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Abstract: With process computers routinely collecting measurements on large numbers of 
process variables, multivariate statistical methods for the analysis, monitoring and diagnosis of 
process operating performance have received increasing attention. Extensions of traditional 
univariate Shewhart, CUSUM and EWMA control charts to multivariate quality control situ- 
ations are based on Hotelling's T 2 statistic. Recent approaches to multivariate statistical process 
control which utilize not only product quality data (Y), but also all of the available process 
variable data (X) are based on multivariate statistical projection methods (Principal Component 
Analysis (PCA) and Partial Least Squares (PLS)). This paper gives an overview of these 
methods, and their use for the statistical process control of both continuous and batch multivariate 
processes. Examples are provided of their use for analysing the operations of a mineral processing 
plant, for on-line monitoring and fault diagnosis of a continuous polymerization process and 
for the on-line monitoring of an industrial batch polymerization reactor. 

Keywords: Batch processes, Control charts, Fauk diagnosis, Multivariable processes, Principal 
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1. INTRODUCTION 

Statistical Process Control (SPC) concepts and methods 
have become very important in the manufacturing and 
process industries. Their objective is to monitor the 
performance of a process over time in order to verify 
that the process is remaining in a "state of statistical 
control". Such a state of control is said to exist if certain 
process or product variables remain close to their desired 
values and the only source of variation is "common- 
cause" variation, that is, variation which affects the 
process all the time and is essentially unavoidable within 
the current process. SIC charts such as Sbewhart, 
CUSUM and EWMA chars are used to monitor key 
product variables in order to detect the occurrence of 
any event having a "special" or "assignable" cause. By 
finding assignable causes, long-term nnprovements in 
the process and in product quality can be achieved by 
eliminating the causes or improving the process or its 
operating procedures. 

It is important to note that both the concepts and methods 
of SPC are totally different from those of automatic 
feedback process control. In general the two approaches 
are totally complementary. Automatic feedback control 
should be applied wherever possible to reduce vari- 
ability in important process and product variables. 
Feedback controllers compensate for the predictable 
component of disturbances in important variables by 
adjusting other process variables and thereby transfer- 
ring the variability into these less important manipulated 
variables (Downs and Doss, 1991). SIC monitoring 

methods should be applied on top of the process and its 
automatic control system in order to detect process 
behaviour that indicates the occurrence of a special 
event. By diagnosing causes for the event and removing 
them (rather than simply continuing to compensate for 
them), the process is improved. 

Unfortunately, most SPC methods are based on charting 
only a small number of variables, usually the final 
product quality variables (Y), and examining them one 
at a time. These approaches are totally inadequate for 
most modern process industries. They ignore the fact 
that with computers hooked up to nearly every industrial 
process, massive amounts of data are being collected 
continually on perhaps hundreds of process variables 
(X). Measurements on variables such as temperatures, 
pressure, flowrates, etc., are available every second. 
Final product quality variables (Y), such as polymer 
molecular weights or melt index, cut points in distilla- 
tions, etc., are available on a much less frequent basis. 
All such data should be used to extract information in 
any effective scheme for monitoring and diagnosing 
operating performance. However, all these variables are 
not independent of one another. Only a few underlying 
events are driving a process at any time, and all these 
measurements are simply different reflections of these 
same underlying events. Therefore, examining them 
one variable at a time, as though they were independent, 
makes interpretation and diagnosis extremely difficult. 
Such methods only look at the magnitude of the devi- 
ation in each variable independently of all others. Only 
multivariate methods that treat all the data 
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simultaneously can also extract information on the 
directionality of the process variations, that is on how 
all the variables are behaving relative to one another. 
Furthermore, when important events occur in processes 
they are often difficult to detect because the signal to 
noise ratio is very low in each variable. But multivariate 
methods can extract confirming information from 
observations on many variables and can reduce the noise 
levels through averaging. 

This paper presents an overview on both traditional and 
new multivariate SPC methods for monitoring and 
diagnosing process operating performance. Traditional 
methods for multivariate quality control (based only on 
the product quality measurements) are reviewed in 
Section 2. Some multivariate statistical projection 
methods (Principal Components Analysis (PCA) and 
Partial Least Squares (PLS)) which form the basis of 
new approaches to multivariate SPC (which use all the 
process data X as well as the quality data Y) are 
summarized and their similarities and differences with 
the traditional methods are discussed in Section 3. The 
use of these multivariate statistical projection methods 
for analyzing and interpreting historical plant operating 
records available in computer databases is also dis- 
cussed. New multivariate SPC methods for the on-line 
monitoring and diagnosis of process operating 
performance in both continuous and batch processes are 
presented and illustrated in Section 4. Section 5 dis- 
cusses some practical issues concerning the correct 
application of these methods. 

clearly be confused. The same customer apparently 
liked all the other lots of product sent to him, many of 
them with values of Yl and Y2 much further from target. 
The true situation is only revealed in the multivariate yx 
vs Y2 plot where it is seen that the lot of product indicated 
by the ® is clearly outside the joint confidence region, 
and is clearly different from the normal "in - control" 
population of product. 
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2.  M U L T I V A R I A T E  C H A R T S  F O R  STATIS- 
TICAL Q U A L I T Y  C O N T R O L  

In most industries, traditional univariate control charts 
like Shewhart (Shewhart, 1931), CUSUM (Woodward 
and Goldsmith, 1964) and EWMA (Roberts, 1959; 
Hunter, 1986) are used for separately monitoring key 
measurements on the final product which in some way 
define the quality of that product. The difficulty with 
this approach is that these quality variables are not 
independent of one another, nor does any one of them 
adequately define product quality by itself. Product 
quality is only defined by the correct simultaneous 
values of all the measured properties, that is, it is a 
multivariate property. 

The difficulty with using independent univariate control 
charts can be illustrated by reference to Figure 1. Here 
only two quality variables (y~, Y2) are considered for ease 
of illustration. Suppose that, when the process is in a 
state of statistical control where only common cause 
variation is present, yl and Y2 follow a multivariate 
Normal distribution and are cor re la ted  (Pyly2 = -0.94 ) as 

illustrated in the joint plot ofyz vs Y2 in Figure 1. The 
ellipse represents a contour for the in-control process, 
with 99 % confidence limits, and the asterisks represent 
a set of observations from this distribution. The same 
observations are also plotted in Figure 1 as individual 
Shewhart charts on y~ and Y2 versus sample number 
(time) with their corresponding upper (UCL) and lower 
(LCL) control limits (99% confidence limits). Note that 
by inspection of each of the individual Shewhart charts 
the process appears to be clearly in a state of statistical 
control, and none of the individual observations gives 
any indication of a problem. The only indication of any 
difficulty is that a customer has complained about the 
performance of the product corresponding to the ® in 
Figure 1. If only univariate charts were used, one would 

Figure 1. Quality control of two variables illustrating 
the misleading nature of univariate charts. 

In spite of the misleading nature of univariate quality 
control charts they continue to be almost the only form 
of monitoring used by industry. However, several 
multivariate extensions of the Shewhart, CUSUM and 
EWMA based on Hotelling's T 2 statistic have been 
proposed in the literature (see review articles by Wierda 
(1994) and Sparks (1992)). 

2.1 Multivariate Shewhart Charts 

In situations where one observes a vector of q variables 
Yqxl at each time period multivariate X 2 and T 2 charts are 
used. The T 2 chart has its origins in the work of Hotelling 
(1947), and several references discuss the charts in more 
detail (Alt, 1977, 1985; Alt and Smith, 1988; Ryan, 
1989; and Jackson, 1991). 

Given a (qx 1) vector of measurements y on q, normally 
distributed variables with an in-control covariance 
matrix E one can test whether the vector ~t of the means 
of these variables is at its desired target x by computing 
the statistic : 

g2=(y-~)r:c-~(y-x) (1) 

This statistic will be distributed as a central Chi-squared 
distribution with q degrees of freedom if ~t = x. A 
multivariate Chi-squared control chart can be con- 
structed by plotting g z versus time with an upper control 
limit (UCL) given by X~(q) where tx is an appropriate 
level of significance for performing the test (e.g. a = 
0.01). 
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Note that this multivariate test overcomes the difficulty 
illustrated in the example of Figure 1, where univariate 
charts were incapable of detecting the special event 
denoted by ®. The Z2 statistic in equation (1) represents 
the directed or weighted distance (Mahalanobis dis- 
tance) of any point from the target x. All points lying 
on the ellipse in Figure 1 would have the same value of 
Z2. Hence, a ~2 chart would detect as a special event any 
point lying outside of the ellipse. (Notice that the ellipse 
is the solution to equation (1) for Z2=~(q) ,  for two 
variables). 

When the in-control covariance matrix Y~ is not known, 
it must be estimated from a sample of n past multivariate 
observations as 

n 

S = (n_  1)-~ y (y _ ~ ) ( y  _~) r  (2) 
i = l  

When new multivariate observations (y) are obtained, 
then Hotelling's T 2 statistic given by 

C i = Max{0, C i_ 1 + d-l(Ixl - X)Y'-l(Yi - X) - d/2} (6) 

to test for this specific shift in mean from x to Ix~. 

To generalize the test against all alternatives (HI:Ix ~ x) 
several extensions of the univariate CUSUM have been 
proposed. Crosier (1988) proposed computing I a at 
each point and then computing the CUSUM of the scalar 
distance T" (or its square root) as 

C, =Max{0, C i _ , + T i - k  } (7) 

with initial condition Co -> 0. This CUSUM scheme 
signals an out-of-control situation when C~ > h. 

Crosier also proposed replacing the scalar quantities of 
the univariate CUSUM by their vector counterparts and 
computing the vector CUSUM 

s,=o if Ci <_ k 

= ( s i _ ~ + y , - x ) ( 1 - k / C )  i f  C~>k (8) 

T 2 = (y - z)rs-l(y - x) (3) 

can be plotted against time. An upper control limit on 
this chart is given by: 

7r~c z _ (n - 1) (n + 1 )q F,(q,  n - q) (4) 
n(n - q) 

where F~,(q, n - q) is the upper 100a% critical point of 
the F-distribution with q and n - q degrees of freedom 
(Tracy et al., 1992)• 

The above charts are for a single new multivariate 
observation vector at each time. If an average of m new 
multivariate observations are to be used at each time or 
if the estimate of the variance S is based on pooling 
estimates from rational subgroups, then the above def- 
initions of the Z 2 and T 2 charts and their UCL's must be 
correspondingly redefined (Wierda, 1994)• 
Furthermore, if the charts are utilized to examine past 
data that are also used in computing S, then the distri- 
butional properties of T 2 are different from the above 
(Tracy et al., 1992; Wierda, 1994). 

Once an out of control signal is detected the challenge 
is to determine which variables are responsible for it 
(i.e., identify the variables whose means have shifted). 
Several approaches have been suggested for this task 
(Wierda, 1994; Kourti and MacGregor, 1994; Fuchs and 
Benjamini, 1994). 

2.2 Multivariate CUSUM Charts 

Cumulative Sum (CUSUM) charts are based on using a 
sequence of sequential probability ratio tests. Consider 
a sequence of random variables y~, Y2 ..- distributed 
independently as Np(~ Y.), and it is desired to test H0 : 
IX = x versus H1 : Ix = Ixl- Let d2= (Ix~- x)rz-l(g 1 -x )  
define the squared length of the shift in mean, then the 
sequential probability ratio test rejects the null 
hypothesis whenever 

log tx 
~. {d-'(ix~-x)r=~Cy~-x)-d/2} > (5) 

i = l  d 
where a is the level of significance chosen. Healy 
(1987) used this result to propose plotting the CUSUM 

where Ci is the weighted length 

{(si- t +Yi - x)r~-l(si- l +Yi - x ) }  m. 

The scheme signals an out-of-control situation when- 
ever 

Z, = max{0, C, - k }  > h. (9) 

A reference value k = d2/2 is usually chosen. This choice 
minimizes the average run length or ARL (average 
number of samples required to detect a deviation for the 
first time) at deviation d for a given on-target ARL. The 
on-target ARL is determined by the choice of the control 
limit h. Pignatiello and Runger (1990) have proposed 
another variant of the multivariate CUSUM. 

These CUSUM charts use all of the observations since 
the detection of the last special event rather than only 
the last observation vector as in the Shewhaxt type charts. 
Their advantage over the latter charts is that their 
average run lengths are smaller for small shifts in the 
process mean. 

2.3 The Multivariate E W M A  

Multivariate EWMA charts compute the exponentially 
weighted moving average of the vector process (Lowry 
et al., 1992) 

z i = R(Yi - x)  + ( I -  R ) z i _  ~ ( 1 0 )  

where R = diagonal {rl, r2 ..... r.} and 0 < rj < 1;j = 1, 
.... p. Large values of r, give more smoothing and better 
detection of small sl~fts. The MEWMA gives an 
out-of-control signal when 

Q~ = zrE~lZl > h (11) 

where the control limit h is chosen to achieve a specified 
in-control ARL. When all the r1 are equal (rj  -- r, for 
j=l,2,...p) the covariance matrix is given by 

r[1 - (1 - r) ~] E 
f2~ - 2 - r 

where E = Coy (Y). 

(12) 

The properties of the MEWMA chart are quite similar 
to those of the multivariate CUSUMs. 
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3. MULTIVARIATE STATISTICAL PROJEC- 
TION METHODS 

3.1 Principal Component Analysis 

When the number of measured quality variables (q) is 
large one often finds that they are highly correlated with 
one another and their covariance matrix Z is nearly 
singular. A common procedure for reducing the 
dimensionality of the quality variable space is Principal 
Component Analysis (PCA). (Wold et al., 1987; Mardia 
et al., 1989; Jackson, 1991). The first principal com- 
ponent (PC) of y is defined as that linear combination 
q = pry that has maximum variance subject to Iptl = 1. 
The second PC is that linear combination defined by 
t2 = pry which has next greatest variance subject to Ip:l 
-- 1, and subject to the condition that it be uncorrelated 
with (orthogonal to) the first PC (tt). Additional PC's 
up to q are similarly defined. It is easily shown that the 
principal component loading vectors Pi are the eigen- 
vectors of the covariance matrix (g) of Y, and the 
corresponding eigenvalues 0q) are the variances of the 
PC's (i.e., Var(t~) =~,i). In practice Z is not known and 
is estimated by (n - 1)-~YrY where Y is the (nxq) matrix 
of mean centered and scaled measurements. Hence the 
sample principal component loadings are computed as 
the eigenvectors of the (q x q) matrix (y r  y) .  The 
principal component scores are defined as the observed 
values of the principal components for each of the n 
observation vectors (i.e., t i = Y pi T, i -- 1, 2 ..... q). In 
effect PCA decomposes the observation matrix Y as: 

Y = T p r =  ~ tlP/r (13) 
i = 1  

PCA is scale-dependent, and so the Y matrix must be 
scaled in some meaningful way. The most usual form 
of scaling is to scale all variables to unit variance and 
then perform PCA on the correlation matrix. Alterna- 
tively, in quality-control situations, scaling the Y's 
inversely proportional to their specification limits or 
some other measure of relative importance is usually 
more meaningful. 

In practice, one rarely needs to compute all the q 
eigenvectors, since most of the variability in the data are 
captured in the first few PC's; 2 or 3 PC's are often 
sufficient to explain most of the predictable variations 
in the product. The NIPALS algorithm, (Geladi and 
Kowalski, 1986) is ideal for computing the principal 
components in a sequential manner when the number of 
variables is large. The number of PC's that provide an 
adequate description of the data can be assessed using 
a number of methods (Jackson, 1991) with cross- 
validation (Wold, 1978) being perhaps the most reliable. 
By retaining only the first A PC's the Y matrix is 
approximated by: 

A 

= ~ t~p~ r. (14) 
i = [  

3.2 Quality Control Charts Based on Principal 
Components 

Having established a PCA model based on historical 
data collected when only common cause variation was 
present, future behaviour can be referenced against this 
"in-control" model. New multivariate observations can 
be projected onto the plane defined by the PCA loading 

vectors to obtain their scores (t i .... = pTynew) , and the 

residuals e, ew=y,,w-~,ew, where ~,ew=Pata ..... and 
tA .... is the (A x 1) vector of scores from the model and 
PA is the (q × A) matrix ofloadings. Multivariate control 
charts based on Hotelling's T: can be plotted based on 
the first A PC's, where 

i= l~  (15) 

and sty(= ~,i) is the estimated variance of t i. If A = 2, a 

joint h vs t2 plot can be used. 

Note that the traditional Hotelling's T 2 in equation (3) 
is equivalent (Mardia, Kent and Bibby, 1989; Kourti and 
MacGregor, 1994) to: 

T2=i~L~= ~'l t2 ~ t 2 A t 2 q ti 2 
s~ X s + y s ~ 

(16) 
1 i = 1  ti t~ i = A + I  t~ 

By scaling each t~ 2 by the reciprocal of its variance each 
PC term plays an equal role in the computation of T 2 
irrespective of the amount of variance it explains in the 
Y matrix. This illustrates some of the problems with 
using T ~ when the variables are highly correlated and E 
is very ill-conditioned. When the number of variables 
(q) is large, E is often singular and cannot be inverted, 
nor can all the eigenvectors be obtained. Even if it can, 
the last PC's (i = A + 1 ..... q) in equation (16) explain 
very little of the variance of Y and generally represent 
random noise. By dividing these t~'s by their very small 
variances, slight deviations in these ti's which have 
almost no effect on Y will lead to an out-of-control signal 
in T ~. Therefore, TJ based on the first A (cross-validated) 
PC' s provides a test for deviations in the product quality 
variables that are of greatest importance to the variance 
of Y. 

However, monitoring product quality via TA 2 based on 
the first A PC's is not sufficient. This will only detect 
whether or not the variation in the quality variables in 
the plane of the first A PC's is greater than can be 
explained by common cause. If a totally new type of 
special event occurs which was not present in the 
reference data used to develop the in-control PCA 
model, then new PC's will appear and the new obser- 
vations Yn~w will move off the plane• Such new events 
can be detected by computing the squared prediction 
error (SPEy) of the residuals of new observations (Kresta 
et al., 1991). 

q 

SPEy = Z ( y  . . . .  i -  Y .... ,)z (17) 
i = 1  

This statistic is also referred to as the Q-statistic 
(Jackson, 1991), or distance to the model. It represents 
the squared perpendicular distance of a new multivariate 
observation from the plane. When the process is 
"in-control", this value of SPE. or Q should be small• 

• . . J .  . 

Upper control limits for this staUstmc can be computed, 
from historical data, using approximate results for the 
distribution of quadratic forms (Jackson, 1991; Nomi- 
kos and MacGregor, 1995). In the modelling stage and 
when the process is "in control", SPEy represents 
unstructured fluctuations (noise) that cannot be 
accounted for by the model. When an unusual event 
occurs that results in a change in the covariance structure 
of Y, it will be detected by a high value of SPE. ; a high 
value of SPEy means that the projection model is not 
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valid for that observation. A very effective set of 
multivariate control charts is therefore a T 2 chart on the 
A dominant orthogonal PC's (t~ ..... tA) plus a SPEy chart. 

3.3 PLS - Partial Least Squares 

Given two matrices, an (n x m) process variable data 
matrix X, and an (n x q) matrix of corresponding product 
quality data Y, one would like to extract latent variables 
that not only explain the variation in the process data 
(X), but that variation in X which is most predictive of 
the product quality data (Y). PLS is a method (or really 
a class of methods) which accomplish this by working 
on the sample covariance matrix (xTy)(yTx). In the 
most common version ofPLS (H6skuldsson, 1988), the 
first PLS latent variable tt = wrx is that linear combi- 
nation of the x-variables that maximizes the covariance 
between it and the Y space. The first PLS loading vector 
wt is the first eigenvector of the sample covariance 
matrix X r Y yT X. Once the scores tl ffi Xw] for the first 
component have been computed the columns of X are 
regressed on tl to give a regression vector p~ = Xt~/tTtt 
and the X matrix is deflated to give residuals 
X2 = X -  tlp~ r. The second latent variable is then com- 

puted as t2 = wrx where w2 is the first eigenvector of 
x2T y yT X2 and so on. As in PCA the new latent vectors 
or scores (t~, t2 ..... ) and the loading vectors (w], w2 .... ) 
are orthogonal. For large ill-conditioned data sets, it is 
usually convenient to calculate the PLS latent variables 
sequentially via the NIPALS algorithm (Geladi and 
Kowalski, 1986) and to stop based on cross-validation 
criteria. 

3.4 Analysis of Historical Process Data Sets 

Although massive amounts of process data are being 
collected and stored in databases for most industrial 
processes, very little analysis and interpretation of these 
data is being performed. This is because of the over- 
whelming size of the databases and the very ill- 
conditioned nature of the routine operating data being 
collected. Furthermore, the signal-to-noise ratio is often 
poor in these data, and there are often significant 
amounts of missing data. However, all these problems 
are well addressed by the multivariate statistical pro- 
jection methods of PCA and PLS. By examining the 
behaviour of the process data in the projection spaces 
defined by the small number of latent variables (tl, t2, 
.... t^), and interpreting process movements in this 
reduced space by examining the corresponding space 
defined by the loading vectors (Pl, P2 ..... PA) or (w~, w 2, 
.... WA) in the case of PLS, it is often possible to extract 
very useful information from these databases, and to use 
this information to improve the process. 

There are several interesting examples of using these 
methods to analyze process data. Denney et al. (1985) 
applied the methods to the analysis of an industrial 
sulphur recovery unit. Moteki and Arai (1986) used 
them to analyse a low-density polyethylene process and 
to find new operating conditions. Wise et al. (1991) 
applied PCA to analyze and diagnose systematic vari- 
ations in the behaviour of a slurry-fed ceramic melter 
process. Slama (1991) used PCA and PLS to analyze 
data on more than 300 process variables and 11 product 
grades from the fluidized bed catalytic cracking and 
fractionation section of a refinery. Skagerberg et al. 

(1992) applied PLS to predict polymer properties from 
measured temperature profiles in a tubular low-density 
polyethylene process, and to interpret the behaviour of 
this process. Dayal et al. (1994) used PLS to model the 
dynamic behaviour of a continuous Kamyr digester in 
a pulp mill, and diagnosed the reasons for poor control 
of Kappa number by examining the loading plots (w], 
w2). 
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Figure 2. PLS scores plots for several hundred hours of 
operation of the rougher scavenger unit of a mineral 
flotation process, t~ vs h, and t~ vs h. (Hodouin et al. 
(1993); With permission from CIM Bulletin ). 
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Figure 3. PLS scores plot for several hundred hours of 
operation of the cleaning section of the flotation 
process, t~ vs t 2. (Hodouin et al. (1993); With 
permission from CIM Bulletin). 
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Hodouin et al. (1993) used PCA and PLS to analyze and 
interpret the behaviour of mineral flotation and grinding 
circuits in a large mineral processing plant. Historical 
data from 350 hours of operation were retrieved from 
computer files. The difficulty with such massive data 
sets is first to find out where in the data there is useful 
information. The projections of hourly average data 
(after gross outliers were removed) into the plane 
defined by the first three latent variables are shown in 
Figure 2 for the rougher scavenger (RS) unit and in 
Figure 3 for the cleaner regrinding (CR) unit. The data 
points appear to cluster into 3 distinct regions which 
corresponded to different operating conditions. Simply 
examining the individual plots of the process variables 
would be confusing and would not reveal such infor- 
mation. By focusing attention on the transitions between 
the regions one can learn most of what there is to know 
about the 350 hours of operation. To help diagnose the 
reasons for these shifts in process operation, one can 
interrogate the underlying multivariate model (as dis- 
cussed below in Section 4.2) and display the process 
variable contributions to these shifts. Cluster C for 
example corresponds to low copper in the feed, low RS 
concentrate flowrate, low lead recovery, high frother 
and low promoter feedrate. 

4. MULTIVARIATE STATISTICAL PROCESS 
CONTROL 

The main approach of statistical quality control (SQC) 
methods developed throughout the statistical literature 
has been to monitor only product quality data (Y). 
However, in these approaches, all of the data on the 
process variables (X) are being, ignored. If one truly 
wants to do Statistical Process Control (SPC), one must 
look at all of these process data as well. There are often 
hundreds of process variables, and they are measured 
much more frequently (and usually more accurately) 
than the product quality data (Y). Furthermore, any 
special events which occur will also have their finger- 
prints in these process data (X). Sometimes product 
quality is only determined by the performance of the 
product later, in another process (e.g. catalyst 
conditioning- performance of catalyst is assessed later 
in polymer production). It would be useful to know if 
the product is good before using it; monitoring the 
process would help in the early detection of poor-quality 
product. 

There are several other reasons why monitoring the 
process is advantageous. Sometimes, only a few prop- 
erties of the product are measured, but these are not 
sufficient to define entirely the product quality. For 
example, if only rheological properties of a polymer are 
measured, any variation in end-use application that arise 
due to variation in chemical structure (branching, 
composition, end-group concentration) will not be 
captured by following only product properties. In these 
cases the process data may contain more information 
about events with special causes that may affect the 
product quality (product performance). 

Finally, even if product quality measurements are fre- 
quently available, monitoring the process may help in 
diagnosing assignable causes for an event. When 
monitoring product quality, even if it is determined 
which quality variable caused the multivariate chart to 
go out of limits, it may still be difficult to determine 
what went wrong in the process. Several combinations 
of process conditions may cause the same product 

property to change. Monitoring the process would help 
identify one combination of process variables and 
therefore determine the underlying cause more easily. 

Certainly, one could apply the previously discussed 
SQC charting methods directly to the x variables as well 
(Kourti and MacGregor, 1994). However, as discussed 
previously, with large numbers of highly correlated 
variables, these methods are impractical. Furthermore, 
they offer no way of relating the X and Y data, and 
least-squares regression analysis is also impractical in 
this situation. Another problem is that these methods 
cannot handle missing data arising from sensor failure, 
etc.. The most practical approaches to multivariate SPC 
appear to be those based on multivariate statistical 
projection methods such as PCA and PLS. The methods 
are ideal for handling the large number of highly 
correlated and noisy process variable measurements that 
are being collected by process computers on a routine 
basis; these methods can also handle missing data. 

4.1 Moni tor ing Continuous Processes  

An essential part of SPC is to establish multivariate 
control charts to detect special events as they occur, and 
to diagnose possible causes for them while the infor- 
mation is fresh. The philosophy applied in developing 
multivariate SPC procedures based on projection 
methods, is the same as that used for the univariate or 
multivariate Shewhart charts. An appropriate reference 
set is chosen which defines the normal operating con- 
ditions for a particular process. In other words, a PCA 
or PLS model is built based on data collected from 
various periods of plant operation when performance 
was good. Any periods containing variations arising 
from special events that one would like to detect in the 
future are omitted at this stage. The choice of this 
reference set is critical to the successful application of 
the procedure, as discussed by Kresta et al. (1991). 

The multivariate control chart is now a T2-chart on the 
first A latent variables (equation (15)). Added to this is 
a chart on SPEx where: 

m 
SPEx= x ^ 2 ~" ( . . . .  i - - X  . . . .  i) ( 1 8 )  

i=1  

where xn,w is computed from the reference PLS or PCA 
model. This latter plot will detect the occurrence of any 
new events which cause the process to move away from 
the hyperplane defined by the reference model. Control 
limits for the T 2 charts are chosen in the same manner 
as previously discussed, and the UCL on SPE~ is based 
on the Chi-squared approximation (Q-statistic (Jackson, 
1991); Nomikos and MacGregor, 1995). 

The main concepts behind the development and use of 
these multivariate SPC charts for mohitodng continuous 
processes were laid out by Kresta et al. (1991), Wise et 
al. (1991), Wise and Ricker (1991), and MacGregor et 
al. (1991a, b). Several illustrations of the methods were 
also presented in those papers, along with the algorithms 
and details on estimating control limits. 

The basic approach is illustrated here with the moni- 
toring of a simulated multi-section high-pres sure tubular 
reactor process for the manufacture of low-density 
polyethylene (LDPE) (MacGregor et al., 1994a). 
Simulated data were generated for this study using the 
models described in (Kiparissides et al., 1993). Mea- 
surements are available on a frequent basis on all process 
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variables (X) - reactor temperature profiles in each 
section, feedrates on all component streams, cooling 
system flows and temperatures, and pressures in each 
reactor section. Every hour, measurements are available 
on product quality and productivity (Y) - polymer 
molecular weights and branching properties, and con- 
version of monomer to polymer. Using data collected 
(X, Y) when the process was operating well, and no 
special events were present, a PLS model using only 
three latent variables (A = 3) was able to explain 90.0 
% of the variation in the Y data. 
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Figure 4. T 2 Chart on 3 scores and squared prediction 
error chart for monitoring a LDPE process. Points 
51 - 55 denote a period where fouling gradually 
occurred in the second zone of the reactor. 

Figure 4 illustrates the use of a 1a^ (A=3) chart and an 
S P ~  chart to monitor the behaviour of the reactor when 
there is an increasing level of fouling in the second 
section of the reactor. Unnumbered points indicate past 
conditions of normal operation. Fouling starts at point 
51. Notice that both the T~3 and the squared prediction 
error plots quickly detected the onset of this special 
event and alarmed an out-of-control situation, on-line, 
before lab data on product quality became available. 

4.2 Fault Diagnosis 

Both univariate and multivariate SPC charts are based 
on statistical tests to detect any deviations from the 
in-control reference distribution upon which the models 
and charts have been built. In classical quality control 

approaches which chart only quality variables, once an 
out-of-control signal has been given, it is then left up to 
the process operators and engineers to try to diagnose 
an assignable cause using their process knowledge and 
a one-at-a-time inspection of process variables. How- 
ever, multivariate charts based on PLS or PCA provide 
a much greater capability for diagnosing assignable 
causes. By interrogating the underlying PLS or PCA 
model at the point where an event has been detected, 
one can extract diagnostic or contribution plots which 
reveal the group of process variables making the greatest 
contributions to the deviations in the SPE~ and the scores 
(Miller et al., 1993; MacGregor et al., 1994a; Kourti and 
MacGregor, 1994; Wise and Ricker, 1991). Although 
these plots will not unequivocally diagnose the cause, 
they will provide much greater insight into possible 
causes and thereby greatly narrow the search. 

Consider the out-of-control alarms shown in Figure 4 
for the LDPE process. Diagnostic plots showing the 
contribution of the process variables to the SPE~ at point 
51 are shown in Figure 5. These contribution plots point 
to the temperature of the reaction mixture at the exit 
from zone 2 and the temperature of the cooling agent 
into the jacket of the second zone as being the main 
process variables that are showing inconsistency (and 
contributing to the large values of SPE~). This combi- 
nation of variables would imply heat transfer problems 
and could lead the operator to suspect fouling. 

Diagnostic plots can also be constructed for the variable 
contribution on the scores. If the SPE~ is within limits 
and TA 2 out of limits, contribution plots on the scores 
(tl, or t2 ..... or tA) would indicate combinations of process 
variables that contributed to out of normal values for the 
scores. (The detection of the score(s) responsible for the 

2 out of limits signal for T^ is discussed in (Kourti and 
MacGregor, 1994)). 
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Figure 5. Contribution plot showing the process variable 
contributions to the SPEx for point 51. 

4.3 Multi-block PLS 

The monitoring and diagnostic charts discussed in the 
previous sections may be difficult to interpret when the 
number of variables included in the X space is very large. 
The combined use of multi-block PLS (MB-PLS) and 
contribution plots may facilitate this task. In the 
MB-PLS approach, large sets of process variables (X) 
are broken into meaningful blocks; usually each block 
corresponds to a process unit, or a section of a unit. 
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Multivariate monitoring charts for important subsec- 
tions of the plant, as well as for the entire process, can 
be constructed. The principles behind multi-block data 
analysis methods and their algorithms can be found in 
(Wold, 1982) and (Wangen and Kowalski, 1988). 
Details on the application of multi-block PLS for process 
monitoring and the corresponding algorithm can be 
found in (MacGregor et al., 1994a) where MB-PLS is 
used for monitoring and diagnosing an LDPE reactor. 
Each block corresponds to one zone. Plots of h vs h and 
SPE, obtained for each block of the process, were 
utilized to detect an abnormal event in the zone it 
occurred in; then contribution plots were successfully 
used to assign causes for it. 

Multiblock PLS is not simply a PLS between each X 
block and Y. The blocks are weighted in such a way 
that they are most predictive of Y. The monitoring space 
is determined by one model rather than separate models 
for each block. If there are time delays between process 
units the data can be time shifted to accommodate for 
the delays. 

4.4 Data Compression 

A major difficulty that often arises in computer data- 
bases is that univariate data compression methods are 
used to minimize the amount of data that needs to be 
stored. These methods usually destroy the essential 
multivariate nature of the process data, and eliminate 
much of the useful information. A much more useful 
method of data compression, and one that would retain 
the true multivariate nature of the data, would be to store 
the scores of the first A latent variables (T^) and the 
loading matrix (PA). From this, the original variables 
can always be reconstructed as :K = TAP r as long as no 
special event occurs that is not predicted by the model. 
In this latter case, the SPC detection scheme would alarm 
such an event, and the data during this period should not 
be compressed, but retained in its entirety for analysis 
and fault diagnosis. By employing multivariate SPC 
schemes based on PCA and PLS as discussed earlier, 
these latent vectors will be computed in real-time, and 
hence such a data-compression scheme is already 
included within the SPC scheme. 

4.5 Multivariate SPC for Batch Processes 

In much of the specialty chemical, pharmaceutical and 
other manufacturing industries, batch processes are used 
extensively. The use of the multivariate statistical 
projection methods has been extended to the analysis 
and the on-line monitoring and diagnosis of batch 
processes (MacGregor and Nomikos, 1992; Nomikos 
and MacGregor, 1994a, 1994b, 1995; MacGregor et al., 
1994b). Typical data from batch processes include 
time-varying trajectories of all the measured process 
variables throughout the duration of each batch (X), 
product quality measurements (Y) at the end of each 
batch, and batch recipe and charge conditions (Z) at the 
start of each batch. If such data are available in a 
historical database on many past batches, multivariate 
PCA and PLS models can be developed for analyzing 
these historical batches and for establishing on-line SPC 
charts for monitoring the progress of  each new batch. 
Since the process data (X) is now a three-dimensional 
array (batch run x variable x time), Nomikos and 
MacGregor used three-dimensional or multi-way PCA 

(MPCA) and PLS (MPLS) methods. Multi-way PCA 
and PLS methods have been discussed in a series of 
articles (Lohm011er and Wold, 1980; Wold et al., 1987; 
Geladi, 1989; Smilde and Doornbos, 1991). Nomikos 
and MacGregor proposed approaches for handling the 
fact that one dimension (time) is evolving during the 
progress of a new batch, and for establishing control 
limits on the multivariate SPE and score plots. In their 
approach the X matrix is manipulated in such a way, that 
the non-linear trajectory of each variable is subtracted 
upon meancentering, thus converting a non-linear 
problem to one that can be tackled with linear methods 
such as PCA and PLS. 
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Figure 6. Plots o fh  - t4 and t2 - t3 for 25 batches. Batches 
#24 and #25 have produced products with unusual 
properties. 

The application of MPCA to monitoring batch processes 
is illustrated here with an example. Data from 25 batches 
from an industrial polymerization reactor were pro- 
vided. Four quality properties (Yi, Y2, Y3, Y4) are used to 
characterize the product and measurements on these 
properties become available several hours after the 
production of the polymer. For each batch, the quality 
measurements and the corresponding trajectories of 10 
process variables for 90 time intervals were provided. 
(After proper alignment of the data 83 time intervals 
were used.) Two batches were characterized as "bad" 
by the producer. For one of the batch products the value 
of y] was lower than usual while for the other the values 
for Y2, Y3 and Y4 were unusually high. In a preliminary 
analysis, MPCA was performed on all the batches (i.e., 
on the three - way array X with dimensions 25x10×83), 
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to test if the method would be able to discriminate 
between "good" and "bad" batches with the available 
process data; in other words to assess if the system was 
observable. Figure 6 shows the projections of the 
process conditions of these 25 batches on the score 
planes (t 1 - t4) and (t 2 - t~) defined by the 4 first principal 
components. Itcan be seen that in the (h - t4) plot, batches 
#24 (low Yt) and #25 (unusual y2, Y3, Y4) are out of the 
main cluster (or, normal operating region) formed by 
the rest of the batches. It is interesting to see that the 
problems in these two batches appear in only two scores 
and that these are different scores, which means that 
different combinations of variables affect different 
properties (t4 for yt, and h for Y2, Y3, Y4). 
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Figure 7. Monitoring a Good Batch. T^ 2 statistic and 
SPE,. 

Having established the observability of faults with the 
analysis of past data, a model was built to summarize 
the information contained in the 23 good batches about 
the normal operating region of the process. This model 
was then used as statistical reference to classify new 
batches as normal ("good") or abnormal ("bad"), in the 
way described in 0Nomikos and MacGregor, 1994a. 
1995). New batches are classified by monitoring the T^ ~ 
statistic calculated from the first A latent variables 
(scores) and by monitoring SPE at each time interval k; 
when both of these quantities stay within the limits of 
normal operation (specified by the model) then the batch 
is accepted as good. 

Figure 7 shows the SPE response as a function of time, 
and the T^ 2 (A--4) statistic of a batch that was eventually 
classified as "good". Notice that both of these quantities 
remain well within the confidence intervals throughout 
the batch. (The solid line corresponds to a 99% limit and 
the dashed line to a 95% limit for the SPE plots; for TA 2 
the solid line corresponds to 95 % limit and the dashed 
to 90 % limit.) 
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Figure 8 shows how batch #25 would have behaved, had 
the model been in use on-line, when the data for this 
batch were becoming available. (Points indicated by an 
asterisk in a circle, plot out of the co-ordinate limits of 
the graph). Notice that almost all the points are out of 
the 95% limit in the SPE, while the T42 statistic goes out 
of limits after 15 time intervals into the batch run. 
(Similarly for batch #24 the two statistics moved out of 
their limits early in the run). A plot of tt versus time for 
batch #25 reveals that this latent variable goes out of 
limits after few time intervals into the run. Note that all 
of these charts quickly revealed that batches 24 and 25 
were "unusual" very early in the runs. Upon diagnosis 
of the nature of the fault, corrective action might be 
taken. If such action to save the batch were not possible, 
at least the product from the batch could be isolated and 
not blended with good product. 

This was a feasibility study for this on-going project. 
Usually more good batches (more than 50) are required 
in order to obtain a representative sample of sufficient 
size to correctly estimate the confidence limits for the 
normal operating region. 
The proposed monitoring charts are in accordance with 
the SPC requirements in that they can be easily displayed 
and interpreted, and they can quickly detect a fault. 
Furthermore, it is also possible to provide the operators 
with diagnostic information by interrogating the 
underlying MPCA, MPLS or multi-way multiblock PLS 
model. Other industrial applications of these methods 
have been reported for the analysis of historical batch 
databases by Kosanovich et al. (1994), and for the 
monitoring of a different batch polymerization by 
Nomikos and MacGregor (1995). 

5. PRACTICAL ISSUES 

Several issues that arise when applying these methods 
to industrial data are briefly discussed here. 

5.1 Reference Data Set for Modelling 

When dealing with empirical modelling the data set 
upon which the model will be based should be carefully 
chosen to satisfy the needs of the intended application. 

Model For Monitoring Purposes, In monitoring, a 
specific operating region of interest is tackled. Only data 
corresponding to good / acceptable product, or accept- 
able conditions should be included; faults or distur- 
bances are excluded from this model. The objective is 
to model good operating behaviour only, and to test for 
any future deviations from this model. 

5.2 Linear vs Nonlinear Models 

It has been argued that nonlinear models may be nec- 
essary to model batch or continuous processes. Again, 
the model depends on the application. If the model is 
used for monitoring, linear models are usually sufficient 
to describe process fluctuations around an operating 
point. Although the behaviour of the process variables 
is nonlinear in batch processes, the data are meancent- 
ered in the method discussed in Section 4.5 in such a 
way that the non-linear trajectory is subtracted and the 
deviations of the variables from the trajectory can be 
modelled with a linear model. 

If the models are build for inferential purposes and cover 
a wide range of operating regions, then nonlinear models 
may be necessary. Nonlinear versions of PLS have been 
reported (Frank, 1990; Wold, 1992; Htskuldsson, 
1992). 

5.3 Dynamic Models 

The projection methods discussed here are capable of 
dealing with dynamic situations. In batch monitoring 
dynamics has already been accounted for as illustrated 
in Section 4.5. 

When modelling continuous dynamic processes, lagged 
variables of x and y variables can be included in the X 
matrix. Multivariate time series analysis is discussed 
for PCA by Jollife (1986) and Jackson (1991) and for 
PLS by Wold et al. (1984) and MacGregor et al. (199 lc). 
Time delays are accounted for by time shifting. An 
industrial example where plant data was both time 
shifted, to account for time delays between X and Y, and 
lagged to account for autocorrelations in Y, is described 
in (Dayal et al., 1994). 

Inferential Modelling. When the objective is to infer the 
values of product quality (Y) from process data obtained 
at different operating regions, then the set of data that 
will be used for modelling should have representative 
values of the Y properties and the process variables over 
all the possible operating regions. (Values for Y should 
cover the whole range of specifications of the quality 
properties and data points should be evenly distributed.) 
Ideally, for inferential purposes, a designed set of 
experiments with data from different operating regions 
properly weighted, would be required. 

Historical Analysis. When analyzing historical data, 
initially all the data should be used. If the projection 
indicates clusters with only a few points in them, or 
individual outliers, these data should not be discarded, 
but investigated. True outliers (measurement errors) 
should be discarded. If there are clusters of only a few 
points that are identified as reflecting some real, unusual 
event, then more data points are needed in this region to 
model the behaviour of these events. 

5.4 Single or Multiple Models for Quality Properties 

One of the advantages of PLS over linear regression is 
that all the quality properties (Y) can be modelled 
together and related to X in a single model. When the 
quality properties are not correlated, it is customary to 
built a model that relates X to each y variable separately. 
This approach is satisfactory in general if the model is 
just being used for calibration, inferential control or 
prediction. For monitoring purposes, however, since 
quality is a multivariate property, it is important to fit 
all the variables from the Y space in a single model in 
order to obtain a single low-dimensional monitoring 
space. 
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6. SUMMARY 

This paper has provided justifications for the use of 
multivariate statistical process control, and has reviewed 
some of the traditional statistical control charting 
methods for monitoring product quality data (Y). 
However to truly perform multivariate statistical pro- 
cess control, one must utilize not just the final product 
data (Y) but all the data on process variables (X) that 
are being routinely collected by process computers. SPC 
approaches based on multivariate statistical projection 
methods (PCA and PLS) have been developed for this 
purpose. The ideas behind these new approaches, and 
the literature on them, are reviewed. Multivariate 
control charts in the projection spaces provide powerful 
methods for both detecting out-of-control situations, and 
diagnosing assignable causes, and they are applicable to 
both continuous and batch processes. The only 
requirement for applying these methods is the existence 
of a good database on past operations. For this reason, 
they have attracted wide interest, and are rapidly being 
applied in many industries. 
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