
Computational Statistics & Data Analysis 16 (1993) 47-61 
North-Holland 

47 

A three-degree of freedom test of 
additivity in three-way classifications 

Mervyn G. Marasinghe 
Iowa State University, Ames, IA 50011, USA 

Robert J. Boik 
Montana State University, Bozeman, MT 59717, USA 

Received December 1990 
Revised February 1992 

Abstract: This article proposes a new interaction model for nonreplicated three-way classifica- 
tions. A simulation study is used to show that a three-degree of freedom score test based on the 
new model compares favorably with existing one-degree of freedom score and likelihood ratio 
tests of additivity. The tests are illustrated through an analysis of a data set where it is shown how 
the new model may reveal a specific structure of three-factor interaction. This structure may be 
exploited to suggest possible explanations for the nonadditivity. 
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1. Introduction 

Several statistical procedures designed to detect nonadditivity in nonreplicated 
two-way classifications are discussed in the literature. While Tukey’s (1949) 
single degree of freedom test is the most popular, the procedures of Mandel 
(1961, 1971) and Johnson and Graybill (1972) are also widely used. These and 
related methods are reviewed by Krishnaiah and Yochmowitz (1980) and Mil- 
liken and Johnson (1989). 

Consider the model 

Y~~=~_L++‘Y~+P~+~~~+E~~; i=l,..., a; j=l,..., b; (1) 

where CY~, pj, and oij are the effects of two fixed factors and their interaction, 
respectively; and eij are assumed to be i.i.d. N(0, (TV). The fixed effects are 
subject to the usual sum-to-zero restrictions. The previously mentioned proce- 
dures model the interaction term, 8,,, as a function of other parameters. 
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Restricting the interaction to have a specific functional form enables one to 
partition the observed interaction into two components; namely the fit of the 
functional form and the complementary lack of fit. The lack of fit component is 
used to estimate G’, thereby making possible a test that the fit component has 
expectation zero. The resulting tests are naturally powerful when interaction 
exhibits the specific functional form assumed in the derivation. The tests are less 
powerful but still useful when interaction does not exhibit the specific functional 
form. 

Scheffe (1959) showed that Tukey’s test can be derived as a test of H,,: h = 0 
when the interaction is modeled as a product of the main effect parameters; i.e., 
0,, = ha;/?,. To motivate this model, Scheffe showed that if 8;, is assumed to bc 
a second-degree polynomial of cr, and pi, then, as a consequence of the 
sum-to-zero restrictions, o),, is necessarily of the form Acu,,!3,. 

Milliken and Graybill (1970) proposed a general test that can be used 
whenever interaction is a known function of main effect parameters. The 
Milhken-Graybill test is exact because the test statistic has a central F distribu- 
tion under additivity. In addition, St. Laurent (1990) showed that the Milliken- 
Graybill test is a score test. Accordingly, it is asymptotically equivalent to the 
corresponding likelihood ratio test. The tests proposed by Mandel (1961) and 
Tukey (1949, 1962) are special cases of the Milhken-Graybill test. 

Mandel(1971) and Johnson and Graybill (1972) model two-way interaction as 
a product of two free parameters; i.e., ojj = hvi[,. This model assumes that the 
a X b matrix of interaction parameters has rank one. Johnson and Graybill 
(1972) showed that the likelihood ratio statistic for testing H,,: A = 0 in this 
model is 

U, = i2/tr( Z/Z), (2) 

where Z is the a x b matrix of residuals from the additive model and i’ is the 
maximum characteristic root of Z’Z. 

Invariant tests that do not require specifying a functional form for (0,,} have 
been proposed by Boik (1990b, 1992) and Tusell(1990). These tests are sensitive 
to a wide class of alternatives but are less powerful than those that do assume a 
specific structure, provided that interaction does not deviate too far from the 
assumed structure. 

The above methods have been very useful in studying interaction in two-way 
classifications. Their extensions to multiply-classified data, however, are not 
well-known and are not entirely straightforward. In this paper, we compare 
several methods for detecting interaction in three-way classifications including a 
new three-degree of freedom test. 

We begin with the general model for nonadditive data 

Yljk = p + a; + p; + rk + 6Jij + Uik + pjl, + Oijk + EiiX ) (3) 

for i= l,..., a; j= l,..., h; and k = 1,. . . , c; and where it is assumed that all 
parameters except the error term are fixed and subject to the usual sum-to-zero 
restrictions. Subscripts i, j, and k represent levels of Factors A, B and C, 
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respectively; and eijk are assumed to be i.i.d. N(0, a2). Model (3) is saturated so 
that without imposing additional restrictions, a2 cannot be estimated. The 
conventional approach assumes that Oijk = 0. In the remainder of this paper, 
model (3) in which eijk = 0 will be called the additive model (whether or not 
two-factor interactions exist). If, in fact, three-way interaction is nonexistent, 
then an unbiased estimator of cr2 exists and main effects and two-factor 
interactions can be tested. If one of the factors is a blocking variable then the 
associated two-factor interactions may also be assumed to be zero. In Section 2, 
a one-degree of freedom score test and a likelihood ratio test based on a 
Mandel-Johnson-Graybill type model for eijk are reviewed. In Section 3, we 
present a three-degree of freedom score test for three-way interaction. In 
Section 4 we compare the performance of these procedures using simulation 
and in Section 5, the procedures are illustrated with an analysis of a data set. 

2. Current procedures for testing additivity in three-way classifications 

As discussed in Section 1, three approaches have been employed for deriving 
tests of nonadditivity in two-way classifications. The first two model the interac- 
tion as a product of unknown parameters (main effect or free) while the third 
does not assume a specific structure. In this section, we review extensions of the 
first two approaches to the three-way case. The third approach has not been 
extended to multiply-classified data. 

2.1. Harter and Lum’s (1962) test for three-way interaction 

Harter and Lum (1962) proposed that three-factor interaction in model (3) be 
expressed as a product of the main effect parameters. The Harter and Lum 
structure can be parameterized as oijk = 0 if ((u’cy)( /?‘/3)( T’T) = 0 and 

(4) 

otherwise; where a, /3, and 7 are a-, b-, and c-vectors of main effect parame- 
ters, respectively. The advantage of the parameterization in (4) over that in 
Harter and Lum (they omit division by the norm of the main effects) is that in 
(4) the magnitude of the interaction is indexed solely by A rather than jointly by 
A and the norm of the main effects. A single degree of freedom score test of H,,: 
h = 0 is readily obtained. Assume that the data are arranged as an abc-vector, 
y = { yijk}; the elements of which are ordered such that index i changes slowest 
and index k changes fastest. That is, 

y=(y,,,, Y112,...7Yllc, YL21’...,Y1Zcr...,Yobl,...,Ynbf)’. 
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Following Milliken and Graybill (19701, a sum of squares for nonadditivity is 

where @ is the Kronecker product operator; and &, /?, and 4 are the usual least 
squares estimators of (Y, /?, and T. The test statistic is 

F, = SS,/MSE,, (6) 

whereMSE,=(SS,-SS,)/(pqr-l);p=a-l;q=b-l;r=c-l;SS,=z’z; 
z is the &c-vector of residuals from model (3) with orlk = 0 (i.e., the additive 
model); and zilk =yijk -Y;j.-L,./, -L.,, +L,..+Y.,.+y.., -Y __.. Under H,,, F, is 
distributed as F,,prlr_ ,. 

2.2. A likelihood ratio test for three-way irtteraction 

A flexible alternative to Harter and Lum’s model is obtained by generalizing the 
Mandel-Johnson-Graybill model to three factors. The generalized model ex- 
presses oijk as 

(7) 

where the vectors y, 5, and 6 each sum to zero and have unit norm. The 
alternative in (7) is a special case of Tucker’s (1966) three-mode principal 
component model and Carroll and Chang’s (19701 three-way singular value 
decomposition. 

It is readily shown that the maximum likelihood estimators (MLEsl of A’, y, 
5, 6 and a’ are given by the solutions to 

and g2 = (zrz - x2)/&c, 

where z is defined in (6). The MLEs of the remaining parameters are identical 
to those of the additive model. The normal equations corresponding to (8) are 

[i@i@l,.)‘z=/i$, (+@I,@$)‘z=i~, and (1(,@i@i]‘z=if. 

(9) 

subject to the constraints on y, 5, and 6 stated earlier. The equations in (9) can 
be solved using an alternating least squares algorithm (Kroonenberg and de 
Leeuw, 1980). Under H,: h = 0, the MLE of o2 is (z’z)/abc. Thus, the 
likelihood ratio test can be given as reject H,, for large values of 

u, = i2/( zlz). 

Boik (1990a) computed accurate percentage points for U, using a Jacobi 
polynomial expansion. Boik and Marasinghe (1989) proposed an approximation 
to the above test for which the required test statistic is easier to compute than 
U, and has a known null distribution. 
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Using Theorem 2 of Boik and Marasinghe (1989), under the alternative in (7) 
and for large I A/a 1, the distribution of (z’z - i2>/02 can be approximated by 
a ,y,” distribution where g =pqr -p - q - r + 2 for p, q, and r of (61. Thus if 
h = 0 is rejected under model (71, an estimate of experimental error variance is 
given by 

G2 = (z’z - i’)/g. (11) 

3. A new test for three-way interaction 

In the absence of prior knowledge about the form of three-way interaction, we 
assume that eijk can be modeled as a function of the main effects and two-factor 
interactions. Initially, assume (in the spirit of Scheffe) that eijk can be approxi- 
mated by a second-degree polynomial function of the parameters (Y~, pi, TV, wij, 

‘ik 9 and pjk. Simplification, using the sum-to-zero restrictions, gives 

c 

c .) P,rnVlm 
m=l 

b 

PjkOij -b-l C PmkOim 

m=l 

Alternatively, one might consider three-way interaction as a manifestation of 
two-way interaction which differs over the levels of the third factor. For 
example, denote the BC interaction at the ith level of A by {pjkciJ. Averaging 
over the levels of Factor A gives the ordinary two-factor interaction: pjk = 

a - ‘cq, lpjkcil. If the data are not additive, then (pj,& # (pjk} for some i. Thus, 
three-way interaction can be modeled by making the deviations between two-way 
interactions and their average over levels of a third factor depend on the levels 
of the third factor. If {pjk(i$ differs from (pi,} in magnitude only (not direction) 
and the deviations pjkcij - pjk are made to depend on i through the multiplica- 
tive paraIIIeter ai, we obtain pjkcij - pjk = &(Yip$. Consideration Of all two-way 
interactions results in three possible models for three-way interaction. Because 
it is not known, a priori, which of the three models best represents existing 
nonadditivity, we combine the three models giving the augmented model 

Oijk = $laipjk + +2Pjvik + +37koij’ (13) 

Model (13) can also be obtained from (12) by dropping the second-order terms 
involving the two-factor interaction parameters. Onukogu and Ama (1989) 
discuss an alternative model of this type. If desired, model (13) can be general- 
ized by replacing CX~, pj, and/or T/, in (13) by free parameters, thus obtaining 
three-way generalizations of Mandel’s (1961) bundle of lines and Tukey’s (1962) 
vacuum cleaner models. 
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Using the general theory of Milliken and Graybill (19701, a three degree-of- 
freedom score test for testing H,,: 4, 7 & =,43 = 0 in kl3) can be derived. In 
practice, one can fit three covariate: h,,jx,, hzijk, and h31,k in model (3) with 
eilk = 0, where hlijk = &(fijk, hzrjk = PjCik, h.iijk = tkGij and Gi, pi etc., are the 
usual least squares estimators of the corresponding parameters under the 
additive model. Alternatively, one can compute the sum of squares directly: 

ss, =y’ti(ti’ti)-‘Ij’y, (141 

where l?= (i, gz ij) is an ahc x 3 matrix; and i,,, = {h,,,,,k]. m = 1, 2, and 3 
are &c-vectors. The test statistic is 

F3 = SS,/WfSE,) t (15) 

where MSE, = (SS, - SS,)/(pqr - 3) for p, q and r of (6). T,he Appendix 
contains a SAS program for computing F3. By conditioning on H, it is readily 
shown that the null distribution of F, is F3,Pr,_3. Partial regression sums of 
squares can be used to test each product term in (13) using single degree-of- 
freedom F-tests. This will be illustrated in Section 5. 

4. Comparison of power of three tests of additivity 

In this section Harter and Lum’s (1962) test (HL), the proposed three-degree of 
freedom test (3DF), and the likelihood ratio test (LR) are compared by means 
of simulation. Simulation studies were performed to compare the powers of the 
HL, LR, and 3DF tests under each of two alternative structures: the HL 
structure in (4) and the LR structure in (7). For the HL structure in (4), the 
three tests are compared under conditions which are optimal for the HL test. 

For the LR structure in (71, the three tests are compared under more general 
conditions. Before reporting the simulation results, some theoretical issues 
concerning the power of the three tests are reviewed. 

4. I. Theoretical issues 

To develop a general framework for the power study, model (3) can be 
expressed in matrix form as 

y=XJI+e+E, (16) 

where X is the abc x t design matrix coding for main effects and two-factor 
interactions, rank(X) = u, u = abc - (a - l)(b - l)(c - 11, + is the t-vector of 
main effects and two-factor interaction parameters and 0 is the &c-vector of 
three-factor interaction parameters. 

For the additive model, that is when 8 = 0, the usual least squares estimator 
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of + is I$ = (X’X)-X’y. It can be shown that conditional on X4, statistics (6) 
and (15) have doubly noncentral F distributions of the form 

F s&c-u-.y,d-,d-dA, (17) 

where d^= eY?(&&&9/~2, d = e’e/a2, 
A A 

s = rank(G), and G takes different 
forms depending on the test statistic under consideration. This result follows 
from arguments similar to those used by Ghosh and Sharma (1963) and 
Hegemann and Johnson (1976) when computing the power of Tukey’s test. For 
the HL test, G is the &c-vector & 8 j!!I @ 4, and for the 3DF test G is fi in (14). 

The power of the HL and 3DF tests can be computed for any specified 
structure, 8, by evaluating the expectation 

Power = E(Pr[ Fi 2 Fifai:_U-i I a]), (18) 
where Fila~~_u_i is the lOO(1 -(Y) percentile of the F distribution with i and 
abc - u _I i degrees of freedom; F;. for i = 1 and 3 are given in (6) and (1.5); and 
the expectation is taken with respect to the distribution of d. To estimate power, 
d^ is computed for randomly generated data sets having a fixed value for +,The 
doubly noncentral F distribution in (17) is evaluated for each value of d and 
then averaged over d_ata sets to obtain an accurate estimate of power. 

Conditional on X@, the power of the score test (HL or 3DF) is a monotonic 
function of the numerator noncentrality parameter, d. Accordingly, for the 
unconditional poAwer of the score test (defined in Eq. (18)) to be ^high, the 
distribution of d must assignAhigh probability to large values of d and low 
probability to small values of d. The exact distribution of d^ is quite messy, but 
some simple_ approximations can be obtained. In particular, in the HL test 
against (4), d can be written as 

a=d(l-7) 

where 

(19) 

77 = max[Op[( ?)-‘“I, Op[ (T/l”], Op[ (F) jl’il), 
and where the random term, 7, has support on the interval [O, 11. Equation (19) 
reveals that for fixed d, the HL test has greatest power against (4) when ~cLY’~, 
acp’& and ahr’~ are each large relative to c2. Accordingly, for fixed total main 
effect magnitude, 

bctr’a = ac/3’P = abr’r 

is optimal for the HL test. 

(20) 

For fixed d and main effect directions [e.g., (~(a’a)-l/~], the power of the 
3DF test against (4) is maximized by choosing two-way interactions such that 
with high probability, d -A d^ is small. One way to do this is to choose a two-way 
interaction, such that E(h,) in (14) is proportional to 8 in (41, for m = 1, 2, or 
3. Power may be even higher (but not lower) if all three two-way interactions are 
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selected in this manner. Accordingly, the optimal two-factor interaction struc- 
tures for the 3DF test are 

M’ 
o = w3 [(a’a)(s’a)] l/2 . (21) 

It can be shown that if (21) is satisfied, then d^ in the 3DF test against (4) can be 
written as 

j=d(l -77) 

where 

Ii acP’B 
0, - CT2 

and where the random term, 7, has support on the interval [0, 11. 
Equation (22) reveals that if d is fixed and (21) is satisfied, then the 3DF test 

has greatest power against (4) when both elements of at least one pair, 
[bctr’tx, aw:], [acfl’fi, bwi], or [abT’T, cw.f] are large relative to a2. Thus, for 
sufficiently large d, the 3DF test can have acceptable power as long as the 
magnitudes of at least one main effect and the complementary two-way interac- 
tion are large. When (21) holds, the power of the 3DF test depends only on w ,, 

w2, wi, d, and the magnitude of the main effects. 
It can be shown that against (4), the power of the LR test depends on uz and 

8 solely through d in (17). Theorem 2 in Boik and Marasinghe (1989) can be 
used to approximate the power of the LR test. Nevertheless, for comparability 
to the HL and 3DF results, simulation will be used. 

4.2. Simulation results 

In each simulation study, 5 X 5 X 5 tables of data were randomly generated 
according to model (3) using different sets of values for LY, p, T, or), V, and p [as 
well as y, 5, and S in the case of (711. Main effect parameters were chosen to 
satisfy (20) because this is an optimal choice for the HL test against (4). 
Two-factor interaction parameters were chosen to satisfy (21) with w, = w2 = wj. 
While the structures in (21) are optimal for the 3DF test against (4), equating 
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two-way interaction magnitudes and imposing (20) are each sub-optimal. For 
fixed total main effect magnitude (say (Y’(Y + @‘B + 7’~ = ~,a*) and fixed total 
two-way interaction magnitude (say W: + wi + w: = K*(T*), 3DF power is maxi- 
mized by setting wf to K*(T * for i = 1, 2, OY 3, and letting the squared norm of 
the complementary main effect approach K,u*. The HL test would have 
minimal power under these conditions. 

For each of three values of d in (17), namely 4, 16, and 32, 1200 simulation 
trials were performed. Table 1 summarizes the results when the interaction has 
the HL structure in (4). Table 1 shows that the power of each test against (4) 
increases as d increases. For fixed d, the power of HL increases as (~y’cu>/a* 
increases and dominates LR if ((Y’cY)/(T * is large enough. The dependence of 
the power of 3DF on the main effect magnitude is less than that of HL, which 
shows only moderate increase with increasing (cu’cr>/a*. On the other hand, the 
power of 3DF increases with wf/a * for fixed d and exceeds that of HL if 
w:/g2 is large enough and (cu’cy)/o* is not too large. 

Estimated power of HL and 3DF against the LR structure in (7) is displayed 
in Figure 1. In each plot, main effects and two-factor interactions are fixed and 
y, 5, and 6 are varied such that the squared distance 

II (Yc3’B@r 
2 

L2 = min 
?T J(c&)(/3’p)(7’7) - + @ t @s) /I 

(23) 

assumes different values in the interval [O, 11. Under the LR alternative (7), the 
nonnull distribution of the LR statistic depends on u* and 0 solely through 
d = h*,b*. 

In Figure 1, the powers of HL, 3DF and LR against (7) for values of d = 4, 16 
and 32 are plotted as a function of L defined in (23). All three tests increase in 
power with increasing d, but to different degrees. The powers of HL and 3DF 
increase as L decreases; i.e., as y @ 5 @ 6 becomes proportionally closer to 
(Y @ /YI 8~. The power of LR, of course, is constant over L. Thus, in the top 
three panels, the power of HL exceeds that of 3DF for all (L, d) and both HL 
and 3DF beat LR unless L and d are large. In the bottom three panels, 3DF 
beats HL for all (L, d) and 3DF beats LR unless L and d are large. 

In summary, each of the 3 tests has the ability to detect three-way nonadditiv- 
ity under different conditions. For fixed d, the power of the HL test under (4) 
depends totally on the size of the main effects; power may be low even if only 
one of the main effects is small (see Eq. (19)). The 3DF test has the advantage 
of a reduced dependence on the main effects (see Eq. (22)). The LR test does 
not depend at all on the main effects. Thus the 3DF test strikes a balance 
between HL and LR. It is less dependent on main effects than is HL but at a 
cost of 2 df. It is less general than LR and this saves a + b + c - 2 df. 



Sh 

Table 1 

M. G. Murasinghe, R.J. Boik / Three-degree of freedom test 

Estimated power of three tests for three-way interaction against O,,, = AcY,/~,T~ (cu = 0.05) 

(cY’a)/gZ Wf/CG LR HL 3DF 

d=4.0 
0.125 

0.25 

0.5 

1 .o 

I .o 
2.0 
4.0 
1.0 
2.0 
3.0 
1 .o 
2.0 
4.0 
1.0 
2.0 
4.0 

d = 16.0 
0.125 1.0 

2.0 
4.0 

0.25 I .o 
2.0 
4.0 

0.5 I .o 
2.0 
4.0 

I .o I .o 
3.0 
4.0 

d = 32.0 
0.125 

0.25 

0.5 

1.0 

1.0 
2.0 
4.0 
1 .o 
2.0 
4.0 
I .o 
2.0 
4.0 
I .o 
2.0 
4.0 

5. An example 

0.0649 0.00 

0.12 

0.17 

0.2 I 

0.2934 

0.7508 

0.14 

0.29 

0.48 

O.h3 

0.22 

0.45 

0.72 

0.88 

O.OY 
0.1 I 
0.1’ 
0.10 
0.l’ 
0.13 
0.10 
0.12 
0.14 
0.1 I 
0.13 
0.15 

0.20 
0.2x 
0.3h 
0.23 
0.33 
0.42 
0.2x 
0.37 
0.4h 
0.30 
0.40 
0.4x 

0.36 
0.50 

0.62 
0.44 
0.9 
0.70 
0.5 I 
O.hh 
0.70 
0.55 
0.70 
0.80 

In this section we consider an example to illustrate the three tests. Table 2 
presents data first published in Xhonga (1971) and later used by Brown (197.5). 
The experiment involved the measurement of hardness of gold fillings made 
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$5 
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o, 
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Fig. 1. Power of HL, 3DF, and LR tests against flijk = Ay,lj6, with (Y = 0.05, (T? = 1, L2 = l- 
[(~‘cuX~‘B)(~‘T)]‘/(LY’(YXB’~~~‘~), and d = A2/cr2. 

using 8 types of gold (Type) and 3 methods of condensation (Cond) by 5 dentists 
(Dent). Table 3 gives an analysis of variance on the data, scaled by dividing each 
value by 100. 

The computed value of SS, in (5) is 2.19, giving a value of 2.25 for F, which is 
not significant at 5%. Thus, HL fails to detect three-way interaction. However, 
SS, in (14) is computed to be 10.03 which gives a value of 3.87 for F3, significant 
at 5%. The computed value of x2 in (8) is 27.92 giving a value of 0.5 for U, in 
(10). The 5% critical value is approximately 0.4464, and hence, H,: h = 0 is 
rejected. Thus, 3DF and LR tests find evidence of three-way nonadditivity. An 
estimate of u2 using (11) is 6’ = 0.62 with 45 df. 

At this stage one could attempt a transformation to achieve additivity. In the 
Box-Cox power family, a value of 2.1 maximizes the likelihood function with a 
95% confidence interval of (1.6, 2.7). For the transformed data, using a power of 
2, F, = 0.18 while U, = 0.4617, the second still significant at 5%. It may be that 
the nonadditivity in this data is not transformable. Brown (1975) suggested that 
the Cond x Dent interaction can be attributed to the 10 smallest observations in 
the data set. A referee has pointed out that the attempt to remove non-additiv- 
ity by a Box-Cox transformation is clearly unreasonable because the transfor- 
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Table 2 
The hardness of gold fillings: 8 types of gold (Type)X3 methods of condensation (CondJxS 
dentists (Dent) 

Dentist Method of 
condensation 

Gold 

1 2 3 4 5 6 7, 8 
1 1 792 X24 813 792 792 907 7Y2 835 

2 772 772 7X2 6YX 665 115 X35 870 
3 7X2 803 752 620 x35 X47 S60 5x5 

2 1 803 x03 71s 803 x13 85X 907 XX2 
2 752 772 772 7X2 743 033 792 X24 
3 715 707 835 715 673 69X 734 681 

3 I 71s 724 743 627 752 85X 762 724 
2 792 715 813 743 613 X24 X47 7x2 
3 762 606 743 6X I 743 715 X24 6X1 

4 1 673 946 792 743 762 x94 7Y2 64’) 
2 657 743 6YO XX2 772 XI3 x70 X58 
3 690 24s 4Y3 707 2XY 715 XI3 312 

5 I 634 715 707 6YX 715 772 104X X70 
3 694 724 X03 665 752 X24 0.33 X35 
3 724 627 421 4X3 40s 536 405 312 

mation simply corrects for the negative skew induced by these small values. To 
examine whether the three-factor interaction might also be an artifact of these 
observations, they were deleted and the HL and 3DF statistics recomputed. 
Neither test is significant, perhaps supporting the above conjecture. 

A more plausible explanation of the significance of U, is obtained by 
examining the structure of three-factor interaction. An analysis of the three 
components of the 3DF sum of squares is summarized in Table 4. Table 4 
suggests that differences in the Type X Dent interaction among levels of Cond 
are proportional to the Cond main effects. An examination of the marginal 
means for Cond reveals that the Cond main effect is primarily due to a 
difference between Cond3 and (Condl + Cond2)/2. The interaction between 
this contrast and Type X Dent accounts for most of the three-factor interaction. 
The results of this analysis are summarized in Table 5. For further interpreta- 

Table 3 
Analysis of variance for gold filling data 

Source DF ss MS 

Dent 4 21.76 s.44 
Cond 2 SO.76 29.88 
Type 7 22.03 3.15 
Dent x Cond 8 26.34 3.2’) 
Dent x Type 28 20.8X 0.75 
Dent x Type 14 20.98 I so 
Dent x Cond x Type 56 55.X3 I .oo 
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Table 4 

Partitioning of three-degree of freedom sum of squares for non-additivity for the gold data (note 
that i,, i, and i, were defined near (14)) 

Source DF ss MS F p-value 

Dent x Cond x Type 

Regression (I;,, iz, is) 

k 

I;? after rZ, 

i, after i,, k2 

i3 after I;? 

i, after rZ,, k.i 

h, 1 2.15 2.15 

L, after L, 1 3.61 3.61 

I;? after I;,, rZ, 1 4.27 4.21 

Residual 53 45.8 0.86 

56 55.83 

3 10.03 

1 2.95 

1 5.46 

1 1.62 

1 .oo 

2.95 3.41 0.07 

5.46 6.32 0.02 

1.62 1.87 0.18 

5.64 5.64 6.42 0.01 

1.12 1.12 1.30 0.25 

3.27 3.27 3.78 0.06 

2.49 0.12 

4.20 0.04 

4.94 0.03 

tion of the structure uncovered 
subject matter considerations. 

by this post-hoc analysis, one must appeal to 

Appendix. SAS commands to perform 3DF test 

Options LS=80; 

Data; 

*; 
* Data are in file Gold.Dat; 

*; 
Infite Gold; 

Input Cond Dent Type Hard; 

Table 5 
Sums of squares partitioned by (Condl + Cond2)/2 vs. Cond3 

Comparison DF ss MS 

(Condl + Cond2)/2 vs. Cond3 1 59.76 59.76 
Interaction with Type 7 18.20 2.60 
Interaction with Dent 4 25.73 6.43 
Interaction with Type x Dent 28 43.12 1.54 

Residual 28 12.70 0.54 

F 

131.75 
5.73 

14.18 
3.40 

p-value 

0.0001 
0.0003 
0.0001 
0.0009 
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*; 
* Fit Models to Construct 3 Covariates; 

* Xl, X2, and X3; 

*; 

Proc GLM noprint; 

Class Dent Cond Type; 

Model Hard"="Cond DentlType; 

output P=Xl; 

Proc GLM noprint; 

Class Dent Cond Type; 

Model Hard"=" CondlType Dent; 

output P=X2; 

Proc GLM noprint; 

Class Dent Cond Type; 

Model Hard"=" CondlDent Type; 

output P=X3; 

Data; 

set work.data4; 

Xl=X1**2/2; 

x2=x2**2/2; 

X3=X3**2/2; 

*; 
* Fit and Test 3DF for Nonadditivity; 

*; 

Proc GLM; 

Class Dent Cond Type; 

Model Hard"=" CondlDentlType@2 Xl X2 X3; 

Estimate '"Xl : BC x A ' Xl 1; 

Estimate '"X2 : AC x B'X2 1; 

Estimate '"X3 : AB x C ’ X3 1; 

Contrast '"3 D F 'Xl 1, x2 1, x3 1; 
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