the ith calibration sample.
Once all the NASk,i are computed as the Euclidean norm of

the vectors, it is straightforward to establish a bivariate regression
model between ck,i and NASk,i as

where the determination function fk to be estimated may take any
nonlinear form and εi is a residual. The advantage of NAS
calibration is this extra flexibility to handle nonlinearities. Using
eq 15, prediction for an unknown sample may be written as

Equation 16 specializes in the case of the linear model to

Since the paper concentrates on figures of merit, the differ-
ences from traditional calibration are not discussed here.

Sensitivity. Sensitivity is a figure that characterizes the
calibration model and tells to what extent the response due to
the particular analyte varies as a function of its concentration.
Sensitivity in the context of univariate calibration is defined as
the slope of the calibration curve. It is essentially a differential
of response with regard to concentration. As shown in eq 9, there
is a direct relationship between the regression coefficients and
the sensitivities. Therefore, even in the inverse calibration case,
it was still possible to estimate the sensitivities through this
relationship.

With the new way to calculate the NAS presented here, it is
possible to calculate the vector of sensitivities for each calibration
sample i as

In an errorless situation (both in concentration and responses),
all calibration samples should produce the same vector of
sensitivities. This is no longer true in real applications, and the
individual estimates from eq 18 may then be combined to produce
an estimate that is representative of the entire calibration set.

(10) Lorber, A. Anal. Chim. Acta 1984, 164, 293.
(11) Martens, H.; Næs, T. Multivariate Calibration; Wiley: New York, 1989.
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r̂k,un
net ) (I - R̂-k

T (R̂-k
T )+)run (12)

NÂSk,un ) ||r̂k,un
net || (13)

r̂k,i
net ) (I - R̂-k
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ck,i ) fk(NASk,i) + εi (15)

ĉk,un ) f̂k(NÂSk,un) (16)
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Depending on the specific procedure used, the resulting sensitivity
vector will be different from the one calculated from eq 9.

Selectivity. Selectivity is a measure of degree of overlap aimed
to indicate what part of the total signal is lost due to overlap.
Dividing NÂSk,un by the length of the original spectrum of the
unknown sample gives the desired value:

It is important to note that the selectivity defined here is sample
dependent and will be determined by the amount of the analyte
of interest relative to the interferents. In the previous definition,
the pure spectra were used for the definition and the result was
characteristic for the calibration procedure. The selectivity values
obtained for the individual prediction samples will be lower than
the one defined for the pure spectra, and therefore, the previous
definition may be regarded as the maximum obtainable selectivity.
The new definition is introduced in order to overcome the
impossibility of calculating the maximum obtainable selectivity
in the indirect calibration scenario, since the total contribution of
the analyte to the unknown sample spectrum cannot be calculated
without having its pure spectrum. However, the new definition
might actually be more relevant for the analyst, since it gives
information on the particular situation and not on the ideal case.

Signal-to-Noise Ratio. Being able to calculate the NAS allows
us to relate the useful part of the signal to the measurement noise.
The signal-to-noise (S/N) ratio may be directly calculated as

where δr is an estimate for the standard deviation of the
measurement errors in the response values.

In eq 20 it is assumed that the measurement errors are
uncorrelated and have a constant variance. In another paper we
show how to derive a more general expression for S/N that also
allows for correlated and heteroscedastic errors.12 In addition, it
is assumed that the projection matrix needed to calculate r̂k,un

net in
eq 12 is “relatively” precise. The latter assumption is often
reasonable in practical applications and can be justified as follows.
Assume that the projection matrix is calculated by means of PCA,
which corresponds to the use of PCR for the estimation of the
regression vector. The noise-averaging properties of PCA are well-
known. They are due to the fact that the principal components
(PCs) are linear combinations of an often much larger number of
variables (columns of the data matrix subject to PCA), hence the
uncertainty in the PCs will be (much) lower than the uncertainty
in the original variables and the projection matrix constructed from
those PCs will be relatively immune to noise. (The validity of
this conjecture has been confirmed by calculations at our labora-
tory.) A similar reasoning is valid if PLS is used to estimate the
regression vector.

Limit of Detection. The limit of detection (LOD) is a useful
figure of merit for methods such as atomic emission spectrometry
and mass spectrometry where calibration curves may be extended
to the background level of the instrument. In some other
spectroscopic techniques, such as near-infrared modeling where
the calibration model is applied in a narrow range only, this figure
is not useful.

The International Union of Pure and Applied Chemistry
(IUPAC) recommends checking two hypotheses in order to arrive
at the decision of whether the analyte is present at a detectable
level.13 The null hypothesis states that no analyte is present
whereas under the alternative hypothesis the analyte is present
at the unknown limit of detection. Checking both hypotheses
allows for simultaneously controlling the rates of false positives
(type I error) and false negatives (type II error). According to
the IUPAC recommendation, the practical implementation may
proceed in signal space or in concentration space. The principle
of testing both hypotheses has very recently been applied by
Boqué and Rius for the classical multivariate calibration model.14

They formulated LOD in terms of concentrations and obtained
excellent results in terms of the prediction of the rates of type I
and type II errors. The following equations summarize the
reformulation of the LOD of Boqué and Rius in terms of the
estimated NAS calculated in the inverse multivariate calibration
model:

Here ro is the NAS at zero concentration value, t ) (NÂSk,un -
ro)/δr and ∆ is the noncentrality parameter of a noncentral
t-distribution. Under the assumption ro ) o, t is actually the signal-
to-noise ratio.

The LOD may be estimated as

where the factor ∆(R,â) can be obtained either numerically14 or
from statistical tables.15 The assumptions underlying eq 20 are
discussed in the preceding section. For more details, see Boqué
and Rius.14

EXPERIMENTAL SECTION
The NAS calculation was applied to the data published by

Fearn.16 He represented the linear regression of the percentage
protein in ground wheat samples against the logarithm of near-
infrared reflectance intensities at six wavelengths. The reference
values for protein content were determined by the Kjeldahl
nitrogen method. The data consist of measurements taken on
50 samples. The data set was divided according to the original
division made by Fearn into 24 calibration samples and 26
prediction samples. Only mean centering was applied as prelimi-
nary data treatment.

The equations were implemented in the Matlab language and
run on an IBM compatible personal computer.

RESULTS AND DISCUSSION
The data of Fearn are used here to demonstrate some of the

benefits obtainable by the possibility of calculating NAS for inverse

(12) Faber, N. M.; Lorber, A.; Kowalski, B. R. J. Chemom., submitted.

(13) Currie, L. A. Pure Appl. Chem. 1995, 67, 1699.
(14) Boqué, R.; Rius, F. X. Trends Anal. Chem., in preparation.
(15) Owen, D. B. J. Am. Stat. Assoc. 1965, 60, 320.
(16) Fearn, T. Appl. Stat. 1983, 32, 73.

SÊLk,un ) NÂSk,un/||run|| (19)

S/̂Nk,un ) NÂSk,un/δr (20)

null hypothesis: Ho : NÂSk,un ) ro

alternative hypothesis HA : NÂSk,un > ro

probability of type I error: R ) pr{t > tR}

probability of type II error: â ) 1 - pr{t(∆) > tR}

LÔDk,un ) ∆(R,â)δr (21)
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multivariate calibration. Equations 10-13 were evaluated using
the four-dimensional PCR model. The results obtained for PLS
are very similar and will not be presented here. The choice for
four-dimensional PCR model is based on the root-mean-squared
error of prediction (RMSEP), which is obtained in the usual way
as

where Ip denotes the number of prediction samples, ĉi is the model
estimate for the protein content, and ci is the reference value
obtained from the Kjeldahl method. Figure 1 shows the depen-
dency of the RMSEP estimate on the PCR model dimensionality.
RMSEP is estimated using the full prediction set (26 samples)
and using all prediction samples except number one. This sample
is known to be an extreme outlier (see below), and it makes sense
to also estimate the RMSEP without including it in the test set.
Since the RMSEP estimate from eq 22 is based on squared
deviations, it is sensitive to samples that may have an exceptionally
high prediction error. Excluding such samples will give a more
robust estimate. It is seen from this plot that only a marginal
decrease in estimated RMSEP is obtained by increasing the model
dimensionality beyond four. The reduction of the RMSEP
estimate resulting from excluding the outlying sample is ap-
preciable for the four-dimensional model.

Table 1 gives the projection matrix that is used for the net
analyte signal calculation in eq 12. Since an orthogonal projection
matrix is symmetric, only the upper right corner is shown. It is
easily verified that this matrix has rank three, which is the

dimension of the PCR model minus one. For a projection matrix,
the rank should be equal to the sum of the diagonal elements
(the trace). This property can be used to test the adequacy of
the calculations leading to the projection matrix.

Table 2 summarizes the prediction results and diagnostics for
the entire test set. The second column lists the reference values
that are used to validate the model in terms of the RMSEP. The
third column gives the differences between the model estimates
and the reference values, which are the individual contributions
to eq 22. The next column gives the selectivities calculated
according to eq 19. It is seen that the selectivities are indeed
sample dependent. The fifth column lists the correlations between
the net analyte signal vector and the regression coefficients. A
value close to -1 or +1 is indicative of a NAS that is not degraded
by undesired influences. The last column gives the leverage,
which is closely related to the Mahalanobis distance. The
Mahalanobis distance is a measure for the position of a sample
in calibration space. It is independent of the number of calibration
samples. The leverage, however, decreases with increasing
number of calibration samples. The leverage converges to zero
if the number of calibration samples approaches infinity and the
samples spread out well enough. Outliers are identified by
comparing their leverage to the average value obtained for the
calibration set. If PCR is used to estimate the model parameters,
this value is calculated as the ratio of the model dimensionality
and the number of calibration samples.11 The resulting average
for the calibration set is 4/24 ≈ 0.17. It is clear from comparing
this number to the numbers in the last column of Table 2 that
the first prediction sample is an extreme outlier. As expected,
the prediction error (0.93%) is much higher than the RMSEP
estimated from the reduced set (0.29%). In the next sections, the
quantitative information collected in Table 2 will be displayed
graphically and discussed in more detail.

Figure 1. RMSEP versus PCR model dimensionality calculated
from reference values of samples 1-26 (O) and samples 2-26 (×).

Table 1. Projection Matrix for Net Analyte Signal
Calculation Based on a Four-Dimensional PCR Model

0.5164 -0.1585 -0.2493 -0.3333 0.0256 0.2253
0.7540 -0.2036 -0.1736 0.0364 -0.2958

0.7935 -0.2153 -0.0081 -0.1179
0.7426 -0.0526 0.0289

0.0049 -0.0069
0.1886

Table 2. Prediction Results and Diagnostics for Test
Samples

sample
content

(% protein)
deviation

(% protein)
selectivity

(% total signal) correlation leverage

1 8.66 -0.93 1.14 -0.8739 6.85
2 7.90 -0.12 0.98 -0.9887 0.57
3 9.27 0.58 0.11 -0.4958 0.19
4 11.77 0.19 0.98 0.9973 0.48
5 9.70 0.48 0.14 0.6923 0.01
6 10.46 0.52 0.51 0.9861 0.18
7 10.17 0.31 0.28 0.8465 0.11
8 11.10 -0.02 0.47 0.9942 0.06
9 12.03 -0.48 0.71 0.9885 0.33

10 9.43 -0.01 0.49 -0.7145 0.75
11 8.66 -0.41 0.84 -0.9848 0.52
12 14.44 -0.29 2.13 0.9997 0.92
13 8.50 -0.02 0.69 -0.9764 0.36
14 10.41 -0.17 0.17 0.9087 0.50
15 9.72 -0.22 0.32 -0.6293 0.30
16 11.69 -0.30 0.74 0.9956 0.50
17 12.19 -0.12 1.03 0.9961 0.63
18 11.59 -0.04 0.81 0.9993 0.41
19 8.76 -0.27 0.65 -0.9805 0.20
20 8.60 -0.13 0.79 -0.9910 0.39
21 8.54 0.17 0.57 -0.9925 0.30
22 9.34 -0.19 0.43 -0.9483 0.26
23 10.09 0.10 0.17 0.6362 0.06
24 8.72 -0.16 0.58 -0.9703 0.24
25 10.87 -0.06 0.40 0.9631 0.19
26 10.89 0.52 0.70 0.9475 0.83

RMSEP )x1

Ip
∑
i)1

Ip

(ĉi - ci)
2 (22)
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Selectivity Determination. Selectivity measures the degree
of overlap of the compound of interest. The results obtained for
Fearn’s data are displayed in Figure 2. As seen in the plot, the
selectivity values are lower than 0.025, the large majority having
selectivities even smaller than 0.01. The upper bound for the
selectivity of 0.025 means that the analyst may expect an error
propagation greater than 40 for this data set.2 Although this
appears to be a bad situation, it must be borne in mind that the
determination of protein content in wheat samples is considered
to be an easy application for near-infrared spectrometry. Building
a global calibration model is feasible, and manufacturers of
instruments can bring down the between-instrument variation to
a value much lower than 0.025. Applications such as the
determination of octane number of gasoline are considered to be
more difficult and prone to variation within and between instru-
ments.

It is clear from Figure 2 that the selectivity itself has no
correlation to the deviation of determined protein content from
the actually measured one. For example, prediction sample 1 has
a “reasonable” selectivity but a large prediction error and predic-
tion sample 12 has a “high” selectivity but this is not reflected in
a proportionally low prediction error. Some afterthought shows
that the observed behavior is to be expected, since low selectivity
values may arise from (at least) two entirely different sources.
First, there are samples having a concentration of the analyte close
to the mean. These samples will have a low NAS because the
data are mean-centered. However, these samples occupy a
favorable position in calibration space, and consequently, the
prediction error should be low, since the uncertainty in the
estimated model contributes only little to prediction error. The
situation is entirely different for samples that are relatively far
away from the center. An eccentric position may lead to a
relatively low NAS because the estimated model and, hence, the
projection matrix is not reliable for such a sample. From a plot
like Figure 2, those two cases are not distinguishable. This is
simply the consequence of using a mean-centered model. Inde-
pendent of these effects, there is another reason that precludes a
straightforward interpretation of Figure 2. The reference values
from which the prediction errors are estimated are contaminated
by a measurement error with a standard deviation of∼0.2%.11 This
means that the true deviations are poorly estimated for this
application. Whereas the former complications have an impact

on the abscissa values, this complication has an effect on the
ordinate values.

Outlier Detection in Prediction Samples. The Mahalanobis
distance (similar information as prediction leverage) and spectral
residuals are the tools currently used for diagnostic purposes. The
Mahalanobis distance provides information about to what degree
the particular prediction sample is far away from the design points
used in the calibration set. The spectral residuals are also a useful
diagnostic tool, but they may be obtained only for overdetermined
cases as in PCR or PLS.

The possibility to calculate the NAS presented here allows the
introduction of an additional tool. Consider the following cor-
relation,

as a measure of degree of purity of the estimated net analyte signal.
The regression vector â̂k is obtained from the calibration set; thus
it may be considered as the best estimator of the NAS in the
calibration set (up to a scalar multiplication). The estimated NAS
of a prediction sample contains a contribution from two legitimate
sources, i.e., the actual net signal and random noise. In addition,
it also grabs contributions from new sources of variability that
were not accounted for in the calibration phase. Thus, the
correlation presented in eq 23 is a measure of purity of the
estimated NAS.

The new correlation measure was applied to Fearn’s data, and
the results are presented in Figures 3 and 4. Figure 3 is a
scatterplot of the calculated correlation against the reference
values of protein content. It is seen that usually the correlation
tends to approach the anticipated (1 values. As expected (due
to mean-centering the data), correlation values around the mean
concentration value for the calibration set (9.97%) tend to be lower.
In this data set, there is one sample with 8.66% protein content
whose correlation value is -0.8739. It has a behavior different
from the samples in its close proximity. This sample (number 1)
has been identified above as an outlier by its extremely large
prediction leverage. Furthermore, it is interesting to note that
the model has been used for extrapolation in the case of sample

Figure 2. Prediction error versus selectivity for calibration (O) and
prediction samples (×).

Figure 3. Correlation of NAS with regression coefficients vector
versus percentage protein for calibration (O) and prediction samples
(×).

corr(r̂k,un
net ,â̂k) (23)
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12. This sample has the highest correlation value (0.9997) of the
entire test set. This excellent correlation lends credibility to the
obtained concentration estimate and strongly indicates the useful-
ness of the correlation criteria. Figure 4 is a scatterplot of the
calculated correlation against the leverage. This figure further
illustrates the tendency of the correlation to be small for a sample
that is close to the model center in multivariate spectral space.
This holds for the calibration samples (e.g., 5, 11, 19, and 21) as
well as the prediction samples (e.g., 3, 5, 15, and 23). In addition,
there are high leverage points with low correlation (e.g., 10) and
extremely high correlation (e.g., 12). The prediction result for
sample 10 should be considered with care. The prediction error
based on comparison with the reference value is -0.01%. This
value appears to be very good. However, it is much smaller than
the measurement error in the reference method (0.20%) and
therefore cannot be a realistic estimate for the true prediction
error. The extreme outlier (sample 1) is not displayed in this
plot for ease of presentation. It has already been discussed above.

CONCLUSIONS
It has been known for 15 years that quantitation is possible

for inverse multivariate calibration. However, until now it has not
been noticed that the same mathematical fact that allows for
quantitation also allows computation of the space required to
calculate the NAS. The usefulness of this finding to calculate
figures of merit is an obvious outcome. As demonstrated, the
possibility to calculate selectivity in near-infrared applications can
help the analyst to better appreciate the limitation/advantages of
the spectroscopic method. The proposed diagnostic tool of
correlating the NAS to the regression coefficients vector has the
potential to add to the arsenal needed to diagnose when the model
is taken to its limits.

We are currently exploring different cases where NAS calcula-
tion can enhance the interpretation of multivariate calibration
results.
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APPENDIX: DERIVATION OF EQ 10
In the following derivation, the “hats” are dropped from the

symbols to simplify the notation. The calibration response matrix
R can be expressed in terms of pure component contributions as

Consequently, the linear combination r that is used in the rank
annihilation step is given by

where the weight vector w should be selected in such a way that
r includes a contribution of sk. Using eq 25 eq 10 is worked out
as

It is seen that only the second term on the right-hand side of eq
26 can annihilate the contribution of the kth component to R. This
term can be rewritten as

and it is evident that the rank annihilation step is successful if

Finally, from eq 25 it follows that the least-squares estimator for
the weight vector w is given by

and inserting eq 29 in eq 28 gives eq 11.
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Figure 4. Correlation of NAS with regression coefficients vector
versus leverage for calibration (O) and prediction samples (×).
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