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Some problems of multiple group factor rotation based on Cattell’s “parallel proportional
profiles” and “confactor rotation” are described (see Cattell, 1944, 1966, 1972). Some
relations between these classic ideas and contemporary practices in structural equation
modeling (e.g., LISREL) are explored. We show how the Confactor approach: (a) is related
to Meredith’s (1964a) selection model, (b) can be a parsimonious model for multiple group
factor analyses, and (c) how this model can be fitted using standard structural equation
modeling techniques. We discuss several alternative structural modeling solutions,
including (d) selection of a good reference variable solution, (e) rotation of the invariant
orthogonal structure by standard rotation routines, and (f) higher-order, latent paths, and
latent means structural model restrictions. Mathematical and statistical properties of these
models are examined using Meredith’s (1964b) four group problem fitted by Jéreskog and
Soérbom’s (1979, 1985) LISREL algorithm. The benefits and limitations of this structural
modeling approach to oblique Confactor resolution are examined and opportunities for
future research are discussed.

Introduction

Structural equation models may be evaluated in terms of both parsimony
and accuracy. We often index the complexity or simplicity of a set of
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structural equation models by counting the number of parameters (or
degrees-of-freedom) required by different models for the same data. We
oftenindex the accuracy of the model predictions by using the likelihood ratio
test statistics (e.g.,*) for models fit to covariance, cross-products, or to raw
data. These issues naturally arise in fitting factor analysis models. Ina given
set of data, a one-factor model is often a simpler and more parsimonious
representation than a two-factor model, but the two-factor model may fit the
observed data better. Relationships between parsimony and accuracy are
fundamental aspects in the choice between different models.

In structural equation models with multiple groups we often require
invariance of some model parameters, and this adds another level of complexity
to our decisions. In the case of common factor models, for example, it is not
clear whether the requirements of a simple structure in a factor pattern
should be more or less important than the requirements of factorial
invariance over groups. Parsimony in multiple groups models may be based
on comparisons of the benefits of invariance over groups against the costs
of complexity of a factor pattern. Accuracy of model fit is now based on how
well we account for the data of several independent groups. These parsimony
versus accuracy tradeoffs are crucial in multiple group models.

In this research we revive the seminal ideas of the Parallel Poportional
Profiles or Confactor model originally stated by Cattell (1944, 1966, 1972;
Cattell & Cattell, 1955). We also highlight issues of factorial invariance
under selection detailed by Meredith (1964a, 1964b, 1965, 1990). We then
restate these model principles using the standard techniques of linear structural
equation modeling (e.g., LISREL by Joreskog & Soérbom, 1979, 1985;
COSAN by McDonald, 1980, Fraser, 1979). This merger leads us to
examine multiple groups factor models with factorial invariance as the
primary consideration and simple structure as a secondary consideration.
We point out mathematical conditions needed for unique identification of
multiple group model parameters, suggest a few practical solutions for the
unique rotation of a factorial invariant model, and highlight alternative ways
to search for a potentially accurate and parsimonous structural models.

Simplicity and Factorial Invariance
The principles of “simple structure rotation,” originally defined by
Thurstone (1935, 1947) are well known and widely used in all forms of

multiple factor analysis. Thurstone based simple structure on a principle of
invariance:
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One of the turning-points in the solution of the multiple factor problem
is the concept of “simple structure.” It will be shown that this concept
enables us to obtain an invariance of factorial description that has not,
so far, been available by other means. ... When a factor matrix reveals
one or more zeros in each row, we can infer that each of the tests does
not involve all the common factors that are required to account for the
intercorrelations of the battery as a whole. This is the principle
characteristic of a simple structure (Thurstone, 1947, p.181). ... the
Jactorial description of a test must remain invariant when the test is
moved from one battery to another which involves the same common
Jactors (Thurstone, 1935, p.120; 1947, p.361). The factorial composition
of a set of primary factors that have been found in a complete and
overdetermined simple structure remains invariant when the test is
moved to another battery involving the same common factors and in
which there are enough tests to make the simple structure complete and
overdetermined (Thurstone, 1947, p.363).

Thurstone (1947, p.365) also distinguished “configurational invariance”,
or the invariance of the zero loadings, from “metric invariance”, or the
invariance of the numerical values of all loadings (see Horn, McArdle &
Mason, 1983; Horn & McArdle, 1992). A review of the recent literature on
confirmatory factor analysis shows Thurstone’s seminal principles of simple
structure remain important today. Indeed, it seems fair to say that this simple
structure principle has been the main theme of confirmatory factor model
analyses. Unfortunately, the basic requirement of a “complete and
overdetermined” sampling of variables is not often available in these structural
modeling experiments (see McDonald, 1985; Horn, 1988).

There have been relatively few alternatives to the simple structure
principles. However, under the heading of “The Most Fundamental Principle,”
Cattell (1944) offered such an alternative:

... The principle of parsimony, it seems, should not demand “Which is
the simplest set of factors for reproducing this particular correlation
matrix?” but rather “Which set of factors will be most parsimonious at
once with respect to this and other matrices considered together?” ...
The criterion is then no longer that the rotation shall offer the fewest
factor loadings for any one matrix; But that it shall offer fewest
dissimilar (and therefore fewest total) loadings in all of the matrices
together. ... To indicate the historical foundations from which it builds,
however, and the fact that it extends to several matrices simultaneously
the principle of parsimony involved in simple structure, it might equally
well be called ‘simultaneous simple structure (pp.273-274).

MULTIVARIATE BEHAVIORAL RESEARCH 65



J. McArdle and R. Cattell

Cattell’s theoretical model was initially designed to reflect substantive
concerns:

The basic assumption is that, if a factor corresponds to some real
organic unity, then from one study to another it will retain its pattern,
simultaneously raising or lowering all of its loadings according to the
magnitude of the role of that factor under different experimental
conditions of the second study. No inorganic factor, a mere mathematical
abstraction, would behave this way, within the realm of orthogonal
factors. The principle suggests that every factor analytic investigation
should be carried out on at least two samples, under conditions differing
in the extent to which the same psychological factors (working as
independent, orthogonal influences) might be expected to be involved.
We could then anticipate finding the ‘true’ factors by locating the
unique rotational position (simultaneously in both studies) in which the
factor of the first study is found to have loadings which are proportional
to (or some simple function of) those in the second: that is to say, a
position should be discoverable in which the factor in the second study
will have a pattern which is the same as the first, but it is stepped up
or down (Cattell & Cattell, 1955, p.84).

Cattell initially believed that invariance of the factor loadings was by
itself a criterion that led to a unique rotation of factors. Unfortunately, these
ideas proved difficult to demonstrate and prove. Cattell (1944) demonstrated
an orthogonal solution to a proportional profiles between two factor positions
that was unique, and he found this position by trial and error. Cattell and
Cattell (1955) showed that an analytic solution was possible for the two-
group orthogonal model and used the term “Confactor” rotation for this
solution. Cattell (1966) summarized the gains to date, worked with
covariances, and explored avenues towards the oblique solutions. One of the
latter was by the Schmid-Leiman transformation and involved the idea that
the condition of proportionality (parallel proportional profiles) must be
extended to higher order factors. Cattell and Brennan (1977) showed how the
orthogonal solution could be used as a first approximation to the oblique
solution, but also how this failed to obtain a unique oblique position. More
recently, McArdle (1984a) and McArdle and Cattell (1988) showed how a
structural modeling approach demonstrated both limitations and benefits of
the oblique Confactor model. Details of these structural Confactor solutions
will be presented here.

Selection and Factorial Invariance

Some important mathematical work has been directed at the Confactor
problem. Prominent among these is the research of Meredith (1964a, 1964b,
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1965). Meredith followed theorems by Pearson (1903), Aitken (1934), and
Lawley (1943), and applied basic mathematical principles of multivariate
selection to the multiple factor invariance problem:

Cattell [1944] has enunciated a principle of rotation called ‘parallel
proportional profiles’ that bears an interesting relationship to the
present results. One of the situations proposed by Cattell as a case in
which the principle of parallel proportional profiles could be applied is
the alteration of the population, i.e., selection of subjects or, in our
terminology, examination of different subpopulations. The principle of
parallel proportional profiles, applied in this case, states that, given
two factor pattern matrices obtained from two populations derived from
a common parent by selection, there ought to exist a rotation of the two
matrices so as to make corresponding columns of the rotated factor
matrices proportional (Meredith, 1964a, p.182).

Using this approach, Meredith made several practical proposals for the
unique resolution of the Confactor problem, clarified several of Cattell’s
earlier statements, but also raised doubts about the possibility of any unique
Confactor solution for the oblique case:

Our results indicate that ‘parallel proportional profiles’ cannot be
achieved unless each manifest variable is expressed in the same unit of
measurement across subpopulations. Furthermore, a stronger result,
namely invariance of the factor pattern matrix, can be obtained if we are
not required to express the factor variables with unit variance in each
subpopulation. However, such a result is not unique; hence in general
there will exist an infinite number of matrices satisfying the principle
of ‘parallel proportional profiles’ for any pair of populations derived by
selection satisfying the requirements of Lawley’s Theorem. If, however,
we require that for a given pair of subpopulations the factor variables
be uncorrelated in each, a unique result is obtained. ... given any pair
of populations derived by selection on y, there exists an orthogonal
factor pattern matrix such that the corresponding orthogonal factor
structure matrices satisfy the requirement of ‘parallel proportional
profiles’ ... This factor pattern is unique to a given pair of populations
since the eigenvalues and vectors of T'C,(T")" are unique. The
development (27) through (32) is essentially that given by Cattell and
Cattell [1955] ... (Meredith, 1964a, p.182-183).

Meredith emphasized the benefits of a selection approach to factorial
invariance:

Lawley’s Selection Theorem is really an extraordinarily powerful tool
... This means that the conditions of this theorem hold regardless of the
type of selection (i.e., truncated, probabilistic, etc.) and hence that out
conclusions about factorial invariance hold regardless of the type of
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selection. Since the only restriction on the distribution of selection
variates is the nonsingularity of the variance-covariance matrix in the
parent population, the condition of linearity of regression of nonselection
on selection variates is almost trivial. The major requirement then
becomes the requirement of homscedasticity. Another remarkable
result of these findings is that we do not even need to know what the
selection variables are, much less be able to observe them, for factorial
invariance to hold... (Meredith, 1964a, 184-185).

Meredith (1964b, 1965) explored several formal solutions to these
problems, including rotation of several loading matrices to the same target,
the factoring of a pooled covariance matrix, and he also provided goodness-
of-fitindices. Bloxom (1968a, 1968b, 1972) extended this work and proposed
several interesting alternative models. Bloxom (1968a)showed how invariance
of the factor score distribution allowed unique (but not invariant) factor
loadings together with simple structure. These important demonstrations
show conditions under which factorial invariance will not obtain.

Bloxom (1968b) further examined invariance in the context of Tucker’s
three-mode factor analysis model. Similarideas were used in the more recent
model termed PARAFAC by Harshman (1970, as reported by Harshman &
Lundy, 1984). The term PARAFAC was used to designate the “Parallel
Proportional Profile” basis of a Multidimensional Scaling Solution. The
oblique version of PARAFAC uses the additional constraint of equal factor
correlation matrices to obtain unique parameter estimates (see McDonald,
1984, 1985). This equal correlation restriction departs from Cattell’s (1944;
Cattell & Cattell, 1955) original oblique model, and it is not consistent with
Meredith’s (1964a) model sampling approach.

Other mathematical approaches to this rotation problem are based on
general classes of orthogonal transformations designed to rotate different
group factor patterns towards some consistent pattern (e.g., Cliff, 1966;
Green, 1952; Schonemann, 1966). In less formal approaches the invariance
of the rotated factor pattern is judged by some form of the congruence
coefficient (e.g., Brokken, 1983; Cattell, 1978; Korth, 1978; Nesselroade &
Baltes, 1970; Ten Berge, 1977; Walkey & McCormick, 1985). Further
theoretical work on the topic is also presented by many others (e.g.,
Ahmavarra, 1954; Bechtoldt, 1974; Butler, 1969; Overall, 1964).

Structural Modeling and Factorial Invariance
Mutliple group factor analysis are now often fitted using a structural
equation approach first detailed by Joreskog (1971). In this work Joreskog

extended his work on confirmatory factor analysis by developing and
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demonstrating a computer program for the simultaneous factor analysis from
multiple groups. The key feature of this approach was that parameters of the
matrices of any group could be (a) free to be estimated, (b) fixed at
prescribed values, or (c) forced to beequal to other parameters in any group.
Joreskog (1971) also used key aspects of Meredith’s (1964a) theorems and
data. In these first structural equation models an oblique factor model was
used as a starting point and many additional factor loadings were “fixed at
zero by hypothesis.” This confirmatory approach is consistent with the
simple structure ideas and leads to “over-identified” parameter estimates,
less rotational indeterminacy, and numerous degrees-of-freedom to test the
basic model hypothesis. This general approach remains important because it
allows factorial invariance over groups to be both estimated and tested as a
statistical hypothesis.

More complex structural equation models have been dealt with in the
recent literature. Bloxom (1972) showed how Joreskog’s (1971) approach
could be used to extend Meredith’s selection ideas in a variety of different
ways. Sorbom (1974, 1978) expanded these models to include latent variable
means and path models. These basic ideas have also been discussed by,
Alwin and Jackson (1980), Horn, etal. (1983), Nesselroade (1983), McDonald
(1984, 1985), and Horn and McArdle (1992), among many others. Some of
these issues can be summarized with the aid of the path diagrams of Figures
1 and 2.

Figure 1 illustrates a simple two common factor model for six variables
and two groups. In Group 1 the factors have a simple pattern of factor
loadings (labelled A "), where each variable loads on one and only one
factor. This group also has a correlation between the two factors (labelled
p,,"), and a vector of uniqueness (labelled y,_ ). The variances on both
factors have been set equal to one for the purposes of model identification.
In Group G we find the same two factors, the same configuration of factor
loadings (labelled A_,(©), a correlation between the two factors (labelled
P, ,‘*),anda vector of uniqueness (labelledy__(9). The parameters in Group
1 are labelled with a superscript “(1)” mdlcatmg that these parameters are not
equal to the parameters with a superscript “(G)”. This model is labelled here
as havingconfigural invariance because the pattern of the loadings of the two
factors are the same, but the numerical values of these loadings are not
necessarily identical.

Figure 2 illustrates a slightly different two common factor model for the
same basic problem. In Group 1 the factors have what appears to be a more
complex pattern of factor loadings (labelled A ); here most variables have
loadings on both factors. This group also has a correlation between the two
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factors (labelled p, ,'"), and a vector of uniqueness (labelled y_ ). In
Group 2 we draw the same two factors with exactly the same complex
configuration of factor loadings and with exactly the same values of these
loadings (labelled A, with no superscript). This model also includes
parameters which do vary over groups, including a variance on each factor
(labelled ¢, ), a covariance between the two factors (labelled ¢ ,'?), and
a vector of uniqueness (labelledy ). This model will be referred to here
as having metric invariance because the pattern of the loadings of the two
factors are the same, and the exact values of these loadings are identical. But
Figure 2 has both (a) metric invariance and (b) an exactly-identified factor
pattern: We refer to this kind of a model as having confactor invariance.

These diagrams demonstrate how apparently similar structural models
can be quite different from one another. In the Configural model 1 we have
a simple interpretation of the variables in terms of the factors, but the factors
are not exactly identical across groups. In the Confactor model 2 we have a
complex interpretation of the variables in terms of the factors, but the factors
are exactly identical across groups. Given only the two factors and two
groups drawn here, models 1 and 2 are both identifiable, and both include the
same number of parameters to fit (i.e., 26). However, as we will show later,
as the number of groups (G) and number of factors (K) change, the number
of parameters needed to define the factors in each model can become
substantially different from one another (by G - K). In cases where the
number of groups is larger than the number of factors, the Confactor model
of Figure 2 can be simpler and more parsimonious than the Configural model
of Figure 1. These kinds of model comparisons will be defined, illustrated,
and discussed in the rest of this article.

Methods of Structural Confactor Analysis

Inthis section we detail some basic mathematical requirements of model
identification with multiple groups. We assume some algorithm (e.g., LISREL)
can be used to estimate the parameters of a common factor model for one or
more groups. We define the minimum constraints needed to identify these
parameters, and we interpret these constraints as restrictions on transformation
matrices required to produce unique factor rotations. We present the original
two group orthogonal Confactor solution of Cattell and Cattell (1955) and
Meredith (1964a), and we show how the can be expanded for use with oblique
rotations. These ideas lead to some novel possibilities for the unique
estimation of a partially oblique Confactor model using multiple groups and
different rotation criteria. Some practical guidelines for a full structural
Confactor analysis are presented.
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Single Group Common Factor Models
Let us say we have measured a set of M variables on a group of N

individuals. We can now write a structural equation model with K common
factors as

Y = An +g,
Q) I=AOA+Y and
® = ARA,

where, for individual n, Y is the M-dimensional vector of observed scores,
n is the K-dimensional vector of common factor scores, and & is the
M-dimensional vector of unique factor scores. We further assume A is the
(M x K) matrix of common factor loadings, ® is the (K x K) matrix of
common factor covariances, and W is the (M x M) diagonal matrix of unique
variances. To simplify later notation we also define A as the (K x K)
diagonal matrix of standard deviations of the common factor scores, and R
as the (K x K) matrix of correlations among factor scores. Following current
structural modeling terminology (e.g., Joreskog & Sérbom, 1985; McDonald,
1985) we will pattern the elements of matrices A, @, and ¥ to be fixed, free,
or equal as specified by hypothesis. (We will deal with patterning of the mean
vector in a later section of this article.)

The estimation of K common factors from a set of M variables requires
specific constraints in the factor loadings A. In the typical unrestricted factor
model we initially estimate a K-factor orthogonal solution using some
“convenient restrictions” (e.g., such as requiring the initial ®, = I and
AY'A’ as diagonal; Lawley & Maxwell, 1963; Joreskog, 1971, p.23).
These model parameters are exactly-identified and require further rotation
for interpretation. A similar solution can also be obtained from a restricted
structural equation model when we place the minimal constraints necessary
for a unique solution. These constraints have been described by Joreskog
(1971):

Two simple sufficient conditions, as given by Howe [1955], are as
follows. In the orthogonal case, let @ = I and let the columns of A be
arranged so that, fors =1, 2, ..., £, column s contains at least s - 1 fixed
elements. In the oblique case, let diag ® = I and let each column of A
have at least k& - 1 fixed elements. It should be noted that in the
orthogonal case there are “2k(k + 1) conditions on @ and a minimum of
Y.k(k - 1) conditions on A. In the oblique case there are k normalizations
in @ and a minimum of k(k - 1) conditions on A. Thus, in both cases,
there is a minimum of &2 specified elements in A and ®... (Jéreskog,
1971, p.24).

MULTIVARIATE BEHAVIORAL RESEARCH 73



J. McArdle and R. Cattell

These constraints can also be interpreted as conditions needed for a unique
rotation of the factors. Let us assume we have imposed the required K>
constraints and fit the K-factor model to M variables. From a set of initial
loadings A and initial covariances ®, we can write a rotation of the common
factors as

) I = AQA+Y,
ATTHYO (T"THYA'+¥
ATTOT")(T'AH+Y
ADA+ VY,

i

where T is any (K x K) nonsingular transformation matrix, A = AT is the
rotated factor loading matrix, and ® = T'®T" is the rotated factor
covariance matrix. If our initial model was orthogonal (i.e., ®, = I these
same results would obtain. The initial uniquenesses ¥ are not listed with a
subscript because, as shown in Equation 2, these uniquenesses (and
communalities) are not changed by the selection of T.

For further clarity, we expand the rotated loading matrix by writing

A AT
3) A=AT= T=
A, AT

where A _is the (K x K) square submatrix of the initial A, including only the
first K rows, and A is the [(M - K) x K] non-square submatrix of initial A,
including only the remaining M - K rows. There are many choices of the K?
elements of T, and each of these choices yields a possibly different rotation
of the factors defined by loading matrix A.

To identify this common factor model we initially add X fixed constraints
on the scaling of the common factors (i.e.,®, , = 1). The size of this positive
value is essentially arbitrary, and theseK constraints may be placed elsewhere
(e.g., A). An additional K? - K restrictions are needed to separate the K
factors from one another. In the oblique common factor model this requires
all remaining K2 - K constraints be placed within the factor loading matrix
A. Typically K - 1 zero loadings are placed in each of the K columns of A
by hypothesis. In the orthogonal common factor model we define
K(K - 1)/2 zero covariances in ® so K(K - 1)/2 restrictions are placed within
the factor loading elements A. In either case the location of these constraints
is not completely arbitrary: The mathematical side condition required here is
the existence of the inverse of a submatrix A with all fixed values (or the

74 MULTIVARIATE BEHAVIORAL RESEARCH



J. McArdle and R. Cattell

determinant |JA_ A | > 0; Algina, 1980; Shapiro & Browne, 1983; Joreskog,
1979, p.41, in Joreskog & Sorbom, 1979). Any set of K? fixed values of A
meeting these conditions can be used to identify the K-factor model.

Before we expand this problem to more groups it is useful to highlight one
kind of factor rotation. Following the previous equation, we can choose a
transformation matrix T so

= -1

' A, A A I
4 A= AT-= = = and
AM All AS" Au AS-I

®= A @A

In this rotation, the K selected variables have a particularly simple relationship
to the common factors: K rows of A form an identity (where each variable
has unit loadings on one of the first X factors, and zero loadings on each of
the other K - 1 factors) and M - K rows of A have a possibly complex pattern
(defined by A A "). The resulting® does not necessarily have unities in the
main diagonal, but the necessary scaling of the factors is retained by the
unities in the first K rows of A. Any subset K of the M observed variables
can be selected for inclusion in A, but each of these selections yields a
different (K x K) matrix T =A "' and corresponding [(M - K) x K] matrix A .
Following Joreskog (1971) and Meredith (personal communication, November
1988) the K observed variables selected for inclusion in the rows of A_will
be termed the K reference variables, and we will refer to this procedure asa
reference variable rotation.

Invariant Factor Loadings in Two Groups

Let us now say we have measured the same M variables on two
independent samples of individuals with possibly different sample sizes
(NWand N®), We write a model for each group with X common factors and
an invariant factor loading matrix A as

(5) YO=AnO+e®, IO=AOOA + ¥ and
YO=An@+g® ITO=AQIA + PO,

In this two group model the matrix A is invariant over groups, but all other

matrices (Z©, @®, and ¥'®) are allowed to vary over groups (as denoted by
the superscripts 1 or 2).
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This basic model follows the general statements of the oblique version of
the Confactor model made by Cattell and Cattell (1955). In these treatments
we first obtain initial orthogonal solutions and then rotate these solutions to
invariance. In our notation we write

(6) T = AWAO 4+ PO and
IO = AOAQ 4 PO

where AYand A® are the (M x K) orthogonal loading matrices for each
group obtained separately using some form of K? restrictions. Under the
assumptions of Parallel Proportional Profiles, we assume the new set of
expectations

(7 T = AA'+ WO, and
2(2) = AAZA' + ‘P(z),

where A is the invariant loading matrix and A is the (K x K) diagonal matrix
of the K-factor standard deviations in the second group. These factor
standard deviations A allow the loadings A to be invariant but the common
factors to be proportional over groups (by variance terms A?).

Following Cattell and Cattell (1955) we can rewrite this model in terms
of the transformation matrices applied to Equation 6 needed to obtain the
invariant loadings of Equation 7: We write

(&) A = AOTY, and
A = APTYA! so
ADOTH = AQ@ T® A

where T"and T® are (K x K) orthonormal transformation matrices (i.e., T
T'=T' T =1I). Now by rearrangement of T"’and A® we have,

9) AO(TOTOY) = AD T@ AT TO
AD =A@ T® A TN,
AP AD = (A A®) TO A TON,
(A A@ YL A A = T@ ATO! or
' = T®A'TY or
r = UySyVvy,

where I is the (K x K) square but non-symmetric matrix formed from the
known A%and A® orthogonal matrices.
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The basic structure or singular value decomposition of this I' matrix
(see Horst, 1963; Johnson, 1963; Eckhart & Young, 1936) gives a unique
solution for the unknown matrices: (a) T® = Uy, the left orthonormal vectors
of T, (b) T = Vy, (b) the right orthonormal vectors of ', and (c) A = Sy,
the recripricols of the singular values of I'. A version of this proof was
implied by Cattell and Cattell (1955) and given by Meredith (1964a).

If the two-group orthogonal Confactor model Equation 7 is appropriate
then the resulting A can be rotated to an identical position across groups.
Under these conditions we can obtain parameter estimates for all (M x K)
loadings in the A matrix even though this A does not necessarily have a
simple structure form. The inital extraction of each orthogonal A® required
K2 constraints but did not require invariance. Under the additional constraints
of MK invariant loadings in A, the multiple-group Confactor model
requires only K* total identification constraints.

Rotational Indeterminancy in the Two-Group Model

There are several sources of indeterminacy in this two-group solution. In
the simplest case we can reverse the ordering of the groups, so ®" A®and
®? = I, and the resulting A will also be invariant and unique but appear
different than before. This is a trivial concern because the rotated loadings
A are simply rescaled columnwise by the inverse of the previousA®. These
rescalings should have no effect on the substantive interpretations of the
model.

A second source of indeterminacy is far more complex. We know the
invariant A obtained above is unique only under the orthogonal factor
assumptions. However, if we allow the factors in, say, the second group to
be freely correlated (®®), this relaxes K(K - 1)/2 of the needed constraints
and we cannot uniquely estimate all (M x K) parameters in the rows and
columns of A. Following the one-group orthogonal case above we can
identify the model by adding the needed K(K - 1)/2 restrictions within the
loading matrix A. These restrictions are usually in the form of “fixed zeros”
and these usually reflect a substantive hypotheses (McDonald, 1985).

Similar problems surface in the general oblique case. The initial two-
group orthogonal calculation required the orthonormal restrictions
(TT'=T'T =1I). It follows that the resulting A can be rotated using non-
orthogonal transformations. As before, we can start with an initial invariant
A, identified by assuming ®" =1, and ®» = A?. Now we can select a
transfomation matrix
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(10) T = A',so A = I
, and
A A
[ 0 AA'= ADRDAD
o» = Aj A:Z A'= A® R® A®,

so each group has a new invariant A but possibly different factor covariance
matrices ®and ®?. These factor covariances are also written here with
different factor standard deviations Aand A® and different factor
correlations R™and R®. In this development R%V#~ R because, in general,
A A = A_A unless further restrictions are imposed. The oblique rotation of
an invariant A does not necessarily imply equal factor correlation matrices
(as in Harshman & Lundy, 1984; cf. Meredith, 1964a; Thurstone, 1947).

We have just described different sets of alternative constraints that yield
an invariant A. However, if these alternatives yield identical fit to the data,
we can show they all have the same basic structure. (a) Let A be the invariant
loading matrix obtained by requiring both @ = I and ®® = A’ to be
diagonal but allowing all MK factor loading parameters to be free. (b) Let
A bethe invariant loading matrix obtained by requiring®‘ = I and requiring
K(K - 1)/2 lower triangular factor loading parameters to be fixed. (c) Let
A be the invariant loading matrix obtained by allowing both @ to be free
and requiringK? reference variable loading parameters to be fixed. Following
an approach suggested by Meredith (personal communication, November,
1988) we now write the basic structure decomposition of these common
factor matrices as

(1)  A,A; = (U,S,VXV,S, Uy = US2U},
AKX = (USVYV'SU) = US2U and
ADOYA' = USVHIOOW'S U)Y = UUS22UHYU'
r r ror or ror r r p_ré P r
= U, 87U,

with orthonormal vectorsU U '=L,V V '=1,and values S . Assuming each
of these alternative models produces the same £and ¥)we can write

(12) 0 = AA]+ WO,
0 = A A +¥0, and
z(l) = A Q(‘)A’ + \P(l)’ SO
AA; = AA = A®UA or
U, U; = US:U = US2U. so
Ud Sd = Ul S.f = ro g’

78 MULTIVARIATE BEHAVIORAL RESEARCH



J. McArdle and R. Cattell

Thus, the alternative but invariant solutions A, A, or A all have an
orthogonal basic structure defined by U,, U, or U ,. Since any orthogonal
rotation can be defined as a product of orthogonal transformations (Horst,
1963), theseU_matrices can be rotated to the same position by an appropriate
choice of a non-singular transformation matrix. (The equivalent representation
can be written for £®.) Thus, although the initial choice of identification
constraints across groups is usually arbitrary (asinA , A, or A , above) the
invariant A matrix retains the same basic structure information under any
choice of initial constraints.

These results highlight three key issues of oblique Confactor estimation.
First, given the typical restrictions of orthogonality and scaling, the (M x K)
parameters of invariant A are unique. Second, any free parameters among
the covariances of the factors ®® in any group requires a corresponding
restriction of the invariant loadings A to obtain a unique solution. Third,
there are many choices for the placement and size ofthe required fixed values
in A, so, in the oblique solution, the initial A, may be rotated. That is, the
covariance prediction of X® remains identical under any choice of the
placement of K? fixed values in A and ®®. The gain in parsimony with
multiple groups may now be clear: When dealing with two separate loadings
matrices A® we need K* constraints in each group to define a unique
rotation. But now, by including the restrictions of invariance in loadings A
over groups, we can define a unique rotation with only K? total constraints.

Factorial Invariance in More than Two Groups

Now we can extend these basic principles to include more than two
groups. Let us assume we have measured the same M variables on G groups
with possible different sample sizes (N®, for g = 1 to G). We write a
K-factor model in each group as

(13) Y @® A n @+ g (g),
TO = A QO A+ PO,

where A is invariant across all G groups, but all other matrices are allowed
to vary for the gth group. As before, we can start with an initial solutions in
all groups with A® where K? restrictions are implied in each group but
invariance is not initially required. In one extension of the Confactor model
Equation 7 we can add factor covariance restrictions for the G groups as
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(14) oY = 1,
O = AP A® and
O® = A® R® A®,

so the first matrix is orthogonal, the second matrix is diagonal, and the other
G - 2 matrices are generally free to vary (i.e., R® is an unrestricted
correlation matrix). This extension of Confactor model Equations 7 and 8 can
be written as

(15) A = ADTO,
A = AODT® A and
A = A@TOU®S @1 5o
ADTO = AOTOADT & A@TO U@ s e,

where all T® matrices are orthonormal, and §,® and U ® are the singular
values and vectors of @® (for g =3 to G).

The previous statement is useful because it suggests a simple calculation
technique. First, we obtain an invariant A from the previous two-group
expression, Equation 9, using either the resulting Tor T®. Second we
define the non-orthogonal but nonsingular transformation matrix T ¢(g) =
T® U,® §® and write

(16) A(g) T¢(g) = A’
(A(g)' A(g)) T¢(Z) = A(g)' A’ SO
T¢(g) = (A(g)’ A(g))‘l A(g)' A’ and
P& = T¢(g)-l O® T¢(g)~l' = A® R® AL,

A more formal proof of this assertion can be developed from an extension of
this result using theorems provided by Anderson (1958, p.341, Theorem 3;
as suggested by Browne, personal communication, September, 1988).

The previous Equation 16 results in a matrix A which is invariant over
all groups, but the underlying common factors are (a) orthogonal with unit
variance in group 1, (b) orthogonal with different variances in group 2, and
(c) oblique with additionally different variances in all other groups (g =3 to
G). Since this A was obtained from the first two groups and simply applied
to the other G - 2 groups, it is clear that only the minimum of K? restrictions
are required. In this approach, the covariance information Z® from the
other G - 2 groups contributes to the estimation of A but all factor loadings
can be fixed by the identification of groups one and two alone.
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Allrotations demonstrated earlier apply to this unique solution. First, as
in the two-group case above, this A can be rescaled column-wise by altering
the group constraints. Second, and more critically, any invariant A can be
rotated by altering the restrictions on the group covariances. We can start
with some initial solutions for A, identified by restricting®®’ =1, @@ =A?2,
and then write

I
(17 T = A, A = , and
AA
OO = A A'= AORDAOD,
OP = A A2A'=A® R A®

P = ADPOA'=A AOROA® A'= A® R® A®

so now the covariances ®®), deviations A®, and correlations R®, are free to
vary among the G groups. This A will be unique under the restrictions above
but it can be rotated in a variety of ways. As before, the placement of these
K? restrictions alters the specific values of the invariant A. However, as
before, the basic orthogonal decomposition of any A into vectors U_and
values S will provide the same information from any arbitrary set of
restrictions.

Comparing the Required Number of Parameters

We have shown that if we require a minimum of only K? constraints for
any number of groups G then the corresponding invariant A can have
(M x K) free parameters. These general principles become more useful when
more groups are added because no new restrictions are required. One
practical benefit becomes clear when we compare the number of independent
parameters required in the fitting of alternative models (see Figure 1 and 2).

The number of parameters (Npar) in any model can be defined as the sum
of the free parameters (loadings, covariances, and uniquenesses) minus the
required constraints. First we write the number of parameters required for the
independent and exactly-identifed solution in each group as
(18) Npar.

independent

G (MK + [K(K+1)/2] + M - K?)
GK (M- K)+ G [K(K+1)/2 + M].

Alternatively, the model of Figure 1 is a Configural simple structure model
where the mth variable has only one loading on the kth factor, and these

MULTIVARIATE BEHAVIORAL RESEARCH 81



J. McArdle and R. Cattell

loadings are not invariant across the G groups. This is a restriction of the
previous independent groups model and we write

(19) Npar

configural

G (M+ [K(K+1)2]1+ M - K)
G(M-K)+ G[K(K+1)/2 + M].

Finally, the model of Figure 2 is a Confactor model where the mth variable
has several loading on the K factors, and these loadings are invariant across
the G groups. This is also a restriction of the previous independent groups
model and now we write

(20) Npar (K M) + G ((K(K+1)/2] + M) - K?
K (M- K) + G[K(K+1)/2 + M].

confactor

The previous models can now be seen to have common parameters (i.e.,
G[K(K+ 1)/2 +M]), so the differences in the number of parameters required
can be writen for each pair as

(21) Nparindependent - Nparconﬁgura] G (K - 1) (M' K),
parindcpendem - Nparconfaclor = (G - 1) (M - K)’ and
Nparconﬁgural - Nparconfactar = (G - K) (M - K)

These differences in the number of parameters between the models are
directly based on the number of groups G and the number of factors K
(and multiplied by M -K). The Configural model (Figure 1) is a simplification
of the exactly-identified independent groups model, and this simplification
increases as the number of groups G and number of factors K increases. The
Confactor model (Figure 2) is a simplification of the exactly-identified
independent groups model, and this simplification increases mainly as the
number of groups G increases. Most critically, the Confactor model is
simpler than the Configural model in cases where the number of groups G is
large and the number of factors K is small (i.e., G - X). In contrast, the
Configural model will require less parameters when the number of factorsK
is large and the number of groups G is small. All of these differences in the
number of parameters will be enhanced with an increasing number of
variables M relative to number of factors K.

Fitting the Multiple-Group Confactor Model

In structural modeling terms we view the Confactor model as a hypothesis
to be fitted. In the two-group orthogonal case we can rewrite the model as
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(22) AVT® ADTO AT+ Q, or
Q = ANTH A® TO A

where Q is a (M x K) matrix of differences between the theoretical and the
observed loadings after rotation. In the case of more groups we define Q to
represent the differences between all loading matrix expectations. To fit this
model we select an appropriate index of fit (e.g., r[QQ']), search for a
specific rotation which minimizes this discrepancy or misfit, and obtain a
solution such as Equation 9 above. Meredith (1964b) details techniques for
defining rotations which optimize factorial invariance (also see Gow, 1978).

As an alternative we can fit the two-group Confactor model Equation 7
using standard structural modeling algorithms (e.g., LISREL). In this
structural modeling approach we assume A invariance from the start and
evaluate the goodness-of-fit from a unique rotational position. We initially
require all model to be identified and, as we have just demonstrated, this can
be achieved by requiring: (a) orthogonality in a first group (@ =1I), (b)
diagonality in a second group (®® = A?), and (c) invariance of all (M x K)
factor loadings in A. But here we do not calculate the initial solutions A®
and then rotate these solutions to invariance. Instead we directly estimate
parameters (and standard errors) for all (M x K) loadings in the invariant A
matrix.

In this structural modeling approach we write a fitting function

S [(NO/N)F®], and

g=1

Y tr{[(S® -Z&)W®e-1]2},

23) F

F®

where, forg groups,S® is the observed covariance matrix, W® is the weight
matrix, F® is the function or discrepancy value, and F is the function value
over all groups. Given the appropriate choice of weights W® we obtain the
usual least squares (W® = I®), weighted least squares (W® = §%), or
approximate maximum likelihood (W® =Z®) fitting functions (for details,
see Chen & Robinson, 1985; Jéreskog & Sérbom, 1979, 1985; McDonald,
1985). In all applications here we will estimate parameters to mimimize a
maximum likelihood fitting function, and we will estimate a likelihood ratio
test statisticy? to evaluate the goodness-of-fit. Inthis approach, the resulting
A will always be invariant, but the oblique Confactor model may not fit the
data very well. These results will be demonstrated in the applications of the
next section.
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Inusing structural models we also examine this identification problem on
anumerical basis (see McDonald & Krane, 1979; Shapiro & Browne, 1983).
Specifically, when a numerical search procedure no longer finds parameters
for a smaller fitting function, we can check the rank of the inverse of the
matrix of second order derivatives at the minimum (i.e., the Fisher Information
matrix). Ifthis matrix is of full rank the model can be said to be identified.
The numerical properties of this matrix are also reflected in the main diagonal
elements of this matrix, and these are given as the standard errors for each
parameter. The numerically determined identification status of these newer
models will be examined in all results to follow.

Practical Structural Modeling Solutions

The previous results lead to some practial approaches to Confactor
solutions using structural equation techniques. We have shown how to obtain
a final solution for the Confactor model if we are certain about our selection
of the two orthogonal reference groups 1 and 2. Unfortunately, this selection
of reference groups is usually arbitrary and the factor loadings A, can be
rotated into a large set of other matrices A and covariances ®® all of which
produce the same communalities and goodness-of-fit to the data. This
rotation problem was not explicitly stated by Cattell (1944; Cattell & Cattell,
1955; Cattell & Brennan, 1977). In earlier work Cattell seemed to believe
that there was only one position where the factors could be invariant and
proportional over groups. McArdle and Cattell (1988) used the equations
here to show that a unique position can be found using structural equation
models, but also that alternative selections of the required K* constraints
leads to alternative rotations of the invariant common factor space.

But the benefits of this multiple group Confactor solution have not been
fully explored. In the Confactor model the number and proportion of oblique
covariances @ uniquely estimated increases as a simple function of the
number of groups G. However, in contrast to G separate group solutions
with A® separate matrices, we benefit from having only one A matrix to
rotate. Three different structural modeling solutions for this purpose are
described next.

Solution 1. Selecting a Good Reference Variable Rotation
The original approach of Cattell (1944) suggested an avoidance or

minimal use of the principle of simple structure. If we admit these solutions,
however, we might now try to find an optimal position for the minimal
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number of zero locations in the factor loading pattern A. The selection of a
unique reference variable submatrix A from A can only be accomplished in
a finite number of ways. This number can be written as a binomial coefficient

M\ (M
4) — |=| — |M-Kp
K K

representing the number of ways of choosing K rows from a set of M rows
without regard to order. In many cases, it will be possible to explore all of
these separate rotations (e.g., with M =9 and K = 3, so 9!/3!(9 - 3)! = 84).

The transformation matrix T = A "' needs to be recalculated for each set
of K variables, but the information in this calculation is useful. The quality
of the new loadings estimates (A, A ') should be indicated by the numerical
characteristics of the inverse; e.g., as the selected variables tend towards
being uncorrelated the inverse matrix will approach diagonality. Some useful
features of a final reference variable solution can be indexed by some
function of the determinant of A (and we use /n]A |). Transformation
matrices with the largest determinants should index variables at the extremes
of the conic sphere formed by the vector projections. Thus, we may be able
to obtain an optimal set of K reference variables by the empirical rotation of
all M/K different transformation matrices defined by Equation 24. The
empirical selection of a good reference variable set will be checked empirically
in the next section.

Solution 2: Basic Structure Rotation

A more general exploratory approach to rotation is possible. Since the
goodness-of-fit of the exactly identified invariant A is always the same, we
know that model is invariant across restrictions. Following Meredith (1964b,
1965) we could create a pooled factor covariance matrix ® pre and post
multiplied by A and followed by a singular value decomposition. This
approach has conceptual appeal but it is not strictly required. As Meredith
(personal communication, November, 1988) has recently pointed out, we can
also accomplish this goal by applying the singular value decomposition
directly to any invariant A and rotate the orthonormal vectors U, by
Varimax, Promax, Oblimin, Hyball, Procrustes, or any other rotation scheme.

In a first step we estimate a unique and invariant factor pattern A by
using a structural equation program for multiple groups (e.g., LISREL; see
Appendix 2). Second, we calculate the singular value decomposition of this
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invariant A using an external routines. Third, we apply some external
rotation of the invariant U, using any criteria defined above. Fourth, we
create a new set of K? constraints from the the specific rotational values, refit
the structural equation model, and obtain new parameter estimates and
standard errors for all free parameters. This kind of multi-stage solution
should be be practical, efficient, and accurate.

We should note that simultaneous solutions combining invariance and
rotational criteria have been suggested (Bloxom, 1972) and are rapidly
becoming practical (see Browne & Du Toit, 1987). In such an approach we
could, for example, estimate the invariant Confactor model and also minimize,
say, the Varimax criterion for each factor from the estimated loadings (see
Horst, 1963). This nonstandard approach allows (a) an oblique invariant
model with any simplicity criterion applied to the final pattern, (b) any degree
of over-identification by restrictive hypotheses, and (¢) the direct calculation
of standard errors for the simultaneous solution.

Despite these potential benefits the simultaneous solution is not usually
needed here. In the oblique Confactor model proposed here we require
invariance first and some additional rotational criteria second. Since the
solution is exactly-identified we should obtain a similar solution by either
simultaneous criteria or by a two step criteria (within the limits of rounding
error). Inany case, the simultaneous solution A would be rotatable into any
of the other positions. On these practical and theoretical grounds we now use
the multi-stage analysis to demonstrate some numerical results.

Solution 3: Adding Structural Constraints

We have just described how additional restrictions on the factor
covariances ®® lead to less restrictions required on the factor loadings A.
Now we ask the question, “What meaningful mathematical and statistical
restrictions can be placed on the factors over groups?” Cattell (1966)
suggested the inclusion of patterning of higher order factors and group
means, and we explore these possibilities now.

In a first kind of model we will restrict the covariances among the factors
to be patterned with an invariant higher order factor (i.e., ®® =B Q® B' +
¥®). This will allow all factors in all groups to be freely correlated, but it will
not require a full set of restrictions on the invariant A. We can also explore
the possibility of similar restrictions based on latent path models. Since any
fully recursive path model can be written as a set of higher order models (as
inMcArdle & McDonald, 1984; McDonald, 1980) these relationships should
be similar. There are several restrictive latent path models based on substantive
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concerns which may be used to identify the factor loadings (as in McArdle,
1984b).

The inclusion of latent variable means is a critical aspect of recent
structural modeling (see S6rbom, 1974; Horn & McArdle, 1980, 1992;
McArdle, 1988; Millsap & Everson, 1991). In models where the factor
pattern A is invariant over groups it is possible to examine the mean
differences between groups on these same factors (i.e., p® = v + A ©®).
Furthermore, the inclusion of factors that represent covariance differences
and mean differences adds another important aspect to the determination of
aninvariant factor pattern. Using these techniques we can define factors that
simultaneously account for both differences within persons and between
groups of persons (after Cattell, 1966; Meredith, 1990; Horn & McArdle,
1992). Additional restrictions on the mean parameters (@) may be required
to identify the appropriate loadings A (Meredith, 1990). The empirical
identification status of these newer models will be examined in all results to
follow.

Some caution needs to be expressed here because the rotation principles
just described do not necessarily apply to over-identified solutions. For
example, we might choose to restrict @ V=1, @@ = AP AQD GE) = A® A®,
so the factors are all uncorrelated in all groups. This adds an additional K(K
- 1)/2 restrictions which, although are not initially necessary, do serve to fix
the rotation. Of course, any of the G - 2 matrices ®® can be tested for
diagonality, identity, or equality, but these results are usually over-identified
and are more restrictive than necessary. These kinds of structural restrictions
may or may not be beneficial.

Results of Structural Confactor Analysis
Multiple Groups and Multiple Measures Data

To examine some new structural solutions we use the well-known data
selected by Meredith (1964a, 1964b).

The data used to provide a numerical illustration of the techniques
presented here are taken from a monograph by Holzinger and Swineford
[1939]. In this study 25 carefully select tests were administered to
seventh and eighth grader students in two schools. The socioeconomic
character of the two schools was quite different, one (Pasteur) enrolling
children of factory workers, a large percentage of whom were foreign
born, and the other (Grant-White) enrolling chiidren in a middle class
suburban area. ... In addition to the results of various analyses the
monograph contains complete data for all 301 children tested, including
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all test scores and factor scores, making it possible to divide the
students in each school into two approximately equal groups by splitting
at the median, within each schools on one of the speeded tests, an
addition test. This yielded four groups for the purposes of the analyses
to be presented here. ... Nine of the 25 possible tests were chosen for
the purpose of illustration. The tests were chosen so that the space,
verbal, and memory factors are each represented by three tests. ... The
first six tests are all multiple choice. In the Figure Recognition test the
subjects were allowed to study a list of abstract figures and then
indicated which figures of a larger list were members of the memorized
list... (Meredith, 1964b, p.197-198).

The means, standard deviations, and correlation matrices for the four
group problem are listed by Meredith (1964b, p.198; see Appendix | here).
In the first group the means have been scaled to zero and the standard
deviations have been scaled to one. The other three groups have beenrescaled
using the same group 1 means and deviations. This choice of the first group,
or the sum over groups, is arbitrary, but the scaling of all variables using the
same constants is necessary for the models to follow. All structural models
below will be fitted simultaneously to the four (9 x 9) covariance matrices
(including 180 overall summary statistics) and some models will include the
four (9 x 1) mean vectors as well (adding 36 additional summary statistics).

These data have also been reanalyzed by Joreskog (1971) and by Bloxom
(1972) in a multiple group structural equation model (using the original
SIFASP program). Also, Sérbom (1974) fitted these data in a multiple group
structural equation model with means (using the COFAMM program).
Comparable models will now be fit using the widely available LISREL
program (also see the LISREL-7 manual, Jéreskog & Sorbom, 1985; and see
Appendix 2 here). These models can also be fit by other single group
programs (e.g., the COSAN program by Fraser, 1979) but the different sized
samples make the multiple group LISREL generally easier to use for this
example.

Result 1a: Traditional Invariance Examples

In Table 1 we list the maximum likelihood results of two models
originally fitted and discussed by Jéreskog (1971, p.205). These models
require a simple patterning for each of three common factors based on
Meredith’s (1964b) initial selection of tests. This pattern is designated on an
a priori basis by the requirement of fixed zero values (labelled with “0=""in
all tables here). Table 1 includes the factor loadings A®, factor standard
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deviation vectors A®, and factor correlations R®). Parameter estimates
which are twice as large as their own standard errors (i.e., the parameter ¢-
value >2.0) are highlighted (with *). Goodness-of-fit indices are listed in the
last rows of the table. For simplicity of presentation here we have further
required the uniqueness vector ¥ to be invariant over groups.

In the first model of Table 1 we have estimated a three factor model with
the same configuration of zeros and non-zeros in A®.. An oblique model is
over-identified in each group by fixing the scale of each factor. In this model
we require unit values in each A but allow each correlation matrix R® to be
freely estimated. This Configural Invariance patterning of Model 1 requires
57 parameters, so it has DF=123 and obtains a Likelihood Ratio ¥>=159.

In Model 2 of Table 1 we have required the factor loadings in A to be
invariant over all four groups but we have relaxed several other constraints.
The standard deviations of the factors in the first group are fixed at unit length
(i.e., AV are “1.0=") but this restriction allows the other three A® to
be freely estimated and interpreted as proportions of the first group (e.g.,
Factor 1 in Group 2 is .73 smaller in size than Factor | in Group 1). Once
again, each correlation matrix R® is freely estimated. This Metric
Invariance patterning of Model 2 requires 39 parameters, so it has DF=141
and obtains a Likelihood Ratio ¢*=173.

Joreskog (1971) used the fitting of a sequence of hypotheses to determine
the appropriateness of different factor models. Model 1 has an identical
configuration of factors, but these are not restricted to be identical and
proportional over groups. In Model 2 the factors are both invariant and
proportional over groups. These invariance constraints can alter the variable
communalities so, in general, the Confactor model may not fit the data.
However, Model 2 above can be represented as a special subset of Model 1
if the 36 loadings are proportional over groups (i.e.,A_ ® =A_, A®). The
difference between these models yields a difference dx2—14 on dDF= =18,
and we regard this as a trivial difference, so we accept Model 2 as a more
parsiminous model.

Model 2 is the special case of Parallel Proportional Profiles or Confactor
Analysis because this model also include a minimal set of factor loadings.
The structural modeling approach is a clear and flexible way to begin any
Confactor problem. The simple structure hypothesis of Table 1 was
supposedly driven by Meredith’s (1964b) original hypotheses about the three
salient variable indicators for each factor. In this sense the factor pattern is
strongly confirmatory or restrictive, and reflects a “very simple structure”
(see Revelle & Rocklin, 1979) or “cluster solution” (Joreskog, 1971). We
now turn to the modeling of a more complex but invariant factor pattern.
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Reuslt 1b: Reference Variable Rotations

In Table 2 we present the numerical results of a reference variable
patterning used (but not listed) by Joreskog (1971, p.203). This model
requires pairs of zero loadings on three variables (1, 4, and 7). Variable 1
loads only on Factor 1, variable 4 loads only on Factor 2, and variable 7
loads only on Factor 3. The fit of this model to all four groups is indexed by
x*=127 on DF=129. The invariant and very simple structure of Model 2 is
a subset of the parameters of the invariant and complex structure of Model
3. The difference in the goodness-of-fit is dy*=32 on dDF=12, and this may
be important. in this comparison of models, the addition of the 12 complex
loadings seem to improve the goodness-of-fit of the invariant model.

An interpretation of the factors of Model 3 is difficult because some of
the loadings are out of bounds. First, numerical problems for variable 8 (e.g.,
Ay, = -2.21) reflects the collinearity of factors 1 and 3 (p,; > .9 in three
groups). Second, only ten of the variables have small standard errors, and
these are mainly the original marker variables (see Table 1, Model 2). Ifonly
ten parameters are salient our expanded solution should not add much new
information, and it probably should not fit much better. The main problem
comes because this solution is exactly identified and may be rotated in a large
number of ways. This problem can be demonstrated by choosing a different
set of three variables as the reference variables.

In a first series of rotations we used the reference variable approach
outlined earlier (see Solution 1, p. 84). A computer program was written to
estimate all possible reference variable rotations for three factors (i.e., nine
variables taken three at a time yields 84 combinations; see Equation 24). A
monotonic plot of the values/n|A | values showed a nearly linear increase up
to a final plateau with four good solutions. The reference variable set with
the largest In|A | value was found for variables 2, 5 and 8. The structural
equation model was refitted forcing the zero loadings on these three reference
variables, and these results are listed as Model 4 of in Table 2. This model
obtains exactly the same goodness of fit as Model 3, but here all free
parameters are better behaved and the standard errors are uniformly smaller.
These results suggest we might wish to add a few more loadings to our
original simple structure solution — Variables 6, 7, and 9 also seem to load
on factor 1, factor 2 remains the same, and variable 7 has a far smaller loading
on factor 3.

These final reference variable results of Model 4 require only the minimal
zero restrictions on the overall oblique solution and the non-zero parameters
are well-behaved. The specific location of the zeros for these reference
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Table 2
Numeri fREF VAR 1ti I' 1
E ion M Fitted t redith’ r Gr vari Matri
Model 3 Model 4

Initial References Rotated References
[1]: A = Factor Loadings
Variables A'm.l 2'm.2 A'm..'i A'm,l 2'm.2 A'm..'i
1. Visual Perception ar 0= 0= 73" A5 .09
2. Rotating Cubes .68 -14 -.18 47" 0= 0=
3. Paper Form Board .85 -1 -.24 .58° .06 -.01
4. General Information 0= 81° 0= 13 79 -.06
5. Sentence Completion -.38 1.01" 24 0= 90° 0=
6. Word Classification -.09 747 .29 .28° .69° .08
7. Figure Recognition 0= 0= .59° .50 -.03 .28°
8. Object-Number Pairs -2.21° .56 2.36" 0= 0= .85°
9. Number-Figure Pairs -.68 .18 1.08° 300 -.01 .43°
[2]: A® = Factor Standard Deviations
Group 8].1 82.2 82,3 8I,I 82.2 82,3
1. Pasteur/Low 1.0= 10= 10= 10= 1.0= 1.0=
2. Pasteur/High .66" 98" .60° .63° 97 1.10°
3. Grant/Low .81° .90" s5° 74" .89° a4
4. Grant/High .92° .88° .96" .87° 86" 1.04°
[3]: R® = Factor Correlations
Group P> Pis P2 P2 Pis P2y
1. Pasteur/Low .43° 91° .17 11 .07 .08
2. Pasteur/High e 720 34 .38 =32 11
3. Grant/Low a1 .94° .58° .43° 17 .49°
4. Grant/High .59° 91° 37 33° 220 .19°
[4]: Goodness of Fit
Parameters Estimated Npar ... =51 Npar ... =51
Degrees of Freedom ey = 129 df ia = 129
Likelihood Ratio X ez = 127. L modes = 127

Note. All values are Maximum Likelihood Estimates from LISREL-7 (see Appendix).
Models 3 and 4 estimated ¥ = [.45',.54%,.71", .35°, .19, .45°, 50", .31, .68"].
* Free Parameter where MLE > 2SE . Labels “v =" is fixed at value v.
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variables was determined empirically. This is desirable because we did not
know the best location and we defined this position objectively. Strictly
speaking, then, this means the resulting standard errors for these parameters
are underestimated and should not be used to examine further test statistics
(see Archer & Jennrich, 1973; Browne, personal communication, September,
1988; Jennrich, 1974; Lambert, Wildt, & Durand, 1991). These results
demonstrate that the choice of reference variables alters the factor
loadings and covariances but, since this model is exactly identified, this
rotation does not change the common factor space or goodness-of-fit.

Result 2a: Orthogonal Group Rotations

Another way to start this Confactor estimation is by using a model where
we estimate as many free factor loadings as possible. Model 5 of Table 3
shows the relaxation of the previous models to have a fully free (M x K)
pattern A. This full loading pattern model is identified by restricting only
@’ =T and®® =A% The numerical results of this model fit (using LISREL-
7) verify several assertions of the previous section: (a) The goodness-of-fit
of this model is the same as before (with ¥’=127 on DF=129), (b) the
estimates of uniqueness W are identical, and (c) all model parameters have
well defined standard errors. Unfortunately, the empirical standard errors are
relatively large and this overall solution remains slightly unstable. This
model is also exactly-identified and is simply another a rotation of the
previous oblique models of Table 2.

In Model 6 of Table 3 we try another practical variation on this basic
theme. Here we require only the first group to have orthogonal factors with
@) =1 but we allow all other ®® to be freely estimated. To identify this
model we need to place the minimal identification conditions on
loadings A. The standard orthogonality conditions for identification
require a corresponding placement of at least K(K - 1)/2 fixed values
within the loading matrix of Model 5. In Model 6 we fixed zero loadings
for variable | factors 2 and 3 and for variable 4 on factor 3. These results
show this model is exactly-identified, and again the goodness-of-fit is
x*=127 on DF=129. In this case the standard errors are smaller and the
model parameters are more stable.

The two models of Table 3 illustrate an alternative set of choices of
reference groups and reference variables. Of course, slightly different results
will emerge from different choices of the reference loadings and the specific
reference group (where ®® is diagonal or fixed). If these restrictions can be
chosen on some a priori basis, then no further rotation is needed. The identical
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Table 3
N rical Results of ORTH NAL GROUP Multipl t ral
Equation Models Fi to Meredith’s Four Gr: variance Matrices

Model 5 Model 6

Orthogonal 1 & 2

Orthogonal 1 Only

[1]: A = Factor Loadings

Variables A, A, A, A A, A,
1. Visual Perception 67" 377 -2 a7 0= 0=
2. Rotating Cubes 43" .14 -.13 46" -.09 -.06
3. Paper Form Board .52° .23 -17 .58° .05 -.09
4. General Information -.06 .80°  -.10 .35° 730 0=
5. Sentence Completion -.18 88" -.01 .27 .85° .08
6. Word Classification .14 g7 -0l .49* .60° .10
7. Figure Recognition .55° .16° 13 .53 -.14 .20°
8. Object-Number Pairs .26 13 .80° .16 -.06 .83°
9. Number-Figure Pairs 417 .14 .33 377 -0 .38°
[2]: A® = Factor Standard Deviations

Group 8l.l 82.2 82,3 81.1 82,2 82.3
1. Pasteur/Low 1.0= 10= 10= 0= 1.0= 10=
2. Pasteur/High S1e 98 1.14° .66° .89 1.13°
3. Grant/Low .65° .94° .70° .81° ar 73"
4. Grant/High .85° 91" .98’ .92° .80°  1.01°
[3]: R® = Factor Correlations

Group P2 Pis Py Pia Pis P23
1. Pasteur/Low = = = 0= 0= 0=
2. Pasteur/High 0= 0= 0= 510 -.15 .01
3. Grant/Low .30 -.06 27 42° 17 .38
4. Grant/High .25 21 10 .18 .20 -.02
[4]: Goodness of Fit

Parameters Estimated Npar_ .= 51 Npar__ ... =51
Degrees of Freedom af s = 129 df as = 129
Likelihood Ratio X oders = 127 X odats = 127

Note. All values are Maximum Likelihood Estimates from LISREL-7 (see Appendix).
Models 5 and 6 estimated ¥ = [.45", 54", 717, .35%, .19, 45", .50°, .31, .68").
* Free Parameter where MLEp > 2SEp. Labels “v =" is fixed at value v.
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goodness-of-fit is obtained under any choice of such restrictions. However,
since these references variables and reference groups are usually arbitrary,
this results lead to further models with alternative rotations.

Result 2b: External Orthogonal Rotations

As demonstrated, Models 2, 3,4, and 5 all lead to the same goodness-of-
fit and uniquenesses. These different loadings obtained are due to different
rotations of the invariant common factors. As shown earlier, the basic
orthogonal structure of the obtained loading matrices A is not altered
by these choices of rotation, and this led to another set of rotational
possibilities. First we obtained the invariant factor loading matrix from the
results of Model 5. Second, we calculated the left orthonormal vectors U,
fromthe singular value decomposition of this loading matrix (i.e., A=U,S, V",).
Third, this matrix U, was then rotated externally (e.g., using SAS routines)
to maximize the orthogonal normal Varimax criteria (see Browne & DuToit,
1987). Fourth,U, was also rotated externally based on an oblique Procrustes
criterion with a target defined by the very simple structure of Model 2. Other
rotational procedures could be used here as well. The results of Table 4 give
a structural equation extension of these models.

In Model 7 the loadings for three rows (reference variables 2, 5 and 8)
were all fixed to be equal to their corresponding Varimax loadings. The
required K? constraints were all placed in the A only to retain the scaling of
the singular value U,. These fixed K> constraints allow the estimation of
parameters and standard errors for the rest of the invariant factor loadings in
A, the factor deviations A® and correlations R® in all groups. The results
of Model 7 give the maximum likelihood estimates and standard errors for
all other parameters of the multiple group model, and the identical goodness-
of-fit (x*=127 on DF=129) was obtained. These results include both
(a) parallel proportional profiles and (b) a simple structure defined by
Varimax.

In Model 8 these same fixed values were next forced to be equal to the
values obtained from the Oblique Procrustes rotation. The orthonormal
constraints on U, yield a limited form of obliquity, so the results were
virtually the same and the identical goodness-of-fit (y*=127 on DF=129) was
obtained. However, the results of both of these models suggests a remarkably
simple patterning: The very simple structure of Model 2 is appropriate,
except for variable 7 (Figure Recognition) which seems to load on both
factors 1 and 3.
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Table 4
Numerical Results of EXTERNAL ROTATION P R

ral E ion Model Fitt Meredith’s Four Gr varian
Matrices

Model 7 Model 8
Varimax Rotation Procrustes Rotation

[1]: A = Factor Loadings
Variables A'm.l A'ml A'm.3 z'm.l A'm,Z A'm.3
1. Visual Perception .59° .14° .06 .61° .07 .18
2. Rotating Cubes 41 = 02= -02= 42= -02= .06=
3. Paper Form Board .50° .07 -.03 S1° .02 -.06
4. General Information .01 .58 .07 .04 570 -.08
5. Sentence Completion -13= 67= -01= -10= 66= -04=
6. Word Classification 12 .52° .06 15 49° .08
7. Figure Recognition 37 .01 27 37 -.04 34
8. Object-Number Pairs -22= 03= 86= -21= 02= 82=
9. Number-Figure Pairs .15 .02 43" .16 -.01 .46°
[2]: A® = Factor Standard Deviations
Group 8I,l 82,2 82.3 sl,l 82.2 82.3
1. Pasteur/Low 1.40° 1.05* 1.14" 1.11° 1.42°  1.06°
2. Pasteur/High 1.37° 1.05° .68° .78* 1.39° 1.05°
3. Grant/Low 1.29° a7t .82° .83¢ 1.31° .79°
4. Grant/High 1.25° 1.11° .98° .95* 1.27°  1.11°
[3]: R® = Factor Correlations
Group P Pis  Puy Pp Pia  Pa
1. Pasteur/Low A2 21 .36° .29 .20 17
2. Pasteur/High A2 .39 -15 46" -.30 .18
3. Grant/Low .55° A8° 51 .52° 32 .59°
4. Grant/High 27 42° .44° .48 27 31
[4]: Goodness of Fit
Parameters Estimated Nparmde” 51 Npar models =51
Degrees of Freedom dfm s = 129 dfmo sz = 129
Likelihood Ratio X poderr = 1 X ot = 127.

Note. All values are Maximum Likelihood Estimates from LISREL-7 (see Appendix).
Models 7 and 8 estimated ¥ _ =[.45°,.54%, .71°, .35%, .19°, .457, .50, .31, .68°]; Singular
Value Decomposmon of A=U CAA produced Uml =[.38, 19 .27, .43, 45, 47, .24, .17
20, U, ' =[-.31,-.22,-.24, 37 46 .19, -.38,-.39, -.34], U, =[33,.28,.35,-.03,-.18,
-.04, 05 71, 21]

* Free Parameter where MLEp > ZSEP.
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There are several other ways to use the results of these kinds of external
rotations. For example, we could also fit a structural model where, say, the
values of the K - 1 largest negative loadings of each column of the oblique
solution have been forced to be zero. This is another rotation which would
be consistent with our hypothesized pattern, and this model obtains the same
goodness-of-fit and uniquenesses are before. On the other hand, if we are
satisfied with the invariant result we can calculate standard errors directly
from the external rotation using the techniques of Archer and Jennrich
(1973). Finally, if we want to optimize a specific rotational criterion (e.g.,
normal Varimax), we can require this directly from the initial structural
equation estimation and obtain the standard errors directly (as in Browne &
DuToit, 1987).

Result 3a: Adding Latent Path Constraints

The previous discussion suggests several ways to add additional
restrictions on the factor covariances ®% and, correspondingly, require less
restrictions required on the factor loadings A. Following Cattell’s (1966)
suggestions we explore another set of structural model restrictions listed in
Table 5.

In Model 9 of Table 5 we estimate a K = 3 common factor solution as
before but this loading matrix A contains only K zero restrictions (i.e., three
fixed zeros on variables 4 and 8). Within this model we also fit one second
order factor with loadings B and these loadings are required to be invariant
over groups. This model is identified here by: (a) requiring invariance of the
second order loadings over all groups, (b) fixing the scale of the second order
factor at 1 in the first group, (c) fixing the scale of the three second order
unique factors at specific values. These three unique variances of Model 9
were fixed to estimate the A where the first order factors have unit variance
in the first group. (This scaling was accomplished by initially setting these
values at 1, estimating the solution, standardizing the results, and rerunning
the same program with the necessary standardized deviations; i.e., .96=,
.83=, .94=). The second order loadings B = [.29, .55, .34] obtained are
invariant over groups but the second order common and unique variances
change over groups. This model fits these data well with x’=131 with
DF=132, but these new model parameters are relatively unstable.

Model 10 of Table 6 adds a few restrictions to the previous model. In
addition to restrictions (a), (b) and (¢) listed above, we also (d) fix the second
order uniquenesses on this first factor to be zero (rather than .93), (e) restrict
the second order loading on the first factor to be equal to unity, and (f) restrict
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Table 5

Numerical Results of SECOND ORDER PATHS Multiple Group Structural

Egquation Models Fi Meredith’s Four Gro vari rices
Model 9 Model 10

Invariant Loadings Path Restrictions

[1]: A = First Order Factor Loadings

Variables A, A, A, A, A, A,
1. Visual Perception .69° .29 -.06 g .38° -.05
2. Rotating Cubes .48 .09 -.08 44° 15 -.08
3. Paper Form Board .54° 17 -.11 .52° 24 -.08
4. General Information 0= .82° -.14 0= .81° .06
5. Sentence Completion -17 .93° -.06 -.16 .90° .16°
6. Word Classification A5 .76 -.03 .18 AT .11
7. Figure Recognition 510 .06 .19 .53° .14 .19
8. Object-Number Pairs 0= 0= .88° 0= 0= 107
9. Number-Figure Pairs 31° .05 357 .35° 11 .26°
[2]: B = Second Order Path Loadings

Variables BI,I BZ.I BS.I Bl.l BZ.I BJ,I
1. Second Order n 29 .55 34 1.0= .08 33
[3]: W2 = First Order Unique Deviations

Group Vi | £ Vs Vi V2, Vs
1. Pasteur/Low .96 = 83 = 94 = 0= 99= 95=
2. Pasteur/High 47 .84° 1.07° 0= 97" 1.08°
3. Grant/Low .59° .54 .60° 0= .87 .81°
4. Grant/High ar .56 .95° 0= .86° 97
[4]: A®? = Second Order Standard Deviations

Group 8, 8|

1. Pasteur/Low 1.0= 1.0=

2. Pasteur/High .87 520

3. Grant/Low 1.36 67"

4. Grant/High 1.30 .89°

[5]: Goodness of Fit

Parameters Estimated Npar_ ... =54 Npar_ .., = 38
Degrees of Freedom " odern = 132 af a0 = 13
Likelihood Ratio X poders = 132 X oderto = 135

Note. All values are Maximum Likelihood Estimates from LISREL-7 (see Appendix). Models
9 estimated ¥ =[.45",.547,.72°, 36", .18", .45°, .49, .24, .69°], and Models 10 estimated
Y =[45,.55,.73", 36, .18, 45°, .50, -.12, .73")).

* Free Parameter where MLE > 2SE .
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the second order uniquenesses on the first factor to be equal to zero. These
restrictions have the effect of making the factor 1 equivalent to the second
order factor so we can reinterpret the invariant loadings B as invariant
latent regressions from factor 1 to factors 2 and 3. This model requires a
invariant but patterned covariance matrix for each group. The result is a good
fit ofy*=135 on DF=136 with more stable first order loadings, but the second
order coefficients are small and one unstable uniqueness results (i.c.,
Ve, = --12).

There are many over-identified models that may be examined from any
of the previous exactly-identified rotations. One obvious alternative allows
a free but invariant loadings A with all group covariance matrices orthogonal
but proportional across all groups (i.e., ®" =1, @& = A® A® g =2 to G).
The model obtains an x*= 131 on DF = 135 so the difference due to overall
orthogonality is dx’=4 on dDF = 6 and this hypothesis is reasonable.
Another over-identified model which can be fitted is one where factor
loadings and correlations are invariant over groups (i.e.,R®=R; as in oblique
PARAFAC analysis by Harshman & Lundy, 1984). These restrictions
obtained an ¥*=129 on DF=132, but this model proved to be relatively
difficult to estimate with these data although, in theory, this model is over-
identified (see McDonald, 1984).

Result 3b: Adding Latent Means

One clear advantage of the metric invariance model is the further
examination of latent variable means. Table 6 gives results for two final
models which include restrictions on the multiple group latent mean vectors
®® and are fitted to all group covariance matrices and mean vectors
simultaneously (see Appendix 2). Both models are identified here by: (1)
adding the constraint of invariant unique means (or variable interceptsv) in
a new fourth column of A, and (2) forcing the latent mean vector® =0 in
group 1. These constraints are consistent with the way we have rescaled the
mean vectors (means scaled to be zero in group 1; see Appendix 1). The key
difference between Model 11 and Model 12 isin the patterning of the free and
fixed loadings of the invariant A.

In Model 11 of Table 6 we estimate latent variable means using the
reference variable A or Model 4 (in Table 2). This model obtains stable
estimates with the invariant A, and several group differences are seen in the
latent means ®®: There are no mean differences on factor 1, large mean
differences on factor 2, and notable mean differences on factor 3. Again, we
notice one unstable uniqueness (i.e., ¥, , = -.10). The goodness-of-fit of this
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three factor hypothesis for the multiple group covariances and means is
¥2=173 on DF=147. By contrast to the previous covariance Model 4 (y*=127
on DF=129), the loss of fit due to including latent means is dy*=46 on
dDF=18.

In Model 12 of Table 6 we estimate latent variable means ®® using the
very simple structure A of Model 2 (in Table 1). The means vectors of this
model are identified in the same way as the previous Model 11. Once again,
this model obtains stable estimates with the invariant A, and several group
differences are seen in the latent means ®®: There are no mean differences
on factor 1, large mean differences on factor 2, and now no mean differences
on factor 3. The goodness-of-fit of this three factor hypothesis for the
multiple group covariances and means isy*=226 on DF=159. By contrast to
the previous covariance Model 2 (x?=173 on DF=141), the loss of fit due to
including latent means is dy*=53 on dDF=18.

The direct comparison between these final two models can be important
in practice. The differences in overall fit test between Models 11 and 12 are
dy*=53 ondDF=12, and this is an index of the improvement in fit due to the
12 additional loadings of Model 11. The previous covariance-based comparison
of the same loading patterns (i.e., Model 4 versus Model 2) yielded a
difference ofdy?=46 on dDF=12. The additionaldy’=7 indexes the misfit in
the mean differences due to the requirement of the very simple structure A.
Perhaps more important is the fact that under Model 11 assumptions we find
notable mean differences on factor 3 whereas under Model 12 assumptions
we find similar mean differences are not large. Factor 3 is a slightly different
factor in these two models, and this may in practice lead to different
substantive conclusions about group differences.

Discussion
Structural Confactor Solutions

This research has emphasized the use of Cattell’s (1944) rotational
principles in the context of contemporary structural equation modeling. In
accordance with Cattell’s earlier logic, we have shown how invariance
restrictions over groups helps make the factor model unique and estimable.
The surprising result is an entire set of loadings A may be estimated with
restrictive conditions on the covariances®® for only two preselected groups.
These same results also show how additional rotational principles beyond
invariance are needed to make a factor model unique to any arbitrary
selection of groups. Inthis sense, Confactor analysis can be defined as a two-
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Table 6
Numerical Results of LATENT MEANS Multiple Group Structural Equation
Is Fi Meredith’ variance Matri

Model 11 Model 12
Reference & Means Very Simple & Means

[1]: A = Factor Loadings

Variables A'm.l A'm.Z A'm..'l A'm.l A'm.Z z'm,.'§
1. Visual Perception 73° .08 .09 .79 0= 0=
2. Rotating Cubes 46° 0= 0= 417 0= 0=
3. Paper Form Board .56° .04 .04 .59° 0= 0=
4. General Information 0= .84° 0= 0= .83° 0=
5. Sentence Completion -.05 .81° .05 0= 78" 0=
6. Word Classification .18° a7 .08 0= .83° 0=
7. Figure Recognition A49° .03 21° 0= 0= 44°
8. Object-Number Pairs 0= 0= 1.04" 0= 0= .59°
9. Number-Figure Pairs 320 .04 34° 0= 0= 62"
[2]: ®@ = Factor Means

Group 8, 9, 0, 0, 0, 0,
1. Pasteur/Low 0= = = 0= 0= 0=
2. Pasteur/High -.02 38 39 .04 .39° 34
3. Grant/Low 17 .84° -43° .09 83" -.26
4. Grant/High A7 1.12° .03 .07 1.20° 41
[3]: A® = Factor Standard Deviations

Group 8I,l 82,2 82.3 sl.l 82‘2 82.3
1. Pasteur/Low 1.0= 10= 10= 10= 1.0= 10-=
2. Pasteur/High .62° 96" 1.10° 2t 97" .88°
3. Grant/Low 74" .89° .85° .80° 91" .70°
4. Grant/High .88° .89°  1.047 .86° 91" 1.06°
[4]: R® = Factor Correlations

GrOup p|.2 pLJ pZ.J pI,2 pI.3 p2.3
1. Pasteur/Low 22 .07 -.03 .36° AT 22°
2. Pasteur/High 48" -.29 .02 .60° .05 21
3. Grant/Low .54° .05 320 .70 .79° 720
4. Grant/High 427 A2 g1 .56° .86 31
[5]: Goodness of Fit

Parameters Estimated Npar_ ...= 79 Npar_ .. =57
Degrees of Freedom af sy = 147 af sy = 159
Likelihood Ratio X et = X etz =

Note. All values are Maximum Likelihood Estimates from LISREL- 7(see Appendix). Model 11
estimated W =[46",.55",.71", 32", 27", 437, .527,-.10, .74"), and A, ’=[-.06,-.06, -.01, .06,
-09, .07, 13,00, - .02]. Modell2est1mated‘l’ —[43 57,.69°,.32°, 29", 44", 5T, 76", .58,
andA > =01, -.05, .02, .06, -.09, .04, .13, -.07, -.05].

: Free ‘Parameter where MLE > 2SE .
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step criterion: Factor loading invariance is the primary criterion for unique
estimation and a secondary criterion is needed for unique rotation.

These overall results conform with most of the previous research on the
Confactor problem. We have formalized and made explicit the heretofore
implicit constraints of the orthogonal Confactor solution. These results
suggested the number and nature of additional constraints for the partially
oblique case, the freely oblique case, and the higher order invariance model.
These results show that oblique Confactor rotation is not in and of itself
unique, but it is a step in the specific direction, and it can be parsimonious.
The Confactor model is a reduction of the uncertainty of a large infinity of
solutions for many groups to a smaller infinity of solutions for one group.
This reduction in uncertainty increases with an increase in the number of
groups.

We have suggested some practical ways to implement a fully oblique
Confactor solution using the widely available structural equation programs,
such as LISREL. One approach starts with an exactly-identified multiple
group solution, calculates all possible reference variable solutions, and refits
the model using empirically selected reference variables. A second approach
starts with a multiple group exactly-identified solution, uses external rotation
criteria to determine a minimal hyperplane, and refits the model using
empirically selected reference variables. In a third approach we have used
higher-order or latent path invariance restrictions and a minimal factor
patterning, and we have examined the possibility of using latent factor means
as well. All of these oblique Confactor solutions can be estimated within
available structural programs and all can be tested against alternative simple
structure alternatives.

Future solutions can count on the use of advances in structural equation
algorithms. For example, the simultaneous approach described earlier is
technically superior to the two-stage approach but it now requires special
programming which is tedious at best. McDonald (1980) discussed the use
of additional model constraints as “non-standard” or “scalar” constraints.
McDonald also detailed the basic features of numerical programming required
for their addition and the COSAN program (Fraser & McDonald, 1988)
allows for the inclusion of extra constraints on a factor pattern. These main
problem is these constraints require the calculation of the first order partial
derivatives of the parameters with respect to the fitting function. Browne and
du Toit (1987) have recently described a new programming approach
(AUFIT) which allows these numerical options to be more easily accessible.
Other possibilities include using EM-Based algorithms (see Tisak & Meredith,
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1989), relaxed identification algorithms (Shapiro, 1986), and Bootstrap
techniques (e.g., Lambert et al, 1991).

Substantive Issues

We have also pointed out how substantive issues may dictate a specific
solution. For example, within these data the simple structure analysis (of
Table 1; Joreskog, 1971) has been widely accepted. In the simple structure
context these factors have been labelled Spatial, Verbal, and Memory, and
widely used. Joreskog (1971) concluded:

Altogether these results suggest two alternative descriptions of the
data. One is that the whole factor structure is invariant over populations
with a three-factor solution of a fairly complex form. The other is to
represent the tests in each population by three factors of a particularly
simple form, but these factors have different variance-covariance
matrices in different populations. Additional studies with larger
sample sizes are needed to discriminate statistically between the two
models. Perhaps the second alternative has the most intuitive appeal...
(Joreskog, 1971, p.205).

Our reanalyses here suggests this very simple structure solution is not
necessarily indicated by either these parameter estimates, this goodness-of-
fit, or the original theory. At very least one complex variable (e.g., Figure
Recognition) is apparent in these data, and perhaps other variables are
complex as well (e.g., 6 and 9). This lack of simple structure makes it more
difficultto label the factors but this problem is compensated by the invariance
of the factor pattern over groups. These kinds of alternatives to simple
structure were recognized by both Meredith (1964b) and Joreskog (1971),
and many others (e.g., Butler, 1969; Nesselroade, 1983; Overall, 1964).

We still allow for a sequential determination of the invariant factor
pattern using statistical bases. Other models can be fitted and compared by
astrict adherence to the likelihood ratio statistics. On the other hand, factor
invariance and Confactor resolution is an empirical property of data and, as
such, it is not a necessary result. We always need to ask “how many factors
do we need if we want an invariant model” versus “how many parameters do
we need to define a non-invariant model” (see Horn et al, 1983; Hom &
McArdle, 1992). At some point statistical comparisons will become moot and
we will be forced to choose between models on other grounds. As we have
demonstrated here, two models can fit the same data equally well, and be
indistinguishable in terms of the data, but the parameters of one model may
be more interpretable than another. This brings us back to the traditional
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problems of choosing rotations in exploratory factor analysis. Here, as
always, a good selection of K very simple structure variables are needed to
serve as reference variables in any solution.

Our use of higher order or latent path models are probably not indicated
with these data, but these models illustrate several reasonable structural
possibilities. First, an oblique model was estimated with the minimum
restrictions on A usually required for the orthogonal model. This is one
illustration of a tradeoff between restrictions on A and on ®. These partial
invariance restrictions on ®® are not enough to ensure identification (i.e.,
the K restrictions on A are still required for factor separation).
Nevertheless, both latent path models (9 and 10) do (a) require an invariant
first order factor pattern A, and (b) permit a completely different set of
correlations R® among the first order factors. Second, these expressions of
model constraints follow a reasonable generalization of the selection
theorems of Meredith (1964a). That is, these constraints can be seen to
follow Meredith’s selection model reapplied at the second order or latent path
level. These models allow a variety of useful ways to estimate an invariant
factor pattern with minimal simple structure constraints.

One caution that needs to be expressed is the avoidance of hypotheses
without the needed substantive basis. The PARAFAC model fixes the
rotation of A by making several overidentifying restrictions on the covariances
but this creates two concerns. First, the equality restrictions on all the
correlation matrices (R) quickly lead to an over-identified restrictions in
many groups. Unlike the oblique Confactor model, the number of restrictions
required in this model increases with the number of groups used. Second, the
original basis of Cattell’s (1944; Cattell & Cattell, 1955) models as well as
the selection theory used by Meredith (1964a) argue directly against the use
of equal correlations among factors. That is, unless the groups are random
samples from the same population, there is little statistical basis for the equal
correlation hypothesis. McDonald (1984) has examined the identification
status of this oblique form of the PARAFAC model and he criticized its usage
on similar counts. Models with restrictions on the higher order factors, on the
latent paths, on the latent variances, or on the latent means, can be used to
identify the factor loadings A, but these restrictions will be of most benefit
if they have substantive relevance.

Cattell (1966, 1972) suggested the use of constraints on both means and
covariances, and Meredith (1990) recently demonstrated the need for using
cross-products. (Model 11 isan example of this approach). Another appealing
situation where these cross-product models can be useful comes in the
analysis of repeated measures problems (see McArdle, 1984b, 1988;
McDonald, 1985; Nesselroade, 1983; Rozeboom, 1977). In fully designed
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multivariate experiments we may be able to introduce the necessary
mathematical restrictions required for an unambiguous oblique Confactor
rotation. In the examples presented here we could have placed more restrictions
on the models to represent hypotheses about the two schools and the selection
mechanism used by Meredith (1964b). At very least, we can examine these
kinds of covariance and mean changes from an experimental point of view.

Factorial Invariance and Structural Modeling

Many contemporary structural equation models end up with a very
simple structure pattern because no alternatives are used. What needs to be
recognized is invariance of the factor pattern is often more critical than
complexity of the factor scores. Often these differences cannot be understood
by differences in goodness-of-fit and other comparisons need to be made. At
another level our higher order models lead to a variety of other options which
cannow be examined. These invariance principles are even more useful with
more groups, more measures, more strata, and more experimental design
features. These Confactor principles also generalize to all forms of structural
equation models, including latent path and analysis of covariance structures.
Parsimony in terms of the total number of parameters required is a key to
effective structural equation modeling, and invariance over groups is one of
the most powerful structural modeling devices.

Tobe sure, structural Confactor analysis does not guarantee the resolution
of an invariant factor model; The invariant but otherwise unrestricted K-
factor model might not fit the multiple group observations. Instead, the key
benefit of the Confactor model is the possibility of directing research towards
finding invariant parameters within a structural system. This is not a new
goal for structural modeling:

The identification of relationships that remain invariant among variables
under different conditions and transformations is a major goal of
empirical research ... Demonstration of factor invariance is one
particular realization of a major goal of science — namely the
identification of invariant relationships. The invariant relationships
involved are those between factors (unobserved or latent variables) and
observed variables or, in higher order analyses, other factors. At the
first order of analysis for example, factor invariance signals a kind of
constancy of a measurement system and thus the reasonableness of
comparing phenomena in quantitative rather than in qualitative terms
... (from J.R. Nesselroade, 1983, pp. 59, 62-63).

In summary, we have shown how the old principles of Confactor can be
successfully applied using the new structural equation techniques like
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LISREL. Not all datasets, even those carefully selected, should be thought
to have a very simple structure basis. In structural Confactor analysis we
search for an invariant factor pattern and we use the new algorithms to
accomplish this goal. The Confactor model allows simple structure to
emerge, but it does not demand it. The original ideas of Cattell (1944) and
Meredith (1964a) are now practically useful devices for functionally useful
structural equation models.
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Appendix 1
MEREDITH.MOM: Multiple Group Labels, Correlations Rescaled
Deviations, and Rescaled Means (Meredith, 1964b)

Group 1: N = 77 Pasteur School with Low Addition Scores
‘pl-vis’,’'pl-cub’,’'pl-pap’,’'pl-inf’,'pl-sen’,’'pl-wor’,’'pl-£fig’, 'pl-
obj’, 'pl-num’

1.00

.32 1.00

.48 .33 1.00

.28 .01 .06 1.00

.26 .01 .01 .75 1.00

.40 .26 .10 .60 .63 1.00

.42 .32 .22 .15 .07 .36 1.00

.12 .05 .03 -.08 .06 .19 .29 1.00

.23 -.04 .01 -.05 .10 .24 .18 .38 1.00
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0 0 0 0 0 0 0 0 0

Group 2: N = 79 Pasteur School with High Addition Scores
‘ph-vis’, 'ph-cub’, 'ph-pap’,'ph-inf’, ‘ph-sen’, 'ph-wor’, 'ph-fig’, 'ph-
obj’, 'ph-num’

1.00
.24 1.00
.23 .22 1.00
.32 .05 .23 1.00
.35 .23 .18 .68 1.00
.36 .10 .11 .59 .66 1.00
.22 .01 -.07 .09 .11 .12 1.00
-.02 -.01 -.13 .05 .08 .03 .19 1.00
.09 -.14 -.06 .16 .02 .12 .15 .29 1.00

0.9054 0.7143 0.9655 0.9322 1.0000 1.0192 0.8636 1.1064 0.9565
0.0946 -0.1964 0.0690 0.4237 0.2308 0.3077 0.1818 0.4043 0.0435

Group 3: N = 74 Grant-White School with Low Addition Scores
‘gl-vis’,’gl-cub‘,‘gl-pap’,‘gl-inf’,’gl-sen’,’gl-wor’,'gl-fig’, 'gl-
obi’, ‘gl-num’

1.00
.34 1.00
.41 .21 1.00
.38 .32 .31 1.00
.40 .16 .24 .69 1.00
.42 .13 .35 .55 .65 1.00
.35 .27 .30 .17 .20 .31 1.00
.16 .01 .09 .31 .30 .34 .31 1.00
.35 .27 .09 .34 .27 .27 .38 .38 1.00

0.8919 0.8571 0.8966 0.9576 0.9038 0.9615 0.6932 0.8298 0.8478
0.0676 0.0536 0.0345 0.7119 0.5962 0.7308 0.2614 -0.4468-0.2174
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Group 4: N = 71 Grant-White School with High Addition Scores
‘gh-vis’,'gh-cub’, ‘gh-pap’,‘gh-inf’,‘gh-sen’, 'gh-wor’,'gh-fig’, 'gh-
obj’, gh-num’

1.00
.32 1.00
.34 .18 1.00
.31 .24 .31 1.00
.22 .16 .29 .62 1.00
.27 .20 .32 .57 .61 1.00
.48 .31 .32 .18 .20 .29 1.00
.20 .01 .15 .06 .19 .15 .36 1.00
.42 28 .40 .11 .07 .18 .35 .44 1.00

0.9730 0.7143 1.0345 0.9746 0.8654 1.0577 0.8409 1.0426 1.0217
0.0135 0.0536 0.1034 1.1186 0.7308 1.1346 0.3068 0.0426 0.3043

Appendix 2
Prototype LISREL-7 Program for Initial Confactor Estimation

Reference Group Solution: Group 1: N = 77 Pasteur School with Low
Addition

da ng=4 ni=9% no=77 ma=cm

la file=meredith.mom

km sy file=meredith.mom

sd file=meredith.mom

me file=meredith.mom

mo ny=9 ne=8 be=fi,fu ps=fi,sy ly=fi,fu te=fi,di

le
'factorl’,’'factor2',’factor3', 'higher’, 'd-facl',’d-fac2','d-fac3','d-high’

pa ly

11100000
11100000
11100000
11100000
11100000
11100000
11100000
11100000
11100000
pa be

00001000
00000100
0O00D00DO0010
00000O0O0CO
0000O0O0O0O
000000CO00O
00000000
00000000

el
@
el
7]
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OO0 OO0 00
OO 00 OC oo
OO OO0 OO0
OO OO0

oORr PO

(=3 -]

0
00
pa te

111111111
st .5 all
fix be 1 5 be 2 6 be 3 7
st 1 be 15 be 26 be 37
st 1 ps 5 5 ps 6 6 ps 77
st 0O ps 5 6 ps 5 7 ps 6 7
fix ps 5 6 ps 5 7 ps 6 7
ou ns se tv pt pc fd mi

Group 2: N = 79 Pasteur School with High Addition Scores

da no=79

la file=meredith.mom

km sy file=meredith.mom

sd file=meredith.mom

me file=meredith.mom

mo be=ps ps=ps ly=in te=in
fi be 1 5 be 2 6 be 3 7

fr ps 5 6 ps 5 7 ps 6 7

ou

Group 3: = 74 Grant-White School with Low Addition Scores

da no=74

la file=meredith.mom

km sy file=meredith.mom

sd file=meredith.mom

me file=meredith.mom

mo be=ps ps=ps ly=in te=in
fr be 1 5 be 2 6 be 3 7

fr ps 5 6 ps 5 7 ps 6 7

ou

Group 4: N = 71 Grant-White School with High Addition Scores

da no=71

la file=meredith.mom

km sy file=meredith.mom

sd file=meredith.mom

me file=meredith.mom

mo be=ps ps=ps ly=in te=in
fr be 1 5 be 2 6 be 3 7

fr ps 5 6 ps 5§ 7 ps 6 7

ou
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