
Introduction

With the development of modern analytical instruments, such as
HPLC-DAD, LC-MS and EEMs, which generate the responses
of a two-dimensional matrix per sample, or even
multidimensional data, it is urged to develop new and effective
algorithms for chemometrics as applied to the decomposition of
three-way data obtained from complex systems.1–10 Recently, a
series of three-way algorithms have been developed.  Among
them, the rank annihilation factor analysis method (RAFA)11,12

was applied to the decomposition of three-way data, though it
could determine only one component each time.  The
generalized rank annihilation method (GRAM) and direct
trilinear decomposition method (DTLD),13–16 on the other hand,
were developed to permit the determination of several
components simultaneously.  The parallel factor analysis
(PARAFAC)17–21 algorithm is one of the most popular methods
in the decomposition of three-way data.  There were also some
other versions to improve PARAFAC,10,22,23 which were
attempted to provide improved results.  Booksh et al. have used
the w-PARAFAC algorithm24 to overcome the effect of Raman
scattering to PARAFAC performance.  Recently, Smilde’s
group has developed several models to improve the
decomposition of multi-way data.25–27

There have been many applications of three-way data
analysis.  Wentzell et al. have applied three-way data analysis to
fluorescence spectroscopy in determining PAHs,28 and Booksh
et al. have determined hydrocarbons in ocean water using the
PARAFAC approach.29 The PARAFAC methodology has been
used by Tan et al. to treat the kinetic system for the degradation
of chlorophyll-a and chlorophyll-b.30

The main goal of a trilinear data analysis is to solve two
practical problems in analytical chemistry.5 First, it can perform
a second-order calibration, that is to say, a simultaneous
determination of the components of interest, even in the
presence of other unknown interferents.  Secondly, it can
resolve complex chemical systems, such as kinetic models, to
obtain physical resolution by using “mathematical separation”.
The practical experimental data are used to be complex,
especially when the error is not subjected to the normal
distribution from sample to sample, so that there are many
different loss functions defined to decompose the three-way
data.  Although the principle of least squares (LS) may
generally be used to define a loss function, it is feasible only
when the error is subjected to the normal distribution.  This is
not the case, however, for many practical situations.  Thus, the
loss functions defined using the least-squares concept are not
the only criteria for evaluating the decomposition of the three-
way data.  In addition, the intrinsic trilinear structure should be
considered in decomposing the three-way data.

Wu et al. had developed an alternating trilinear decomposition
(ATLD) algorithm2,10 to decompose three-way data.  Kowalski’s
group has made an elaborate and pertinent evaluation:1 It
(ATLD) still converges faster than the original PARAFAC
algorithm (ATLD is reported as converging in less than ten
iterations), and its iterative procedure uses the Moore–Penrose
generalized inverse with a singular value decomposition (SVD)
in the trilinear sense.  As mentioned previously, some of the
main drawbacks to the used of PARAFAC are (a) the
occurrence of two-factor degeneracies and (b) the presence of
swamps.  ATLD was developed with the aim to regularize the
procedure, thus avoiding these traps.  Kowalski et al.1 also
pointed out: These equations involve the use of the
Moore–Penrose generalized inverse, denoted by the +
superscript, whereas the original PARAFAC algorithm did not.
Because this computation is based on the SVD, singular values
less than a certain tolerance are treated as zero.  This makes it
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possible to perform the calculations even when the estimated
component number N is greater than the number of chemical
species present in the samples, reducing the rank deficiency
problem that exists with PARAFAC and that can cause two-
factor degeneracies.  The importance of this result stems from
the fact that rank determination is not always straightforward,
especially in the presence of noise, and an overestimation of the
number of chemical species in the sample may sometimes
occur.

In this paper, the Lagrange operator method (LO) is used to
construct the loss function in the optimization procedure to
improve the trilinear decomposition algorithm.  Penalty and
Lagrange operator terms are added purposely in order to
overcome the shortcomings and deficiencies of the traditional
PARAFAC algorithm.  Compared to the traditional PARAFAC
algorithm, the LO algorithm converges much faster and is
almost not sensitive toward overfactoring the model.  It has
been demonstrated that this algorithm is efficient and practical
both in simulated data and measured excitation-emission
fluorescence data.

Theory

The trilinear model can be expressed as

R = 
N

∑
n=1

xn × yn × zn + E, (1)

where xn, yn, zn are the profiles in three orders.  It can also be
expressed as

R..k, Xdiag (z(k))YT + E..k,           k = 1,2,...,K, (2)

where R..k and E..k are the kth slices of R and E, respectively,
along the third order, X and Y are the I × N matrix of the
spectra of the relative intensity and the J × N matrix of the
weighted chromatographic coefficients, respectively.  z(k)

denotes the kth row of the K × N relative concentration matrix.
Diag (·) denotes the diagonal matrix of order N × N in which the
corresponding diagonal elements are elements of a vector.

Suppose that P(I × N) and Q(J × N) satisfy

PTX = IN (3)

and

YTQ =IN, (4)

where P and Q belong to subspaces of X and Y, respectively.
UX(I × N) and UY(J × N) are the sets of orthonormal bases

spanning the common column and row subspaces, respectively,
of R..k and satisfy

P = UXG (5)

and

Q = UYB. (6)

Also let G(N × N) and H(N × N) satisfy

ATG = IN (7)

and

BTH = IN. (8)

Suppose R
—

..k = UX
TR..kUY and E

—
..k = UX

TE..kUY, where R
—

..k is an
N × N matrix. From Eq. (2) one obtains

GTR
—

..kH = diag(z(k)) + GTE
—

..kH. (9)

Then, the loss function is obtained as

LF = 
K

∑
k=1

||GTR
—

..kH – diag(z(k))||F2, (10)

s.t: ||GTA – IN||F = 0, (11)

||BTH – IN||F = 0. (12)

In order to transform a constrained problem to an
unconstrained one, a Lagrange operator is applied to construct a
new Lagrange augmented function as follows:

LF = 
K

∑
k=1

||GTR
—

..kH – diag(z(k))||F2 – v1||GTA – v2||BTH – IN||F

+ λ ||GTA – IN||F2 + λ||BTH – IN||F2, (13)

where both the second and third negative terms are the
Lagrange operator ones and the subsequent positive terms are
the penalty ones.  v1 (or v2) and λ are constants.

First,

(14)

is deduced before the iterative formula of G is obtained.

Suppose MT = 2||GTA – IN||F, NT = 2||BTH – IN||F. Then, the
needed equations are obtained from the LF by iteration.

=  
K

∑
k=1

R
—

..kH[HT R
—

..kG – diag(z(k))] – ×

A(ATG – IN) + 2λA(ATG – IN) = 0. (15)

The following expression for G is obtained:

G = ( 
K

∑
k=1

R
—

..kHHTR
—

..k + (λ – )AAT)–1 ×

( 
K

∑
k=1

R
—

..kHdiag(z(k))+(λ – )A). (16)

Similarly, an expression for H can also be obtained:

H = ( 
K

∑
k=1

R
—

..kGGTR
—

..k + (λ – )BBT)–1 ×

( 
K

∑
k=1

R
—

..kGdiag(z(k)) + (λ – )B). (17)v2——
NT

v2——
NT

v1——
MT

v1——
MT

2v1——
MT

∂LF——∂G

 GTA–IN F

G G
=

2 GTA–IN F

trace((GTA–IN)T(GTA–IN))

G
trace((GTA–IN)T(GTA–IN))1=

=

2 trace((GTA–IN)T(GTA–IN))
×

× 2A(ATG–IN) = A(ATG–IN)1
 GTA–IN F

1

∂
∂

∂
∂

∂
∂
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The iterative formula of Z is deduced as follows:

= –2(gn
TR
—

..khn – zkn)= 0, (18)

zkn = gn
TR
—

..khn, k = 1,2,..., K, n = 1,2,..., N. (19)

From

= 2λG(GTA – IN)– G(GTA – IN)= 0, (20)

one obtains

A = (GT)–1. (21)

In fact, A can also be deduced from Eq. (7), and similarly one
can write

B = (HT)–1. (22)

Although MT and NT include G and H, MT and NT are
constants.  Thus, during the iteration process, one obtains the
value of MT from G and A obtained in the previous iteration
cycle; in a similar way, one obtains the value of NT from the
corresponding H and B.

The steps of the iteration include the following:  (1) Initialize
G, H, MT, NT, and fix the values of v1 (or v2) and λ, which will
be discussed later.  (2) Obtain Z from G and H.  (3) Obtain A
and B from G and H, respectively.  (4) Obtain the normalized
column wisely G and H from MT and NT, respectively.  (5)
Obtain MT from A and G, and obtain NT from B and H.  (6)
Repeat steps 2 – 5 until a stopping criterion is satisfied,

< ε, (23)

where m is the iteration number.
In fact, this method is an ALS-type algorithm.  Because the X

and Y matrices rather than G and H matrices are needed finally,
X and Y are obtained from G and H, respectively, and
normalized as




LFm – LF(m–1)

————————
LF(m–1)




2v1——
MT

∂LF——
∂A

∂LF——
∂zkn

xn = Uxan/||an||, (24)

yn = Uybn/||bn||, (25)

where an and bn are the nth columns of A and B, respectively, as
for Z, the corresponding equation is

zk = diag(X+R..k(YT)+), k=1,2...,K. (26)

X, Y and Z should be postprocessed according to the symmetry
property of the trilinear model.10

Experimental

Simulated HPLC-DAD data
A set of four-component HPLC-DAD data were simulated:

X=0:0.5:40;
a1=peak(2,X,6,3.50)+peak(1,X,20,3.50);
a2=peak(2,X,9,3.88)+peak(1,X,22,3.88);
a3=peak(2,X,12,3.48)+peak(1,X,30,3.48);
a4=peak(2,X,16,3.48)+peak(1,X,35,3.48).

Here, a1, a2, a3 and a4 are the simulated data of spectra.
Let:

Y=0:0.5:60;
b1=peak(1,Y,20,4);
b2=peak(1,Y,22,6);
b3=peak(1,Y,30,4);
b4=peak(1,Y,40,4).

Here, b1, b2, b3 and b4 are the simulated data of the
chromatographic profiles.  The Gaussian function used is

peak(a, x, u, cta)=a × exp(–(x – u)2/(2 × cta2)). (27)

A concentration matrix containing 6 different samples was
constructed as follows:
c=[1 3 0 0;0 1 5 0;1 0 1 8;2 1 9 1;1 5 7 1;4 2 8 2].
Thus, a simulated cube R (81 × 121 × 6) was obtained (Fig. 1).

Measured excitation-emission fluorescence data
A system containing three compounds, i.e. salicylic acid (SA),

2,5-dihydroxybenzoic acid (2,5-DBA), and p-aminobenzoic
acid (PABA), dissolved in distilled water, and a series of
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Table 1 Comparison of resolved concentrations obtained by LO and by PARAFAC method (×10–6 g/ml)

Sample
Concentration taken Concentration found by

LO
Concentration found by

PARAFAC

SA 2,5-DBA

Note: The concentrations of LO or PARAFAC are regressed against the concentrations taken as Ctaken = a × Z + b, where Ctaken is the 
concentration vector taken, Z is the relative concentration vector decomposed by LO or PARAFAC, a and b are the parameters of regression. 
Then, the concentration vector found by LO or PARAFAC is obtained: Cfound = a × Z + b.

PABA SA 2,5-DBA PABA SA 2,5-DBA PABA

1 0.0912 0.0000 0.0000 0.0884 –0.0001 –0.0003 0.0877 –0.0002 –0.0003
2 0.0000 0.0768 0.0000 0.0001 0.0772 –0.0004 0.0001 0.0774 –0.0003
3 0.0000 0.0000 0.0571 0.0010 0.0006 0.0596 0.0009 0.0007 0.0597
4 0.0912 0.0768 0.0000 0.0895 0.0766 –0.0002 0.0894 0.0766 –0.0002
5 0.0912 0.0000 0.0571 0.0914 0.0001 0.0581 0.0911 –0.0000 0.0581
6 0.0000 0.0768 0.0571 –0.0006 0.0746 0.0561 –0.0003 0.0748 0.0562
7 0.0912 0.0768 0.0571 0.0926 0.0781 0.0586 0.0927 0.0780 0.0586
8 0.0912 0.1056 0.0897 0.0917 0.1045 0.0889 0.0922 0.1045 0.0888
9 0.1064 0.0960 0.0734 0.1057 0.0948 0.0722 0.1059 0.0947 0.0721
10 0.1216 0.0768 0.0734 0.1209 0.0765 0.0723 0.1211 0.0763 0.0723
11 0.1064 0.1056 0.0000 0.1097 0.1084 –0.0001 0.1097 0.1083 –0.0001



solutions of different concentrations were prepared using a pH 7
phosphate buffer solution, which are shown in Table 1.  The
fluorescence spectra were recorded using a HITACHI F-4500
fluorescence spectrometer.  The excitation and emission
wavelengths were set from 265 to 350 nm and from 305 to 500
nm, respectively, with a fixed interval of 5 nm.  The slit was 5
nm and the scan rate was 1200 nm/min.  In order to eliminate

the effect of Rayleigh scattering, the data of the blank solution
were subtracted from the original data.  All of the programs
were written in MATLAB.  The profiles of SA, 2,5-DBA,
PABA and the 9th mixture sample are shown in Fig. 2.
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Fig. 2 Spectra of the measured excitation-emission fluorescence data.  (a) Spectrum of SA; (b)
spectrum of 2,5-DBA; (c) spectrum of PABA and (d) mixture spectrum of the 9th sample.

Fig. 1 Profiles of simulated HPLC-DAD data.  (a) Simulated spectra; (b) simulated chromatogram
profiles; (c) simulated concentration profiles and (d) HPLC-DAD profiles of the 4th mixture sample.



Results and Discussion

Simulated HPLC-DAD data
In this algorithm, there were three parameters: v1, v2 and λ.  In

fact, v1 and v2 could have the same value because of the
symmetry of the algorithm.  For the convenience of the
calculation, both v1 and v2 were taken as being fixed and equal
to 1.  Suppose that N* is the actual component number of the
system, and that N is a set component number; if N N*, λ
could approach 0 infinitely.  The penalty terms ensured the fast
convergence.  The Lagrange operator terms made the loss
function to possess some desired characteristics, which could
overcome the shortcoming that the condition number of the

Hessian matrix (Eqs. (7) and (8)) would become infinity when λ
is set to a very small value and the algorithm would lead to a
false result.  Thus, the algorithm could solve not only the
convergence problem, but also the ill-conditioned problem of
the loss function when the penalty terms tended to its limit.  For
example, when λ is set to 10–10, or even a much smaller value,
the Lagrange operator algorithm could also obtain the correct
answer.

When λ was set as a small number (λ < 102), the loss function
(LF) could decline after two cycles of iteration to obtain the
correct result in less than 50 times.  Otherwise, if λ was set as a
large number, it would decline after no more than 6 cycles of
iteration.  On the other hand, the algorithm is not sensitive to an
estimation of the component number; for example, whenever
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Fig. 3 Loss function (LF) vs. the iterative cycles.  (a) Convergence curves of LO under different λ
and (b) convergence curve of PARAFAC.

Fig. 4 Comparison of the resolved and actual spectra for the case of N=N*=3.  The solid lines are
the resolved spectra from the measured EEMs data; the dotted lines are the actual spectra.  (a) and (b)
are resolved by LO algorithm; (c) and (d) are resolved by PARAFAC algorithm.  1, SA; 2, 2,5-DBA;
3, PABA.



N N*, it could obtain the correct answer.  The PARAFAC,
however, is sensitive to an estimation of the component number.
Only when N = N* could it obtain the correct answer and
converge very slowly in 500 times, as shown in Fig. 3.

Measured excitation-emission fluorescence data
The real EEMs data of three compounds, i.e. SA, 2,5-DBA

and PABA were obtained, which include the products of the
metabolism of aspirin.  By using conventional fluorescence
spectroscopy, it is very difficult to obtain the fluorescence
spectra of these three fluorescing compounds without chemical
separation.  The spectra resolved by PARAFAC and the
Lagrange operator algorithm were compared with the actual
spectra.  When the component number was equal to the actual
component number (N(=3)=N*), both methods could give the
correct results (Fig. 4).  When the component number was set to
be greater than the actual component number (N(=4)>N*), the
LO method could still provide the correct results, while the
PARAFAC method failed to provide the correct resolution (Fig.
5).  It can be seen that the Lagrange operator algorithm is more
stable than the PARAFAC algorithm in resisting the influence
of estimating the component number.  The value of λ can be set
to 1 for most practical situations.

Finally, the concentration matrix was obtained by the
Lagrange operator algorithm and compared with the resolved
concentration by the PARAFAC algorithm (see Table 1).

Conclusion

When a trilinear decomposition algorithm based on the

Lagrange operator was used to improve the performance of the
traditional PARAFAC algorithm, it was demonstrated that the
proposed method converged faster and did not require an exact
estimation of the real number of components.  Thus, the
proposed algorithm overcomes the shortcoming of the
traditional PARAFAC algorithm, which is sensitive to
overfactoring and converges slowly.  By adding the Lagrange
operator and the penalty terms, the performance of the
algorithm is improved.  The feasibility of the proposed
algorithm has been tested using simulated and measured
excitation/emission data.
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