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Abstract

PLS discriminant analysis, applied to a PVC polymerisation batch process, is used to determine performance differences
of parallel batch reactors. Weight contribution plots of time points and of variables are used to physically interpret the mod-
elled differences; the main time points in which deviations occur and variables that cause the observed differences are as-
signed. A simple step-wise procedure is suggested to implement this method in the process industry. It was found that a
systematic difference between the polymerisation time of the PVC batch reactors was caused by sensor failure or due to
drifting thermocouples. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Batch production processes play an important role
in chemical industry. Pharmaceuticals, biochemicals
and a large number of polymers, for example, are of-
ten produced batch wise. The size of a batch reactor
is restricted for a number of reasons like safety, heat-
ing and cooling capacity, etc. The capacity of a pro-
duction site, therefore, often is enlarged by using
batch reactors in parallel. When these parallel reac-
tors are equally designed, the performance should
also be comparable. When equal quality feed stock is
used for these reactors, and when the process condi-
tions are equal, the behaviour of the batch runs should
be similar and the quality of the product should be
comparable. In practice, however, the performance is
often different, and the causes for these differences
are not always obvious. In this paper, an example is
presented with equal feed stock, similar reactors with
a comparable history, but with an initially not under-
stood difference in batch performance. It is important
to assign the causes of these differences as they ob-
viously come from deviating process conditions.
These deviating process conditions can also produce
products with different qualities.

Causes that give rise to systematic differences be-
tween parallel reactors with equal feed stock should
be identified and if possible, eliminated. In this way,
a more stable process with less variability in both the
process conditions and in the final product quality can
be obtained. If such a problem is at hand, it can be
tried to locate the problem by comparing measured
process variables univariately. However, it is diffi-
cult to observe differences in the behaviour of a vari-
able between parallel batch reactors, especially if the
variation from batch to batch is large. Common con-
trol charts, that are often used for continuous pro-
cesses, cannot be used in this case. These charts only
have one target value, where process variables of
batch processes change as a function of time. For
batch processes, the time trajectories of the variables

have to be compared. This requires more advanced
w xcontrol charts 1,2 . As variables can influence each

other, often a difference in process conditions will
affect several variables simultaneously. When, for
example, the temperature rises in a sealed vessel filled
with an inert gas, the pressure will also rise. The
pressure and the temperature can be monitored inde-
pendently but the nature of the problem is bivariate,
or in general multivariate.

Presently, large amounts of process data are col-
lected and stored by powerful plant instrumentation
and computers, but only a small part of this data is
actually used. The information in this data can be
utilised with a multivariate method to detect differ-
ences in process conditions more efficiently. The
presented multivariate method takes into account all
relevant process variables, as well as the time trajec-
tory of these variables.

Detecting multivariate differences, however, is not
sufficient. The process conditions that are causing
these differences have to be determined. This means

Ž .that not only the responsible combination of vari-
ables have to be assigned, but also at what time dur-
ing the batch run they appear. Such a method then can
be a useful tool in the process industry for process
engineers to interpret the results. Unfold partial least

Ž .squares U-PLS discriminant analysis is a candidate
for that as it can easily model differences between
batches. The modelled differences can be converted
in weight contribution plots of variables and time pe-
riods in a similar way as contribution plots for PCA

w xmodels 3,4 . This makes the interpretation of the
model straightforward and easy to use.

2. Theory

2.1. Discriminant analysis with Unfold-PLS

Normal characters, including upper case charac-
ters, are scalars and refer to single data elements, or
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can have a special meaning as will be explained in the
text. Bold lower case characters refer to vectors. Bold
upper case characters refer to two-way arrays or ma-
trices. Bold underlined upper case characters refer to
three-way arrays. The superscript T, attached to an
array, like X T, refers to the transpose.

The main interest is to determine differences in
process variations between parallel batch reactors.
Batch process data, X, typically can be arranged in a

Ž .three-way array of size I = J = K Fig. 1 . For a
Ž . Žnumber of I batches first mode , J variables sec-

.ond mode are measured as a function of K time
Ž .points third mode . Multivariate methods like prin-

Ž .cipal component analysis PCA and PLS can only
deal with two-way arrays. For this purpose the three-

Ž .way array X I=J=K has to be converted into a
two-way array X. There are three possible ways to
do this. Since it is the aim to compare batches from
different reactors, batches can be regarded as objects
and the conversion from three-way to two-way is
made such that the batches remain objects in a sepa-

Ž .rate mode. So the first mode of X I=M is the batch

Fig. 1. The three-way array X unfolded in a two-way array X ,
where Õ , . . . , Õ denotes variable 1 until variable J, and t , t ,1 J 1 2

t , . . . denotes the first, second, third, . . . time point.3

Fig. 2. Data arrangement to determine differences between the op-
eration of batch reactors.

mode, and the second mode is a combined mode for
Ž .time and variables. A row i is1, . . . , I then repre-

Žsents a batch with elements, m ms1, . . . , M; Ms
.J = K for all possible combinations of time and

variable. A similar approach is used in batch MSPC
w x1,2 . Alternatively, the three-way array X also could
be analysed with three-way methods like N-PLS and

w xPARAFAC 5,6 .
w xWold et al. 7 described a PLS method to dis-

criminate between groups of data, called PLS dis-
Ž .criminant analysis PLS-DA . Data from two batch

Ž . Ž .reactors X I =J=K and X I =J=K with I1 1 2 2 1

and I batches, J variables and K time points are2
Ž .combined to form X I=J=K . X is unfolded into

Ž .X I=M . For this combined matrix X a vector y of
length I can be constructed, with elements being plus
one or minus one, indicating the reactor origin. Fig.
2 schematically shows the arrangement of the data.

2.2. Data pre-treatment

The polymerisation time varies from batch to
batch. This means that the data for different batches
have a different number of time points K. Multivari-
ate analysis requires the data to be stacked in a ma-
trix, therefore K has to be set to a fixed number of
time points. When the difference in time points be-
tween batches is not large the K time points can be
calculated by linear interpolation. Aligning the batch
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data with other methods, like dynamic time warping
w x8 also can be considered. In the presented case, the
relative variation in polymerisation time is small. For
this reason and also because it is a simple tool that
can be used with a limited amount of pre-knowledge,
linear interpolation is preferred here. First an arbi-
trary K is chosen, e.g., near the average number of
time points of all batches. Suppose the data of batch

˜ ˜i consists of k s1, . . . , K time points. Then the in-i i
˜ ˜crement of k s1, . . . , K is stretched or shrunken toi i

˜fit K on K. Finally the values of all variables at timei

points ks1, . . . , K are calculated by linear interpo-
˜lating between the adjacent points of k .i

A check should be made if X and X contain1 2

abnormal behaving batches. Outlying batches have to
be detected as they can influence the model more than
normal operating batches. This check can be per-
formed easily by modelling X and X each, with a1 2

multivariate technique like PCA. The size of the PCA
w xmodel can be determined by cross-validation 9–11 .

Hotelling statistics and the squared residuals can be
used to detect batches that behave significantly dif-

Ž .ferent from the normal operating conditions NOC
w x2,12 .

To equally weigh the variables, and to eliminate
the non-linear behaviour of the time trajectory, every
column of X is mean centred and scaled to unit vari-
ance. This approach also is used for monitoring batch

w xprocesses with multivariate SPC charts 1 .

2.3. PLS-DA weight contribution plots

The data shown in Fig. 2 can be modelled with
PLS.

y1TTsXW P WŽ .
R

T TXs t p qEsTP qEÝ r r 1Ž .rs1

R

ys t q q fsTqq fÝ r r
rs1

Where T is the score matrix, P the loading matrix
for X , q the loading vector for y, W the weight ma-
trix, E the residual matrix of X and f the residual
vector for y. The size of the PLS model, or the num-

Ž .ber of R latent vectors LV , can be determined by
w xcross-validation 13 and by taking into account the

amount of explained variance in X and y. Every
process variable at every time point has a contribu-
tion to each LV, captured in the weight matrix W
Ž .M=R . When X is unfolded according to Fig. 1, the
first J elements in column vectors of W correspond
to the J variables of the first time point; the ele-
ments Jq1 to 2 J correspond to the second time
point, etc. Plotting all weight contributions, i.e., all
elements of W, is not very informative as the effect
of time and variables are mixed. Plotting the weight
contribution of one variable, summed over time is
more informative. These weight contributions, a ,jr

can be calculated for every LV according to

K
2

a s w 2Ž .Ž .Ý w xŽ .jr ky1 Jqj r
ks1

Ž .This results in a matrix A J=R with elements
a , describing the weight contributions for eachjr

variable j and for each LV r, summed over all time
points. In case of 15 variables, the weight contribu-
tion of the third variable to the first LV is: a s3,1

w2 qw2 qw2 q . . . . The same overall weight3,1 18,1 33,1

Fig. 3. The PVC batch reactor. The abbreviated process variables
are listed in Table 1.
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Table 1
Relevant process variables of a PVC batch process

Variable number Variable name Description

1 T Inlet temperature cooling water of the condenserCI

2 T Outlet temperature cooling water of the condenserCO

3 T VC gas temperature at the top of the condenserVC

4 Q Calculated duty of the condenserC

5 F Amount of cooling water through the condenserC

6 S Agitator speedA

7 Q Power supply to the agitatorA

8 T Temperature of the reactor at the bottomRB

9 T Temperature of the reactor at the topRT

10 T Temperature of the reactor in the middleRM

11 T Outlet temperature of the cooling water through the reactor jacketJO

12 T Inlet temperature of the cooling water through the reactor jacketJI

13 L Level of the batch reactorR

14 F Amount of cooling water through the jacketJ

15 P Pressure of the reactorR

factors can be calculated for every time point,
summed over the variables.

J
2

b s w . 3Ž .Ž .Ý w xŽ .k r ky1 Jqj r
js1

Ž .Likewise, this results in B K=R with elements
b , describing the weight contributions for each timek r

point k and for each LV r, summed over all vari-
ables. In the same case, the weight contribution of the
fourth time point to the second LV is: b sw2 q4,2 46,2

w2 q . . . qw2 . Plotted columns of A indicate the47,2 60,2

weight contribution of individual variables to the dif-
ferences in reactor performance for each separate LV.
Likewise, the plotted columns of B show the time
points responsible for the differences in reactor per-
formance. More detail can be achieved by only con-
sidering a restricted part of W, for instance, monitor-
ing a specific variable close to a particular schedul-
ing instance of the batch.

3. Experimental

3.1. PVC batch polymerisation process

Ž .Polyvinylchloride PVC is produced on a large
scale by Shell on their production location in Pernis,
located in The Netherlands. The vinylchloride

Ž .monomer VC is polymerised in a water suspension.

During the process, up to three phases exist: a water
phase, a liquid VC phase, and a solid PVC phase. At
the start of the batch, water, VC, suspension stabilis-
ers and initiator is added to the reactor. The contents
are stirred vigorously, so that a suspension of VC
droplets in water is obtained. The reactor contents are
heated to the polymerisation temperature. The heat-
ing is continued until the polymerisation reaction
generates sufficient heat by itself. PVC is insoluble in
water and only weakly soluble in VC, so it will pre-
cipitate quickly, forming a solid PVC phase inside the

Fig. 4. Polymerisation time as a function of the initiator concentra-
Ž . Ž .tion, ) for reactor I fitted with a normal line; and ` for reac-

tor II fitted with a dashed line.
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Fig. 5. Step-wise procedure of the PLS-DA and the result obtained in several stages of the method.

VC monomer droplets. The polymerisation takes
place in the PVC phase and in the monomer phase.

A lot of heat has to be withdrawn from the pro-
cess since the polymerisation reaction is highly
exothermic. To assure the product quality, however,
it is also important to keep the temperature on a con-
stant target value. The excess of heat is withdrawn by
a cooling jacket, surrounding the reactor, and by
condensing monomer vapour to liquid in a condenser
on top of the reactor. After a period of polymerisa-
tion, the monomer phase is no longer present and all
remaining VC is present in the gas phase or in the
polymer phase. The polymerisation continues and VC
is absorbed from the gas phase, resulting in a de-
creasing pressure. The polymerisation is finally
stopped by adding a killing agent.

The amount of initiator added to the batch is an
important parameter. A high concentration results in
a high reaction rate and hence in a short polymerisa-
tion time. However, a fast reaction also means that the
heat produced per unit of time is large. For both safety
and control reasons the used amount of initiator de-
pends on the cooling capacity. Important process
variables are: temperatures on several locations in the
reactor, the condenser and the cooling system; flows

of the cooling system; agitator speed and power sup-
ply; reactor level; and reactor pressure. Fig. 3 shows
a schematic outline of the PVC batch process; the
variables are listed in Table 1.

3.2. Differences in reactor performance

The polymerisation time is mainly determined by
the initiator concentration and temperature. How-
ever, the same amount of initiator in different reac-
tors sometimes results in a different polymerisation
time. This is shown in Fig. 4, where the linear fit of
the polymerisation time as a function of the initiator
concentration is plotted for two comparable reactors.
The process data of both reactors was collected for a

Table 2
Explained variance in X and y by the PLS model

X y

LV This LV Total This LV Total

1 27.88 27.88 95.11 95.11
2 33.07 60.95 3.16 98.28
3 2.82 63.77 1.13 99.40
4 3.96 67.73 0.22 99.63
5 2.65 70.38 0.16 99.78
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period of time, after having cleaned both reactors to
eliminate a memory effect due to fouling. A PLS-DA
model was calculated for the variables listed in Table
1, according to the action scheme of Fig. 5. Interme-
diate results are given in this figure and in Table 2.
All data handling and calculations are performed in

Ž .the program Matlab The Math Works with the PLS
Ž .toolbox Eigenvector Research .

4. Results

The data of the first reactor showed a group of
eight and a group of four succeeding batches, and
some individual batches that where behaving differ-
ently from the other batches. The data of the second
reactor showed a group of four succeeding batches
and some individual batches that behaved differently.
It was coincidental that for both reactors an equal
number of 83 batches were retained.

The scatter plot of the scores of the first two la-
tent variables is shown in Fig. 6. It clearly shows two
clusters, discriminated mainly by the first LV. The
centre of both clusters is marked. PLS leave-one-out
cross-validation showed more than five significant
LVs. Fig. 6 and Table 2, however, show that the first

LV mainly discriminates between both reactors. It
explains more than 95% of the variation in y, hence
there is hardly any variation left over in y to explain
for the other LVs. The main differences in reactor
performance are modelled by the first LV. This LV,
therefore, will be used to determine the variables that
are mainly responsible for these differences.

ŽThe weight contribution plot of the variables Fig.
.7a shows that the reactor temperature at the bottom

Ž .variable 8 is the dominant factor. The weight con-
Ž .tribution plot of the time points Fig. 7b shows that

the differences are not specifically located in time. A
univariate plot of variable 8 for a batch near the mul-
tivariate average, shows clearly an overall higher

Ž .temperature in the first reactor Fig. 8a . This tem-
perature effect, however, does not show up at the top
of the reactor; Fig. 7a shows a marginal difference for
this variable which is confirmed by Fig. 8b. The re-

Ž .actor temperature in the middle Fig. 7a, variable 10
also shows a distinct difference, but surprisingly, this

Ždifference is reversed if compared to variable 8 Fig.
.8c . A simple conclusion that the temperature in one

of the reactors is higher cannot be drawn. It can be
questioned, however, whether these different temper-
ature profiles in the reactors truly exist, or that the

Ž .Fig. 6. Score plot of the first and second latent vector of X. The average score of each reactor is denoted v .
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Ž . Ž .Fig. 7. Overall weight contribution to the first LV A assigned to process variables, and B assigned to time.

sensor readings are not accurate. The second domi-
Ž .nant factor is the reactor pressure variable 15 . From

Ž .the pressure profiles Fig. 8d , it is clearly shown that
the overall pressure in the second reactor is higher. In
Fig. 4, it already was shown that for the same amount
of initiator the polymerisation time in the second re-
actor is shorter. A higher overall temperature results

in a higher overall pressure, a faster reaction rate and
therefore, in a shorter polymerisation time. Given the
existing differences in polymerisation times, the sen-
sor readings of the pressure, the temperature at the
top, and the temperature at the middle of the reactor,
it can be concluded that the temperature of the sec-
ond reactor is systematically higher. The only sensor
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Ž . Ž . Ž . Ž .Fig. 8. Univariate plot of responses in time of first and - - - second reactor. Temperature of the reactor at A the bottom, B the
Ž . Ž .top and C the middle of a batch near the multivariate average. D The reactor pressure of three batches near the multivariate average of

each reactor.

readings that deviate strongly from this, are those of
the bottom reactor temperature. These deviating
readings can only be explained due to faulty thermo-
couples. Next to the initiator influence, it is very
likely that this is the main cause of the differences in
polymerisation time between both reactors.

5. Discussion and conclusions

PLS-DA applied to batch processes proves to work
well. A relatively simple stepwise procedure, like the
one in Fig. 5, can be used to implement this method

in the process industry. A big advantage can be ob-
tained by using all relevant data simultaneously, in-
stead of one variable at a time. The calculated weight
contribution plots of the time points and of the vari-
ables make it possible for process engineers to physi-
cally interpret the PLS-DA modelled differences. The
possibility to interpret the results in this way is es-
sential for the acceptance of PLS-DA in the process
industry. Dealing with all variables simultaneously
and modelling them multivariably with PLS-DA,
supplies additional information that cannot be at-
tained by analysing variables univariately. Therefore,
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PLS-DA is a supplementary tool which can be very
valuable in the process industry.

It was found that, in case of the investigated PVC
reactors, there was a systematic difference between
the reactor polymerisation time due to a difference in
the reactor temperatures. As the temperature targets
of both reactors were equal, this can only be caused
by sensor failure or due to drifting thermocouples. By
using PLS-DA techniques, this could be established
very quickly.
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