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Abstract

The theory of batch MSPC control charts is extended and improved control charts are developed. Unfold-PCA, PARAFAC and
Tucker3 models are discussed and used as a basis for these charts. The results of the different models are compared and the
performance of the control charts based on these models is investigated. It is found that this performance depends on the type of fault
occuring in the batch process. A strategy is provided to partition reference data describing the normal operating conditions, in order

to be able to monitor a new incomplete batch on-line. © 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Multivariate statistical process control (MSPC) for
monitoring batch and semi-batch processes is still a rela-
tively new technique. Conventional (univariate) statist-
ical process control (SPC) techniques are already used in
the process industry. It is expected that batch MSPC will
also become more important since batch production
processes play an important role in chemical industry.
Pharmaceuticals, biochemicals and a large number of
polymers, for instance, are often produced batch wise.
Batch MSPC can play an important role when it proves
to be cost effective, or when a safe operation or a better
insight in the process variability can be achieved. Due to
the non steady-state behaviour of batch processes, how-
ever, batch MSPC is more complicated than MSPC of
continuous processes. Nevertheless, the number of ap-
plications is rising. The first comprehensive paper in this
field appeared by Nomikos and MacGregor (1994). Since
then batch MSPC is getting more attention, see Nomikos
and MacGregor (1995), Kourti and MacGregor (1995),
Martin, Morris, Papazoglou and Kiparissides (1996),
Dong and McAvoy (1996).
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In MSPC of continuous processes the normal vari-
ation of variables around their steady state is modelled,
where in batch MSPC the normal variation of variables
around an optimal time trajectory has to be modelled.
An additional time dimension is present in batch process
data which makes it three dimensional in nature.

Three-way batch data can be analysed with various
methods. Up to now unfold principal component analy-
sis (unfold-PCA), also referred to as multiway-PCA, is
often used for batch MSPC (Nomikos & MacGregor,
1995). For unfold-PCA the three-way array is unfolded
to a two-way array. Then the data is modelled with PCA
and finally the result is folded back again to obtain
a three-way representation of the model and the
modelled data. Using unfold-PCA is straightforward be-
cause PCA is a well-known and well understood tool for
analysing data. PCA can also be used for MSPC of
continuous processes.

Due to the unfolding process, shown in the next sec-
tion, the number of parameters of an unfold-PCA model
is very large. The number of parameters of a PARAFAC
and of a Tucker3 model is, compared to unfold-PCA,
considerably reduced since the data is compressed in
three directions instead of one as in unfold-PCA. Hence it
might be expected that PARAFAC and Tucker3 models
are more stable. For PARAFAC and Tucker3 models,
batch MSPC charts are constructed and compared to
the presently used unfold-PCA control charts. For this
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comparison it is important to look at the model fit and
the residuals, and especially to look at the detecting and
diagnostic power of the control charts in case of erro-
neous batches. MSPC serves three goals: detecting, locat-
ing and diagnosing erroneous variation. Hence, control
charts should be judged in this perspective.

The purpose of this paper is threefold. First it is shown
how unfold-PCA, PARAFAC and Tucker3 models can
be used to model batch process data and also how a new
batch is projected on each model. Secondly, the theory of
batch MSPC charts is described and improved. Results
are compared to existing batch MSPC charts. Thirdly,
a method for dealing with unfinished batches in on-line
monitoring is introduced. Monitoring results of MSPC
charts based on unfold-PCA, PARAFAC and Tucker3
models are presented and compared.

2. Three-way data models

Normal characters, including capitals, are scalars and
refer to single data elements, or can have a special mean-
ing as will be explained in the text. Bold lower case
characters refer to vectors, bold capitals refer to two-way
arrays or matrices and bold underlined capitals refer to
three-way arrays. The superscript’ attached to a matrix,
like in X7, refers to the transpose. Batch data,
X (IxJxK) with I batches, J variables and K time
points, will be used for illustration.

For unfold-PCA, X s first unfolded in a two-way array
X. There are three possible ways to unfold X, leaving one
mode intact and unfolding the other two modes into one
combined mode. In case of batch MSPC it is important
to determine differences between batches and to project
new batches on the model. This is possible by maintain-
ing the batch (first) mode and unfolding the variable
(second) and the time (third) modes in a newly formed
second mode, here called the var_time mode. Fig. 1
shows this process by taking frontal slices and placing
them next to each other. The number of variables in the
newly formed var_time mode is M = J x K. Columns of
X (I x M) represent the batches for a single variable at
a single point in time and rows represent all possible
combinations of variable and time for a single batch.
Using PCA X can be modelled with R principal compo-
nents

R

Xim = Z airbmr + Cim» (1)

r=1
or in matrix notation
X=AB" + E, )

where X, dir, br and e;,,, respectively, are elements
of X(I xM),A (I xR),B(M xR)andE (I x M). Without
changing the model, B can be made column-orthogonal.
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Fig. 1. Three-way data X, with modes “batch”, “variable” and “time”,
unfolded to a two-way matrix X with mode “batch” and a combined
mode “var_time”.

Then B'B = I and the explained variance of the data is
accounted for in A. Vectors of A are called score vectors.
X = AB" is the modelled part of X, and E is the residual
matrix. A three-dimensional model can be constructed by
folding back the two-dimensional model. The score
matrix 4 remains unchanged, but X, Band E are con-
verted into their three-dimensional representations
X, B and E. Fig. 2a visualises the unfold-PCA model, and
the unfolding and back folding process.

The PARAFAC model of X with R components
(Harshman, 1970; Carroll & Chang, 1970) can be de-
scribed as

R
Xijx = z aybjcr + e, (3)
r=1
where: i, j and k are running indices for the units of the
three different modes I, J and K; r is an index of the
R components; X;j, di, bj, ¢ and e; are elements of
X(IxJxK),AIxR), B(J xR), C(K x R)and E(I x J x
K); % = Y. % aybj.cy, is the modelled part of x;j. Vec-
tors of A are called score vectors and vectors of B and
C are called loading vectors. A two-way matrix repres-
entation of the PARAFAC model is given by

X=A(C-B)" +E, 4)

where o indicates the Khatri-Rao product (Rao & Mitra,
1971) of C and B partitioned in columns (see appendix).
Without changing the model, the vectors of B and C can
be normalised to unit length when simultaneously the
matching vectors of A are compensated. Fig. 2b visualises
the PARAFAC model.

The Tucker3 model of X, with R, S and T components
for the first, second and third mode, respectively (Tucker,
1966; Kroonenberg & De Leeuw, 1980), can be described
as

R S T
Xijr = Z Z z aybjscihes + e (3)

r=1s=1t=1
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Fig. 2. Three dimensional representation of (a) the unfold-PCA model, (b) the PARAFAC model and (c) the Tucker3 model.

where: r, s and ¢ are indices for the components for the
different modes; x;j, @i, bjs, i, Mo and ;5 are elements
of X(I x J x K), A(I x R), B(J x S), C(K x T), HR xS x T)
and E(I xJ x K)’ ')%ijk = Zf: 1r, f: 12{: 1airbjsckthrst is the
modelled part of x;. Vectors of 4 are called score vectors
and vectors of B and C are called loading vectors. Ele-
ments of H are weights for all possible component inter-
actions. A two-way matrix representation of the Tucker3
model often is given by

X =AH(C®B)" + E, (6)

where ® indicates the Kronecker product and H(R x ST)
is a two-way representation of H(R x S x T). Without
changing the model the matrices 4, B and C can be made
column-orthogonal. The variance described by the model
is then accounted for in H. Fig. 2¢c visualises the Tucker3
model.

It can be shown that for a given number of compo-
nents R the unfold-PCA model always fits better than the
Tucker3 model, which in turn fits always better than the
PARAFAC model (Kiers, 1991). This can be explained by
the difference in the amount of parameters for each

1227
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model. The unfold-PCA model estimates for every com-
ponent a parameter for each time point of every variable.
The high number of parameters can describe a relative
large amount of variation. The PARAFAC model only
estimates a parameter for each time point over the vari-
ables and a parameter for each variable over the time
points. For the time mode the effect of the variables are
averaged and vice versa. Due to this averaging there is
less variation explained by the PARAFAC model com-
pared to the unfold-PCA model. The PARAFAC model
only allows interactions between the same component of
all modes. The Tucker3 model also allows interactions
between a particular component of a certain mode with
all components of the other modes. For this reason, more
variation is explained by the Tucker3 model compared to
the PARAFAC model with a similar model size. The
reasoning above is comparable to the case that a rela-
tionship between an x and y can increasingly be fitted
better with higher-order polynomials (more complex
models). The question is, of course, how complex the
model should be.

3. Projecting a new batch on an existing model

To construct MSPC charts it is necessary to model
batch data representing the normal operating conditions
(NOC) with unfold-PCA, PARAFAC or Tucker3. Then
data of new batches can be compared with the NOC data
by projecting the new batches on one of the models.
A data vector of a new batch, x,.,(M X 1), can be projec-
ted on either model to calculate a new score vector,
a,.w (Rx 1) and a new residual vector e,., (M x 1). For
unfold-PCA with column orthogonal B, Eq. (2) is rear-
ranged and the score and residuals of the new batch are
(Nomikos & MacGregor, 1994)

anew = BTxnew:
— Ba,,.,. (7)

enew = xﬂCW

For PARAFAC Eq. (4) is similarly rearranged and the
score and residuals are

pew = [(C o B)'(C > B)] (Co B) Xpew,

€new = Xnew — (C° B)tyen. ®)
For Tucker3 rearranging Eq. (6) results in

tney = (HH') "H[(C®B)'(C®B)] (CR®B) Xpey

enew = Xnew — (COBH dpey. ©)

MSPC charts can be used to compare the scores and
residuals of the new batch with the scores and residuals of
the NOC data.

4. Batch MSPC charts

Control charts that are used in batch MSPC generally
are based on the Hotelling statistic (D-chart) and on the
residuals statistic (Q-chart).

4.1. Hotelling statistic: D-chart

This statistic assesses the statistical significance of the
difference between two sets of samples, drawn from
a multivariate normal distribution. The definition of the
Hotelling statistic is explained in the appendix. If instead
of x; with J variables, a reduced (principal) component
space with R components and PCA-, PARAFAC- or
Tucker3 score vectors is used, the T2-statistic is then
called the D-statistic (Nomikos & MacGregor, 1994) and
becomes

I(I — R)
RIF—1)"

(anew - aI)TSE 1(anew - aI) F(R’ I— R), (10)
where a,.,, is the score of the new batch, a; the average
score of the initial I batches and Sk the covariance matrix
of the I initial scores with R components. The a; contain
the column averages of A(I x R) and Sy, is calculated as
(1/I — 1)) AfA. where A, is the column centered A. This is
the approach often used in batch MSPC.

The problem with this approach, however, is that the
I initial scores of the reference set are constructed differ-
ently from the future scores of the new batches. The
future scores are not drawn from the same distribution as
the initial scores. The initial scores are maximised in
order to optimally model the variance of the data, where-
as the future scores are calculated by fitting new data on
this model.

A better approach is schematically given hereafter:

a. For all batchesi=1,..., 1.

b. Model the data from all initial batches except batch
i(l,...,i—1Li+1,....10).

c. Project batch i on the model, calculate the score vector
a; and the residual vector e;.

d. End i-loop.

e. Calculate the average score vector a, and the
covariance matrix of the projected scores S as men-
tioned above.

f. Develop the D- and Q-charts.

g. Calculate a model with all initial batches I, project
a new batch on this model and calculate a,,.,, and e,

h. Use a,.,, @; and Sk to calculate the D-statistic with
Eq. (10) and use e, to calculate the Q-statistic.

In this way all initial and future scores are projected
and can be assumed coming from the same distribution
and Eq. (10) holds. A D-chart can be constructed based
on the F-distribution and a desired error limit. A small
error is made since the score of the future batch is
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projected on a model based on one extra batch compared
to the score of the initial batches.

4.2. Residuals statistic: Q-chart

The sum of squared residuals of batch i can be cal-
culated as

J K
0= Z Z eizjka (11)
j=1k=1
where e; is the typical element of E; (J x K), the matrix
of residuals of the ith batch which is the back-folded
e; (JK x 1) vector (see Egs. (7)—9)). This Q; value should
remain within certain limits. If the residuals are indepen-
dent and normally distributed Q; follows a y*-distribu-
tion (Nomikos & MacGregor, 1994,1995),

Qi ~ giti (12)

with h degrees of freedom and a weight g to account for
the magnitude of Q;. The residuals, however, still can be
partly correlated. Therefore, the h degrees of freedom of
Eq. (12) are not known in advance. However, it can still
be assumed that the sum of squares, Q; (i =1,..., I), of
the NOC batches follow this distribution, Q; ~ gy?
(Nomikos & MacGregor, 1995). The weight g and the
degrees of freedom h of this distribution can be estimated
with the first (4,2 = g-h) and second (¢,,; = 2¢* - h) mo-
ment of this distribution. Q-charts can be constructed for
Q; based on this distribution and a desired error limit. An
alternative procedure to find control limits for Q; is given
by Jackson and Mudholkar (1979), which is similar to the
approach presented above.

In traditional Q-charts the parameters g and h, and
hence the upper 95% confidence limit, Qq5, is constant
for the whole batch run (Nomikos & MacGregor, 1994).
A new method is proposed in this paper, that uses several
models for on-line monitoring, this will be explained
later. As a consequence, different values of g and h are
obtained, and consequently, the upper 95% confidence
limit Qo5 can vary as a function of time. This makes the
interpretation more difficult, a straight line upper limit is
common practice and for operators easier to deal with.
This problem can be avoided easily by plotting the ratio
0:/Qqs or Q;/Q 40, the upper limit line is then constant like
in case of the D-chart.

4.3. Detecting power

Usually the upper limits of the charts are set on a 95 or
99% significance level. When the results of the D-charts
and Q-charts have to be compared for several models and
several sizes of the models, actually various distributions
are being compared. For instance the D-statistic value
based on a model with R =2 is being compared with
a value based on R = 3, or Q-statistic values with several

degrees of freedom h are being compared. In order to
obtain comparable results, p-values will be reported. This
p-value is the probability that a value at least as large as
the statistic obtained comes from normal operating con-
ditions. The 95 or 99% significance level corresponds to
p-values of 0.05 (5%) or 0.01 (1%). The D- and Q-statistic
of an erroneous batch calculated with one of the models,
ideally has a p-value much lower then 0.05 or 0.01. Stated
otherwise, if a p-value lower than 0.05 or 0.01 is found,
the control charts signals an error. By reporting the
p-values, an idea is given of the average run length (ARL)
of the control chart; that is, how long does it take for
a control chart to detect an error. ARLs are performance
measures of control charts; the longer it takes to detect
an error (high ARL), the poorer the performance of the
control chart (Wetherill & Brown, 1991).

5. On-line monitoring

In order to be able to monitor a batch process on-line,
the total run time K of a batch process is subdivided in
several time periods. One way to subdivide the total run
time of a batch is according to scheduling points, when
distinct stages are detectable due to the chemistry or
physics of the process, or for specific chemical or physical
reasons. The total run time can be subdivided accord-
ingly and for every stage, or for every time period be-
tween two scheduling points, the corresponding NOC
data is modelled and a D- and Q-chart is constructed. If
there are no specific scheduling points or distinct stages
the run time can be subdivided in expanding time peri-
ods, like 0-K/n, 0-2K/n, ..., 0-K time points.

It is also possible to use a more complex approach,
introduced by Rénner, MacGregor and Wold (1998),
based on a recursive multi-block PCA method. This
method processes data in a sequential and adaptive man-
ner with a controlled rate of adaptation. Another alterna-
tive is given by Nomikos and MacGregor (1994,1995).
These approaches can also be used for PARAFAC and
Tucker3 models.

The D-chart measures the deviation between a new
batch and the normal operating batches in terms of
variation which can be handled by the model, whereas
the Q-chart shows the variation which cannot be handled
by the model. Hence, both charts are complementary
(Nomikos & MacGregor, 1994; Nomikos & MacGregor,
1995). When a new batch has a large D-statistic and
a moderate Q-statistic, then it means that variation is
present in this new batch which is already to some extent
present in the training (NOC) data, but is extreme com-
pared to the normal operating batches, ¢.g. a slow drift in
temperatures and pressure might show such behavior.
When a new batch has a large Q-statistic, then com-
pletely new variation is encountered, not present in the
model, e.g. sudden upsets and sensor failure might show



1230 D. J. Louwerse, A. K. Smilde | Chemical Engineering Science 55 (2000) 1225-1235

such behaviour. Hence, using the two types of control
charts simultaneously is important from a chemical en-
gineering point of view: they can both signal events, but
they have different diagnostics values.

When a chart signals an out-of-control situation, con-
tribution plots can help in locating which variables cause
the out-of-control situation and diagnose the possible
cause of the erroneous behaviour (Miller, Swanson
& Heckler, 1998; Kourti, Nomikos & MacGregor, 1995;
Boqué¢ & Smilde, 1999).

6. Experimental

The use of batch MSPC charts for the several men-
tioned three-way models is illustrated with a benchmark
data set of a simulated semi-batch emulsion polymeris-
ation of styrene-butadiene (Broadhead, Hamielec and
MacGregor, 1985). Meaningful disturbances like impu-
rities in the initial charge of the organic phase and in the
butadiene feed to the reactor were added. Measurements
were taken from flow rates, temperatures, density, esti-
mates of the conversion and energy release. A detailed
description can be found in literature (Nomikos & Mac-
Gregor, 1994; Broadhead et al., 1985). Fifty batches were
simulated to construct the NOC data, by introducing
typical variations.

Three additional batches were simulated, one with
normal conditions and two with product that was out of
the specification region. One erroncous batch had an
initial organic impurity contamination in the butadiene
feed. The other erroneous batch had the same problem,
but the contamination was higher and started halfway
through the batch operation.

The NOC data is arranged in a three-way array
X(IxJxK) of I =50 batches, J =9 variables and
K =200 time points. To describe the variation of the
variables about their average trajectory, for every vari-
able at each time point the 50 values were centred and
scaled to unit variance. The three additional batches are
scaled with the NOC parameters.

On-line monitoring was achieved by subdividing the
total run time K in 10 time periods with 0-20, 0-40, 0-60,
..., 0-200 time points. For every time period the corre-
sponding NOC data is modelled, and a D-chart and
Q-chart is constructed.

6.1. PCA, PARAFAC and Tucker3 batch MSPC charts

Batch MSPC charts based on an unfold-PCA model
with two and with three principal components were con-
structed as described earlier. Results of using unfold-
PCA for modelling the D- and Q-charts are presented
with two methods. The method that uses the Hotelling
statistic for PCA as described in literature, called the
uncorrected model; and the new approach presented in

this paper, called the corrected model. The new (correc-
ted) approach is also used for charts based on the
PARAFAC and the Tucker3 model. To compare the
performance of PARAFAC and unfold-PCA, batch
MSPC charts based on the PARAFAC model are also
constructed with two and three components. Since it is
the aim to model differences between batches and also for
computational convenience, the PARAFAC score vec-
tors of the batch mode were constrained to be orthogonal
(Harshman, 1970). For Tucker3, batch MSPC charts are
constructed based on a model with R=4,S=2,T =3
components. R, S and T, respectively, represent the num-
ber of components for the batch, the variable and the
time mode. The choice of the Tucker3 model size is
indicated by Tucker3 cross-validation results (Louwerse,
Smilde & Kiers, 1998).

The p-values of the D- and Q-statistic for the three
future batches are calculated for all models and all time
periods. For instance, in case of the Tucker3 model
with R =4, S =2 and T = 3 components the D-statistic,
according to Eq. (10), is compared with the F(4,45)-
distribution to calculate a p-value. The four-degrees of
freedom are from the number of components of the batch
mode, and the 45 degrees of freedom are from the 50
reference batch scores minus the four components and
one lost degree because of the centring operation. The
Q-statistic is compared to the y>-distribution of Eq. (12)
to calculate a p-value; g and h are calculated with the
NOC values and are known when future batches are
projected.

7. Results and discussion

The results will be discussed keeping in mind the goals
of MSPC: detecting, locating and diagnosing erroneous
variation. Hence, it is important that at least one of the
control charts gives an out-of-control signal (detecting),
but it is also important which chart signals (locating and
diagnosing).

Table 1 shows the amount of variance that is explained
for all described models. Besides that models with more
components explain more variation, unfold-PCA ex-
plains the largest part of the variation for a certain
number of components, as already mentioned in the
theory section. The 4 x 2 x 3 component Tucker3 model
explains more variation than the two component un-
fold-PCA model. It seems that the Tucker3 model is
considerably larger than the unfold-PCA model with
respect to the number of components. However, the
number of estimated parameters for the NOC data
modelled with Tucker3 (4 x50 +2x9 4+ 3x200 + 4 x
2 x 3 = 842) is small when it is compared to the unfold-
PCA model (2 x 50 + 2 x (9 x 200) = 3700). The amount
of variation explained by the models might seem low, but
this is not an exception in batch models (Nomikos
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Table 1
Percentage explained variation of the NOC data as a function of the model size and the modelled time periods

Model size PCA PARAFAC Tucker3
Model time period 2 3 2 3 4x2x%x3
0-20 49.3 63.0 38.1 479 55.3
0-40 36.3 49.6 25.1 34.2 40.9
0-60 28.4 39.6 21.0 27.6 33.6
0-80 25.7 352 19.7 25.4 29.6
0-100 24.6 32.7 18.7 23.6 26.8
0-120 24.2 31.5 17.8 22.5 259
0-140 23.5 30.6 17.3 21.6 25.1
0-160 23.4 30.0 17.8 21.6 24.9
0-180 239 30.1 18.8 22.3 25.6
0-200 24.0 29.9 19.1 22.4 25.6
Table 2

(a) D-statistic of a future batch, erroneous from the start

Modelled time periods

Model Comp. no. 0-20 0-40 0-60 0-80 0-100 0-120 0-140 0-160 0-180 0-200
UNFOLD-PCA,,. 2 14 24 0.049 0.024 0.038  0.030 0.019 0.007 0.005 0.004
3 6.0 4.9 0.16 0.089 0.11 0.11 0.071 0.027 0.019 0.014
UNFOLD-PCA,,,, 2 10 0.70  0.001 0.001 0.002  0.003 0.002 <0001 <0.001 <0.001
3 7.3 1.8 0.004 0.005 <0.001 0.011 0.007 0.001 0.001 < 0.001
PARAFAC 2 6.1 0.12  0.010 0.026 0.008  0.003 0.004 0.002 < 0.001 0.001
3 16 0.43  0.048 0.062 0.004 0.014 0.007 0.004 0.004 0.002
Tucker3 4,2,3 9.0 1.6 0.21 0.69 0.075 0.44 0.37 0.085 0.097 0.050

P-values * 100% are tabulated as a function of the model, the model size and the used time periods. The boldface numbers indicate a detection signal
(x=0.01)

(b) Q-statistic of a future batch, erroneous from the start

Modelled time periods

Model Comp. no. 0-20 0-40 0-60 0-80 0-100 0-120 0-140 0-160 0-180 0-200
UNFOLD-PCA,,. 2 0.23 0.007 3.1 19 2.7 44 6.8 0.028 0.073 0.24

3 0.13 < 0.001 0.34 8.7 0.85 1.4 1.3 < 0.001 0.002 0.026
UNFOLD-PCA,,, 2 2.5 031 75 35 7.7 10 17 0.13 0.30 12

3 2.4 0.016 6.0 29 11 9.5 12 0.058 0.16 0.85
PARAFAC 2 11 11 8.8 5.1 6.9 13 20 54 33 4.5

3 2.4 4.2 35 33 12 14 24 3.8 32 4.8
Tucker3 4,2,3 24 16 8.2 3.0 5.8 11 17 35 3.8 6.0

P-values * 100% are tabulated as a function of the model, the model size and the used time periods. The boldface numbers indicate a detection signal
(e = 0.01).

& MacGregor, 1994,1995). Note that the variation not modelled time periods. The p-value of an erroneous

captured by the model is summarized in the Q-charts. batch ideally is as low as possible, at least below 0.05 (or
Results of the D- and Q-statistic are shown in Tables 5%), corresponding to a significance level of 95%. For
2 and 3. The p-values of the erroneous future batches are convenience all p-values lower than 0.01 (1%) are made

tabulated as a function of the used models and the bold in the tables; this represents cases where the control
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Table 3
(a) D-statistic of a future batch, erroneous from halfway

Modelled time periods

Model Comp. no. 0-120 0-140 0-160 0-180 0-200
UNFOLD-PCA,,. 2 36 24 2.6 0.65 0.098
3 55 42 5.4 1.9 0.33
UNFOLD-PCA, 2 19 4.5 0.10 0.048 0.001
3 31 10 0.23 0.17 0.005
PARAFAC 2 0.87 0.37 < 0.001 < 0.001 < 0.001
3 12 9.0 < 0.001 0.005 < 0.001
Tucker3 4,2,3 2.8 0.054 0.019 0.040 0.006

P-values * 100% are tabulated as a function of the model, the model size and the used time periods. The boldface numbers indicate a detection signal

(o = 0.01).

(b) Q-statistic of a future batch, erroneous from halfway

Modelled time periods

Model Comp. no. 0-120 0-140 0-160 0-180 0-200
UNFOLD-PCA,,. 2 0.060 < 0.001 < 0.001 < 0.001 < 0.001
3 0.006 < 0.001 < 0.001 < 0.001 < 0.001
UNFOLD-PCA,,,, 2 0.27 < 0.001 < 0.001 < 0.001 < 0.001
3 0.24 < 0.001 < 0.001 < 0.001 < 0.001
PARAFAC 2 1.1 < 0.001 < 0.001 < 0.001 < 0.001
3 0.39 < 0.001 < 0.001 < 0.001 < 0.001
Tucker3 4,2,3 1.9 < 0.001 < 0.001 < 0.001 < 0.001

P-values * 100% are tabulated as a function of the model, the model size and the used time periods. The boldface numbers indicate a detection signal

(o = 0.01).

chart clearly detects abnormal behaviour. All p-values of
the normal behaving future batch were larger than 0.05
(or 5%), corresponding to a significance level below 95%,
they are not individually reported.

The p-values of the future batch erroneous from
halfway, are reported after the introduction of the error.
Control charts of the PARAFAC model with two com-
ponents are shown as an example in Fig. 3. The D- and
Q-statistic is shown for all three future batches.

The results will be discussed in three parts: (i) compar-
ing corrected and uncorrected unfold-PCA, (ii) com-
paring performance of the different models in terms of
detecting erroneous behaviour in either one of the charts
and (iii) comparing performance of the different models
in terms of the separate D- and Q-charts.

7.1. Corrected versus uncorrected unfold-PCA
When the uncorrected unfold-PCA (unfold-PCA,,.)

method is compared to the corrected unfold-PCA (un-
fold-PCA,,,,) method there is a clear difference. When an

error is introduced in the operating conditions of a run-
ning batch, the D-statistic signals earlier (see Table 2a
and Table 3a) and the Q-statistic signals later (see Table
2b and Table 3b) when using unfold-PCA_,,,. Stated
otherwise, for a given significance level o, the D-limits
become smaller and the Q-limits become larger in the
corrected approach.

In chemical engineering practice, an o of 99% is chosen
for the D-chart and an a of 99.9% is chosen for the
Q-chart to avoid the pitfall of the uncorrected approach.
In practice, choosing a 99% level for the Q-chart in the
uncorrected approach leads to more false positive sig-
nals, that is, an actual type I error larger than 1%
(Nomikos, 1996). To reduce this actual type I error,
a limit of 99.9% for the Q-chart is chosen in chemical
engineering practice. Hence, using the corrected ap-
proach, this problem is solved since the control limits are
better approximates of the true limits. The results of the
corrected unfold-PCA support and motivate the chem-
ical engineering practice. From now on, only the results
of unfold-PCA_,,, will be considered.
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Fig. 3. (a) D-statistic of future batches as a function of the modelled time periods for a PARAFAC model with 2 components. (b) Quotient of the
Q-statistic of future batches and the 95% upper limit as a function of the modelled time periods for a PARAFAC model with 2 components.

7.2. Comparing performance of the different models in
terms of detecting erroneous behaviour in either one of the
charts

For the batch erroneous from the start, both PARAF-
AC and unfold-PCA.,,, give a signal after 40 time points.
Tucker3 detects slightly later; at 60 time points. For the
batch which is erroneous halfway the batch run, the
PARAFAC and Unfold-PCA,,,, charts detect this dir-
ectly (time point 120). The Tucker3 charts lag again
slightly behind (after 140 time points).

Summarizing, in overall detecting capabilities the
PARAFAC and unfold-PCA_,,, charts seem to perform

similarly. The Tucker3 based charts detect slightly later.
The Tucker3 charts were not optimized in terms of num-
ber of Tucker3 components. This might have improved
the performance of the Tucker3 chart.

7.3. Comparing performance of the different models in
terms of the separate D- and Q-charts

D-charts based on the PARAFAC model perform
slightly better than the unfold-PCA,,,, ones, especially
for the batch with an error halfway (Table 3a): the
PARAFAC model with two components detects the er-
ror in a very early stage. The unfold-PCA,,,, charts are
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comparable in performance to the Tucker3 based charts
(see Table 2a and Table 3a), although the Tucker3 based
chart shows a slightly better performance for the batch
with an error halfway (Table 3a). It seems to be favour-
able, both for PARAFAC and unfold-PCA.,,,, to have
a parsimonious model, i.e., to use a low number of com-
ponents. The performance of the Tucker3 model might
be enhanced by lowering the number of components in
the batch mode. This was not pursued further.

The Q-chart based on unfold-PCA.,, performs slightly
better than the PARAFAC and Tucker3 based charts for
the batch with an error in the start (Table 2b). Note that
also the unfold-PCA,,, chart has problems in detecting
this error once the batch has run for 60 time points or
more. Apparently this error is hard to detect in a Q-chart.
The initial organic impurity in the feed at the start of the
batch causes extreme variation which can be modelled to
some extent, since D-charts detect the abnormality and
the Q-charts do not show consistent high-residual errors.

For the batch with an error halfway, the conclusions
are less clear (Table 3b). The unfold-PCA,,, and
PARAFAC based Q-charts perform comparable. The
Tucker3 based chart performs perhaps slightly worse, but
it still gives a warning if a level of 5% is defined as
warning limit.

Summarizing, the PARAFAC and Tucker3 based
charts seem to perform slightly better in the D-chart than
unfold-PCA.,,.. In the Q-chart, unfold-PCA_,, seems to
perform slightly better. Hence, there is no king method.
All depends on what types of faults are to be expected
and detected in the batch process being monitored.
Chemical engineering experience has to show what
methods are the most useful for a given application.

8. Conclusions

The correction of unfold-PCA proposed in this paper
is theoretically justified and improves the performance of
the Q-chart based on unfold-PCA. The correction re-
moves the necessity of using a too high limit for the
Q-chart, which was the engineering solution of the prob-
lem with the Q-chart.

For overall detection, that is, receiving a signal from
either the D- or Q-chart, there is no king method.
PARAFAC and unfold-PCA,,,, perform equally well.
The D-charts perform best for parsimonious models, i.e.
PARAFAC models with a low number of components.
Hence, errors like slow drift in the batch process tend to
be detected earlier with, e.g., a PARAFAC based D-chart.
In the Q-chart, unfold-PCA_,,, seems to perform slightly
better.

The strategy of using a sequence of models, based on
a growing number of time points seems to work satis-
factory. Of course, it is possible to divide the training
data in a finer grid resulting in, e.g., 200 models. Since all

calculations can be done off-line, once these models are
known they can be used on-line in a straightforward
manner.

Appendix A
A.1. Khatri-Rao product

If the matrices C(K x R) and B(J x R), are partitioned
into R column vectors, C = [¢y, ..., ¢g], B = [by, ..., bg],
then the Khatri-Rao product is

COB = [Cl®bls"'9cR®bR:|?

where ® is the Kronecker product.
A.2. Hotelling statistic

According to Seber (1984), T? is defined as
T>=myV 'y withy ~Ny0,%), V~W;(m,?ZX),
(A.1)

where y(d x 1) is a multivariate observation; M(d x d) is the
covariance matrix of m multivariate observations;
N,and W, denote the d-dimensional normal and
Wishart distribution, respectively. The vector y and the
matrix V are statistically independent. For the true multi-
variate population, the mean is zero and the covariance
matrix is 2. If this holds then T2 follows an F distribution

. 2
@—§i22%~ﬂim—d+u (A2)

Consider a set of initial multivariate observations
X1,X,, ..., X, and a future observation x,,.,, all character-
ised by J variables. For this case, Tracy, Young and
Mason (1992) derived that if

X ~ NJ (:ua Z)? (A3)
then

.if[ ~ NJ (:ua Z/I)a

I=-1)S;~WwW,(I-1,2), (A4)

where Xx; and S, respectively, are the average vector and
the covariance matrix of the initial observations. In the
case that x,., X;, and S; are independent it follows that

I —J)

JiE U= A

(xnew - jI)TS; 1(xnew - )_CI)
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