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Abstract

The globalisation of the analysis of a series of individual measurements often results in more robust and reliable outcomes.
However, instrumental drifts that can occur between individual measurements destroy the ideal data structure and thus the
advantages. A method based on rank annihilation factor analysis (RAFA) is introduced for the correction of several types
of instrumental inconsistencies. It can be applied to many series of bilinear datasets. Experimental examples discussed in
this paper comprise the successful correction of non-uniform retention time drifts in chromatography due to temperature or
pressure changes, wavelength shifts in IR spectroscopy in an industrial control situation, and background absorption shifts in
UV–VIS spectroscopy applied to equilibrium investigations.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

With the availability of rapid scanning and
diode-array spectrometers, bilinear data are read-
ily available and form the standard basis of many
chemical investigations. Examples include kinetics,
equilibrium studies, and chromatography. More re-
cently, it was recognised that bilinear datasets can be
linked and the global analysis of the complete set can
be of significant advantage. Several soft-modelling
and hard-modelling algorithms have been developed
that globally analyse such series of individual mea-
surements. Soft-modelling methods range from very
general approaches with minimal demands on the
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structure of the data, such as Tucker[1], to methods,
which rely on trilinearity, such as PARAFAC[2],
GRAM [3] or DTD [4]. Hard-modelling methods, e.g.
for kinetic multiwavelength analyses, where the rate
law is used as a hard model, are usually more robust,
but demand even more stringent prerequisites, the ad-
herence to the chosen kinetic reaction mechanism[5].

The closer to ‘ideal’ the data are, the more powerful
the methods that may be used for their analysis. This
is particularly the case for hard-modelling analyses,
which usually do not tolerate experimental inconsis-
tencies, or if the problem is ignored, they will de-
liver erroneous results that are difficult to recognise.
Soft-modelling algorithms, too, are much more stable
and robust if ideal structures, such as trilinearity, are
maintained in the data set. Unfortunately, there are
several types of irregularities between the individual
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datasets, which destroy the potential advantages in-
herent in the structure of 3-way data. Inconsistencies
exemplified in this paper include retention time shifts
in chromatography due to column ageing, pressure
changes or insufficient thermostating; wavelength
shifts between measurements; or baseline shifts result-
ing from irreproducible positioning of the absorption
cell. In this contribution, we propose a very generally
applicable method for the detection and correction of
such irregularities.

Inconsistencies of these types have been known for
a long time and several different approaches for their
correction have been suggested. One class of methods
involves the incorporation of a correction function
into a complete calibration method. Examples include
Kalman filter methods[6,7] or artificial neural net-
works [8]. Another class attempts a correction by the
addition of linear combinations of related response
curves. This can be done by the addition of one or
more derivatives of these curves, e.g. chromatograms
[9], or by the addition of linear combinations of neigh-
bouring response curves, basically, the neighbouring
rows and/or columns of a multivariate data matrix,
e.g. response curves acquired at neighbouring wave-
lengths [10]. Obviously only very small deviations
can be corrected for by these two methods. A very
straightforward idea is to adjust the chromatographic
retention times by comparing peak maxima[11], or
just the two extreme profiles[12].

One powerful class of methods is based on rank
annihilation factor analysis (RAFA)[13,14]. It has
successfully been applied to correct uniform retention
time shifts in chromatography[15]. A closely related
method based on orthogonal projections has been
suggested for the same type of inconsistency[16]. In
this contribution, we are proposing a generalisation
of the RAFA algorithm. It allows the correction of
inconsistencies that cannot be corrected by a sim-
ple shift (one parameter), i.e. corrections functions
with any number of parameters can be developed and
tested. There is no theoretical limit to the complexity
of the required correction functions.

2. Rank annihilation correction (RAC)

We will introduce the concept for the example of a
set of two chromatograms (chromatogramA andB) of

two solutions of the same components with different
concentrations. We assume changes in the retention
times for the components. This could be the effect
of small temperature changes between the chromato-
graphic runs, differences in the pressure or slow age-
ing of the chromatography column. The changes in
retention times under such conditions are not uniform,
i.e. they are individually different for each component
and thus, cannot be corrected by a simple shift.

For the example, both chromatograms containm
components; we will discuss generalisations later.
The chromatograms can be arranged in the matri-
ces YA and YB where the rows are the absorption
spectra measured during the elution and the columns
are the chromatograms at the different wavelengths.
According to Beer–Lambert’s law, each matrix can
be decomposed into the product of the matricesCA

andCB of concentration profiles and the matrixA of
molar absorption spectra.

YA = CAA, and YB = CBA (1)

If nt spectra were measured at nl wavelengths, the
dimensions of both matricesYA andYB arent × nl,
the matricesCA/B have dimensionsnt × m, and A

has dimensionsm × nl where m is the number of
components. In the ideal case (no inconsistencies) the
columns ofCA are multiples of the corresponding
columns ofCB and thus linearly dependent.

The chemical rank of both matricesYA andYB is
m. Next, the rank of the concatenated matrix [YA, YB ]
is investigated, (Fig. 1). We are using the MATLAB®

Fig. 1. The rank of two horizontally concatenated matricesYA and
YB . Case (a) the vertical scalings (e.g. retention time) coincide,
the rank of the [YA, YB ] is m. Case (b) the vertical scalings are
different (e.g. shift in retention times), the rank of the concatenated
matrix is >m, theoretically it is 2m.
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[17] notation for the two types of concatenation,
[YA, YB ] is the horizontal concatenation (comma)
and [YA; YB ] the vertical concatenation (semicolon).
Naturally, to allow horizontal or vertical concatena-
tion, the appropriate dimensions of the two matrices
must match. That is, for horizontal concatenation the
numbernt of rows needs to be the same whereas for
vertical concatenation, the number of wavelengths
(nl) must be the same.

Under perfect conditions the concentration profiles
in CA/B will be multiples of each other and thus the
rank of [YA, YB ] will be the same as the rank of the
individual matrices, as indicated inFig. 1(a).

If the temperature has changed between the two
chromatograms, or the column has aged measurably,
the concentration matricesCA andCB will be differ-
ent (linearly independent) and the rank of [Y A, YB ]
will be 2m, seeFig. 1(b). This is theoretically the case,
in practice, this theoretical limit of 2m will hardly be
reached but the rank is certainly larger thanm.

We propose to correct one of the matricesYA, YB ,
say YB , by adjusting its time vector, with the goal
of rectifying the inconsistency of the retentions. For
the example, the time vectort at which the spectra
of YB were measured is corrected by an appropriate
function, defined by a set of parameters:

tnew = f (toriginal, parameters) (2)

The parameters are refined iteratively until the
inconsistency is removed. This is schematically rep-
resented inFig. 2.

Fig. 2(a)represents the concatenation of the origi-
nal matrices to form [YA, YB ]. Next, the time vector
for YB is recalculated according toEq. (2) to yield
tnew. Fig. 2(b)is an attempt to represent the procedure
graphically. In the example the time vector is stretched
and displaced. This does not affect the number of el-
ements in the vector, only their values. The spectra in
YB are moved along the time axis with respect to the
original time axis of the matrixYA. Again, the num-
ber of rows inYB does not change. The next step is to
select the common parts of the two matrices accord-
ing to t∗

new; we call themY ∗
A, andY ∗

B , seeFig. 2(c).
The individual spectra contained inY ∗

A, andY ∗
B do

not align along the time axis and therefore one of them
needs to be replaced by an interpolated version, to
correspond with the common time vectort∗

new.

Fig. 2. (a) Original arrangement of the concatenated matrix [YA,
YB ]. (b) After correction of the vertical scaling (e.g. retention
time) the alignment betweenYA and YB is destroyed. (c) Only
the common parts,Y ∗

A andY ∗
B , are concatenated.

The resulting matrix [Y ∗
A, Y ∗

B ] is then subjected to
a singular value decomposition to determine its rank.
If the adjustment of the time vector forY ∗

B is correct,
the concentration profilesC∗

A andC∗
A will align and

the rank of [Y ∗
A, Y ∗

B ] will be back tom. Thus, the task
is to find that correction of the time vectort for which
the resulting rank of [Y ∗

A, Y ∗
B ] is m.

Several aspects need closer attention: (a) correction
functions, (b) rank determination, (c) interpolation, (d)
mean centering, (e) minimisation algorithms, (f) types
of instrumental irregularities, and (g) possible gener-
alisations.

2.1. Correction functions

Often there are no theoretically defined functions for
the appropriate correction and therefore polynomials
of any degree are obvious choices. Logarithmic or
exponential distortions are other possibilities.
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tnew = p0 + p1toriginal + p2t
2
original + · · · + pi t

j

original

(3)

or

tnew = p0 + p1e(p2toriginal) (4)

The parameters,p0, p1, . . . are collected in a parameter
vectorp.

There is no limit to the type of correction function
that could be used. Naturally, the higher the number
of parameters to be fitted, the more difficult and less
robust the optimisation will be.

2.2. Analysis of rank as function of parameters

There is an immense literature on the determination
of the rank of a matrix of measurements[18]. Lim-
ited exploration of several different algorithms showed
no significant advantages for any of them. We de-
cided to use percent residual variance (%var), which
is well-recognised[15] and makes intuitively much
sense. Using eigenvalues or singular values directly,
as suggested originally for RAFA[13,14], is possible,
however the variable amount of overlap betweenY ∗

A

andY ∗
B during the fitting ofp makes the comparison

of %var more reliable, as the variable row dimension
of [Y ∗

A, Y ∗
B ] is taken into account.

The concatenated matrix [Y ∗
A, Y ∗

B ] is decomposed
according to the singular value decomposition[19].

[Y ∗
A, Y ∗

B ] = USV + R (5)

Fig. 4. The logarithm of the percent residual variance (%var) retaining four eigenvectors as a function of two parameters. (a) Without
mean centering, the surface features a very narrow, steep and diagonal valley. (b) After mean centering, due to strongly reduced correlation
between the parameters, the rank landscape is much more amenable to traditional optimisation routines.

Fig. 3. The logarithm of the percent residual variance (%var)
retaining one up to six eigenvectors (Eq. (5)). There is a distinct
minimum for the inclusion of four and more eigenvectors at the
parameter value of−0.149.

R is calculated for different numbers of retained
vectors inU , S, andV , and its percent residual vari-
ance is calculated for all numbers of eigenvectors and
eigenvalues retained[18].

For graphical purposes, these values can be plot-
ted as a function of the parameters, seeFig. 3 for a
one-parameter plot andFigs. 4 and 9for applications
of two parameters.Figs. 3 and 4relate to the same
chromatographic data set (flow rate 1.25 ml min−1,
temperature 25 and 27.5◦C), which will be discussed
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later in the experimental section. The correction func-
tion is a polynomial of degree one,tnew = p0 +
p1toriginal. Fig. 3is a one-dimensional slice through the
minimum ofFig. 4a. The parameterp1 has been fixed
to its optimum value and the log (%var) is plotted as
a function of the other parameterp0. For the value of
p0 = −0.149 min there is a clear minimum of the rank
to a value of four. This is best indicated by the mini-
mum of the variance if four eigenvectors/eigenvalues
are included (m = 4). Incorporation of additional
eigenvectors shows essentially an identical minimum,
thus we observe good robustness with respect to over-
estimation of the number of significant factors.

Functions of two or more parameters can be treated
analogously. For two parameters the result is a surface
(Figs. 4 and 9). For more parameters graphical display
is impossible.

2.3. Interpolation

As indicated inFig. 2, the time vectors for the
two data matricesY ∗

A and Y ∗
B must match after the

correction. As continuous corrections are allowed,
interpolation must be performed at all individual
wavelengths for one of the two matrices to ensure
identical times for the two sets of absorption spectra
[12]. Interpolation is not required if only whole step
shifts are permitted[15]. For all our experiments, we
used polynomial interpolation of degree two or three,
calculated for a wide range of points (between 5 and
21), depending on the relative density of points with
respect to the structure of the data. This is essentially
a Savitzky–Golay algorithm[20], used for interpo-
lation instead of smoothing. It is important to match
the degree of the polynomial with the number of data
points in such a way that the resulting distortions are
minimal [19]. Any alternative interpolation algorithm
can be used. It is noteworthy that the computation
for the interpolation steps can constitute a major time
requirement of the fitting process of the parameter
vectorp. Naturally, this depends heavily on the order
of the polynomial used.

2.4. Mean centering

The correlation between the parameters can be very
high and, generally, mean centering of the retention
time vector will reduce this correlation dramatically.

Mean centering will not affect the final result of the
analysis. The effect of mean centering on the shape of
the minimum as a function of the parameters is shown
in Fig. 4. All calculations in this contribution have
been performed on mean-centered data, however, for
a more direct representation, the graph inFig. 3 has
been calculated using the original matrices.

2.5. Optimisation routines

Instead of inspection of graphical results such as
displayed inFigs. 3, 4 and 9, any non-linear optimisa-
tion routine can be used to localise the optimum. This
is particularly important for cases with more than two
parameters, as these cannot be represented graphically.
Algorithms range from the simple Simplex algorithm
to more sophisticated gradient techniques. We used
the MATLAB® ‘fminsearch’ function[17], which is
an advanced simplex algorithm. Any other non-linear
optimisation algorithm could be used equally well;
we have not investigated their relative merits. Initial
guesses and/or boundaries for the parameters should
be made sensibly. If initial guesses are too far out,
most algorithms will fail to converge.

It has to be noted that there always is the possibil-
ity of one or several local minima. A typical example
would be the partial alignment of only a selection of
concentration profiles in chromatography. This situa-
tion is shown inFig. 5. Graphical inspection of the
result will immediately reveal such a condition.

Fig. 5. Partial alignment of the wrong chromatographic peaks due
to a local minimum.
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Fig. 6. Correction and interpolation for inconsistencies along the row dimension (e.g. wavelength shifts). Compare withFig. 2.

2.6. Types of inconsistencies

Retention time distortions due to column aging or
temperature drift in chromatography are typical ex-
amples of instrumental problems that can be rectified
by the proposed method. They generally will require
a correction that is more complex than just a constant
shift of all retention times throughout the complete
chromatogram[15,16].

Wavelength shifts are less commonly encountered,
however, they have been observed[9] and we will dis-
cuss a real industrial example later in the experimen-
tal section. Wavelength corrections are done along the
row dimension of the matrices and thus the concate-
nation needs to be done vertically.Fig. 6 illustrates
the situation, which displays both the similarity and
the difference to the one represented inFig. 2.

Similar to retention time errors, the rank of the ver-
tically concatenated matrix [Y ∗

A; Y ∗
B ] is equal to the

sum of the two individual ranks, if there is a distortion
along the wavelength scale. Correction of the wave-
length axis will remove the inconsistency and the rank
of [Y ∗

A; Y ∗
B ] will be the same as the rank of the indi-

vidual matrices.
A very common type of inconsistency found in ab-

sorption spectroscopy is of a different nature. Small
positioning errors of the absorption cell will result in
small changes in the zero reading, resulting in base-
line shifts[21]. This is mainly due to small differences
in the reflections of the light beam at the different
internal and external surfaces of the absorption cell.
Usually the errors are small and are not further con-
sidered, but they can affect the trilinearity or other
relevant properties of the data structures. The general
equation for such a situation is

Y = Y + shift (6)

If a baseline shift occurs between two indepen-
dent measurements, the rank generally only increases
by one. Also, there are no interpolations and other
adjustments of the data required. For such a simple
shift, the rank analyses are done on the concatenated
matrices [YA; YB + shift], Note that in this case hori-
zontal concatenation will have an identical result. It is
possible to correct for more complicated ‘shifts’, e.g.
baseline drift with time. In such cases more complex
correction functions will be applied, e.g. a linear or
quadratic increase of the absorption shift with time.
As before any number of parameters can be fitted.

2.7. Generalisations

The Figs. 1, 2 and 6seem to imply that the indi-
vidual matricesYA and YB need to be of identical
dimensions. This is not at all the case. For horizontal
concatenation, the only prerequisite is that there is
a significant range of common measured and inter-
polated times between the matricesY ∗

A andY ∗
B , i.e.

the matrix [Y ∗
A, Y ∗

B ] is covering a significant part
of the overall elution. It is also not required that all
components exist in both datasets. Further, there is no
requirement for identical wavelength ranges (horizon-
tal scale). In fact, the two wavelength ranges can be
completely independent i.e. without any overlap. One
matrix might be measured in the UV–VIS while the
other is covering NIR wavelengths. This rather sur-
prising fact can be explained in the following way:
all columns of the matricesY ∗

A and Y ∗
B are linear

combinations of the columns of the concentration
matricesCA andCB . After successful correction, the
columns ofCA and CB are multiples of each other
(CA = CBD,where D is a diagonal matrix which
even can have zero diagonal elements). Thus, all
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columns of bothY ∗
A andY ∗

B are linear combinations
of the samem columns of the concentration matrices
and thus the rank of [Y ∗

A, Y ∗
B ] is m, irrespective of

the wavelengths at which they are measured.
Vertical concatenation is governed by correspond-

ing rules. In this case the concentration profiles can
be different, e.g. acquired at different temperatures
and times, etc. The prerequisite here is a signifi-
cant overlap along the row dimension or wavelength
axis.

It is far from straightforward to define what
‘significant’ means in this context. It strongly depends
on many different aspects such as number of compo-
nents, signal to noise ratio, similarity of concentration
profiles and absorption spectra. It is beyond the scope
of this paper to investigate these statistical aspects
thoroughly.

3. Experiments and results

3.1. Chromatography

Chromatograms were acquired on a Waters 600E
HPLC system with a Waters 996 diode array detector,
using a 25 cm C18 reversed phase column. Spectra
were recorded at 1 s intervals from 250 to 400 nm.

In order to mimic the ageing of a chromatographic
column, temperature and flow rates were varied syste-
matically: the temperature was varied between 25 and

Fig. 7. The 265 nm traces of chromatograms at 25◦C (—) and 27.5◦C (· · · ), (a) before and (b) after the chromatogram at 27.5◦C has
been corrected by RAC using a first order polynomial.

40◦C and the flow rate was either 1 or 1.25 ml min−1.
Mixtures of anthracene, pyrene, fluorene, and fluoran-
thene were analysed in acetonitrile.Fig. 7 shows the
concentration profiles for two chromatograms mea-
sured at 25 and 27.5◦C before and after application
of RAC.

The correction function wastnew = p0 + p1toriginal.
Fig. 8 displays the values of the parametersp0 and
p1 as a function of the temperature. All the analyses
were done with respect to the ‘standard’ measurement
at 25◦C and 1 ml min−1 flow rate. The parameterp1
is the factor by which the time vector of the higher
temperature (or flow rate) chromatograms is multi-
plied to relate them to the ‘standard’. There is a good
linear relationship between this factor and the temper-
ature and this is independently the case for both flow
rates. There is a strong negative relationship between
the shift parameterp0 and temperature and, interest-
ingly, it is independent of the flow rate. Note, that the
parameterp0 for a non-mean centered time scale is
represented.

It is not the intention to investigate here the re-
lationship between retention time and temperature
and flow rate. However, the neat relationship shown
in Fig. 8 is a clear indication for the reliability and
robustness of the procedure. The repetition of the
‘standard’ chromatogram resulted in values of 0.997
for p1 and 0.027 min forp0. Both are very near the
ideal values of 1 and 0, andp0 is close to the time
resolution (0.017 min) of the detection system.
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Fig. 8. The calculated stretching parameterp1 (�, �) and shift
parameterp0 (�, 	) versus temperature. Squares show the results
for flow rates of 1 ml min−1, triangles the ones at 1.25 ml min−1.

3.2. Distillation

The datasets were acquired by a custom-built ther-
mostatted transmission cell (sapphire windows), in-
stalled into a bypass flow of an industrial distillation
set-up. The NIR spectra were recorded on a Bruins
Omega 20 spectrometer, attached to the flow cell via
optical fibres.

Experimental inconsistencies were observed which
tentatively were assigned to problems due to a lamp
change in the instrument. We re-analysed two datasets,
one acquired before and one after the lamp change.
Ninety one spectra formed the matrices ofYA and
YB ; they were measured at 2 min intervals in the
wavenumber range of 6400–7700 cm−1, at 3.2 cm−1

intervals.
RAC, run with a simple additive wavenumber shift

(polynomial of degree 0), determined a displacement
of −6.32 cm−1 at a percent residual variance of 8.9×
10−5. Attempts to fit more complex functions such
as a first order polynomial did not result in signifi-
cant improvements. This is clearly indicated byFig. 9,
which shows the percent residual variance for a first or-
der polynomial with a minimum for parametersp1 =
0.997 andp0 = −6.29 cm−1 at a percent residual
variance of 8.8 × 10−5.

A geometrical displacement of the source is con-
sistent with a uniform wavenumber shift. It is feasible
that a uniform shift of the wavelength instead of the
wavenumber would be appropriate for theoretical rea-

Fig. 9. The logarithm of the percent residual variance (%var)
as a function of shift parameterp0 and the redundant stretching
parameterp1 for the distillation NIR data.

sons. Due to the narrow range of wavenumbers these
two possibilities could not be distinguished.

3.3. Titrations

The effects of absorption cell positioning irregular-
ities were investigated in a series of titrations. Cell
position influences absorption readings in rather com-
plex ways[21]. In the following, we will model the
errors resulting from irreproducible cell positioning
by the simple addition of a shift parameter, which is
added to all absorption readings throughout the com-
plete titration. The complexation of Cu2+ with dien
(diethylenetriamine, or 1,4,7-triazaheptane) was inves-
tigated in aqueous solution between pH 3 and 11.
The required titrations were performed directly in a
standard 1 cm absorption cell equipped with pH elec-
trode, magnetic stirrer and inlet tube for base addition
delivered by an automatic burette. Burette (Metrohm
695), pH meter (Metrohm 605) and spectrophotome-
ter (Philips-PU-8800) were all interfaced to a PC and
the titrations were performed under complete com-
puter control. For details about the titration set-up see
[22]. Details on the titrations, analysis and results for
this system were published elsewhere[23].

The analysis consists in the determination of the
formation constants (β values) of the different com-
plex species formed during the titrations as well as
the determination of the molar absorption spectra of



M. Maeder et al. / Analytica Chimica Acta 464 (2002) 249–259 257

Table 1
Global analyses of the complexation of Cu2+ by dien

Method Species

CuL2+ (logβ110) CuLH+
−1 (logβ111) CuL2H3+ (logβ121) CuL+2

2 (logβ120) σY

(a) Individual titrations 16.549(40)a 7.399(246) 30.430(312) 21.766(237) 1.13× 10−3

(b) Set of 3, local 16.548(3) 7.300(39) 30.390(22) 21.624(56) 1.34× 10−3

(c) Correction set of 3, local 16.548(3) 7.298(39) 30.389(22) 21.616(57) 1.34× 10−3

(d) Set of 3, global 16.516(43) 7.504(184) 29.921(469) 21.628(190) 1.75× 10−2

(e) Correction set of 3, global 16.540(7) 7.339(31) 30.312(38) 21.595(33) 2.77× 10−3

a Logarithms of the equilibrium constants are given with twice their standard errors (units of the least significant digit).

the absorbing complexes. It is the computation of the
absorption spectra, which is directly affected by the
influence of baseline differences between individual
titrations. In order to investigate the influence of base-
line errors, a series of three titrations was analysed in
four different modes: (a) each titration was analysed
individually; (b) the set of titrations was linked and
analysed globally[23] but the molar absorption spec-
tra were fitted individually for each titration, thus three
sets of absorption spectra result (‘local’ mode); (c) the
repetition of (b) after application of RAC; (d) global
analysis but only one set of common absorption spec-
tra was fitted to all titrations (‘global’ mode); and (e)
repetition of (d) after application of RAC.

The results are given inTable 1and can be sum-
marised in the following way: the quality of fits, as
represented by theσY values (standard deviation of the
residuals), is naturally best for the initial ‘individual
titrations’ mode as this mode has the highest number

Fig. 10. Calculated local absorptivity spectra of Cu2+ (· · · ) and [Cu(II)(dien)]2+ (—) (a) before and (b) after the application of RAC
(Eq. (6)) to the measured absorbance data.

of variable parameters to be adjusted; they are three
sets of formation constants and three sets of molar ab-
sorption spectra (mode (a) inTable 1). The disadvan-
tage of this mode is the uncertainty of the parameters
fitted to the individual titrations and this is reflected
in the relatively large standard deviations for the for-
mation constants. In the following, we will compare
and relate the other results to this original analysis.
The global fit with ‘local’ spectra (b) is marginally
worse, resulting in about 15% higherσY. In this mode
there is one set of formation constants and three sets
of absorption spectra. The non-linear parameters are
essentially the same but they are much better defined,
as shown by strongly reduced standard deviation (typ-
ically by a factor of 10). The individual absorption
spectra are significantly different,Fig. 10(a). Prior cor-
rection with RAC in (c) does not affect the results with
respect to the equilibrium constants. However, the in-
dividual molar absorption spectra now are much more
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similar, Fig. 10(b). Analyses with ‘global’ spectra in
(d) (one set of formation constants and one set of spec-
tra) of uncorrected data result in different (wrong) for-
mation constants, largerσY (typically a factor of 10)
and thus larger standard deviations. This is clearly the
result of the baseline problems, which are not being
accounted for in this mode. Note, that global analysis
with ‘global’ spectra is potentially the most powerful
[23] and is the preferred mode of analysis. After ap-
plication of RAC in (e) the parameters are correct and
their standard deviations minimal. TheσY values are
marginally larger due to not quite perfect correction.

Fig. 10 demonstrates the efficiency of the correc-
tions: it shows the calculated spectra for the indi-
vidual titrations in ‘local’ mode before (mode (b)
in Fig. 10(a)), and after the corrections (mode (c) in
Fig. 10(b)). The result for mode (e) is not shown in
the figure, it is visually indistinguishable from the
result of mode (c).

4. Conclusions

A generally applicable method for the correction
of instrumental inconsistencies of several types has
been introduced. In contrast to most earlier algorithms
which only covered a uniform shift of retention time or
wavelength[15], the proposed method can deal with
multiparameter corrections and thus is much more ver-
satile. The method does not rely on the identification
of individual peaks and subsequent correction based
on matching the retention times of selected individual
peaks [11,12]. The complete datasets are matched
and thus chromatograms or any other datasets can be
severely overlapped, without obvious peak positions
for any of the components. It is an essential feature
of factor analysis based methods, that complete ma-
trices are analysed, rather than specifically chosen
attributes (e.g. at particular wavelengths, etc.). Oper-
ator input is minimal, nevertheless, visual inspection
of the results is important, as local minima can result,
(Fig. 5). Computation times are acceptable, for all
examples they ranged from seconds to minutes on
a 500 MHz PC.

An additional strength of the method is that the
chemical compositions of the samples resulting in the
two datasets do not need to be identical. Relative and
absolute concentrations can be completely different,

even the absence of one or several components in any
of the datasets will not prevent successful analysis,
provided there is still significant communality.

If there are more than two matrices that need to be
corrected, all matrices are treated with respect to one
pre-chosen ‘standard’. Naturally this standard needs
to be selected carefully, it should be the one with the
least problems. It is theoretically feasible to globally
adjust all matrices, however, preliminary attempts at
such analyses resulted in no added robustness and thus
no advantage can be gained.

There are also limitations to the applicability of
RAC or any alternative correction based on a func-
tional relationship. The individual components must
show a similar behaviour with respect to the incon-
sistencies, such as temperature, as only one correc-
tion function is applied to all of them. Thus, for
the example of chromatography, the order of elution
must be maintained; also peak broadening must fol-
low the applied correction function. To summarise,
any correction will result in an improvement for the
global analyses but the correction will not necessarily
be perfect.
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