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ABSTRACT Different multivariate data analysis techniques based on factor analysis and multivariate curve resolution are
shown for the study of biochemical evolutionary processes like conformational changes and protein folding. Several
simulated CD spectral data sets describing different hypothetical protein folding pathways are analyzed and discussed in
relation to the feasibility of factor analysis techniques to detect and resolve the number of components needed to explain the
evolution of the CD spectra corresponding to the process (i.e., to detect the presence of intermediate forms). When more than
two components (the native and unordered forms) are needed to explain the evolution of the spectra, an iterative multivariate
curve resolution procedure based on an alternating least squares algorithm is proposed to estimate the CD spectrum
corresponding to the intermediate form.

INTRODUCTION

The folding of a polypeptide chain in vitro into a native,
biologically active conformation is apparently a self-assem-
bly process (Anfinsen, 1973). Frequently, the folding occurs
in a short period of time, which implies that this process is
not a random search of all possible conformations but
occurs along a defined pathway with structured intermedi-
ates (Creighton, 1985). The characterization of the folding
intermediates is of fundamental importance to understand
the mechanism of protein folding. However, the detection
and characterization of these intermediate structures is not
easy due to the highly cooperative process of protein fold-
ing, which makes the lifetime of these transient intermedi-
ates too short to be detected by the more commonly used
experimental techniques. In some cases, transient structures
(molten globule states) can be stabilized in solution using
partially denaturing conditions (Ohgushi and Wada, 1983).
These molten globule states keep the greater part of the
secondary structure, but the ordered tertiary interactions are
not present (Dolgikh et al., 1981). Unfolding of the molten
globule state presents low cooperativity (Pfeil et al., 1986),
which suggests that it can be smoothly transformed into the
unfolded form by a gradual destruction of its secondary
structure (Ptitsyn, 1987). Spectroscopic methods like CD
and NMR are normally used to study protein refolding. The
spectra obtained under partially denaturing conditions cor-
respond normally to a mixture of the denatured polypeptide,
the intermediate structures, and the native form, which
makes the resolution and characterization of folding inter-
mediates difficult.

With the explosive growth of chemometrics in recent
years (Sharaf et al., 1986; Massart et al., 1988), a new
general approach involving the identification of a model
from numerical and statistical analysis of the data, without
any a priori assumption about the nature or composition of
the system under investigation, has been proposed to solve
the mixture analysis problem(Liang et al., 1993; Brown and
Bear, 1993). Mixture analysis implies the estimation of the
number of chemical species simultaneously present in the
mixture, the identification of these species, and the deter-
mination of their concentration. Among the computational
and statistical methods used to solve mixture analysis prob-
lems, factor analysis (FA) (Malinowski, 1991), principal
component analysis (PCA) (Wold et al., 1987a), and singu-
lar value decomposition (SVD) (Golub and Van Loan,
1989) techniques play a key role, especially in the estima-
tion of the number of species contributing significantly to
the experimental data variance. In chemistry, FA, PCA, and
SVD are very similar techniques with slightly different
formalisms for selection of dimensions and for changes of
coordinate axes (rotations). Derived from factor analysis,
evolving factor analysis (EFA) (Gampp et al., 1986;
Maeder, 1987) and fixed-size moving window evolving
factor analysis (FSMWEFA) (Keller and Massart, 1991) are
two techniques that have been shown to be especially suit-
able for the study of evolutionary processes like those
present in chromatography and in chemical reaction pro-
cesses. By using EFA and/or FSMWEFA techniques, the
evolution of the chemical contributions along a particular
experiment can be mathematically estimated without any
prior assumption about the nature of these contributions or
any assumption about a chemical model. These pure math-
ematical solutions obtained by means of FA-derived meth-
ods can be transformed to physically meaningful solutions
by means of multivariate curve resolution (MCR) methods
(Tauler et al., 1995; Tauler, 1995). MCR has been already
shown to be a powerful method for the study of the con-
formational changes in synthetic polynucleotides induced
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by the pH and/or ion complexation using spectrophotomet-
ric techniques (Casassas et al., 1994, 1995). The MCR
method has been also used in the study of metal-binding
properties of peptides (Mendieta et al., 1996) and to solve
mixture analysis problems in analytical chemistry (Tauler et
al., 1993, 1994, 1996).

In the present work, several chemometric techniques suc-
cessfully applied to the study of evolutionary processes in
mixture analysis problems are extended to the study of
protein folding and conformational protein changes in bio-
chemical problems. First, the possibilities of PCA in the
determination of the number of components are shown.
Second, EFA and FSMWEFA methods are used to monitor
the evolution of biochemical processes like protein folding.
Third, MCR is used for the detection, identification, and
quantitation of folding intermediates in a simulated data set
representing a hypothetical folding pathway for polypep-
tides. Finally, the deconvolution of the pure secondary
structure contributions from the CD-detected species spec-
tra is shown by means of a least-squares data-fitting proce-
dure. The folding pathways simulated in this work are
deliberately simplified to facilitate the comprehension of the
proposed approach and to validate the results obtained by
using it. Real situations similar to those described here have
been proposed in the gradual disorganization of the second-
ary structure from the molten globule state to the unordered
form (Ptitsyn, 1987).

DATA MODEL

CD spectra corresponding to three different temperature-
dependent folding pathways have been simulated using the
reference spectra fora-helix, b-form, b-turn, and random-
coil described by Chang et al. (1978). In all these cases the
native form contains 40%a-helix, 40% b-form, 18%
b-turn, and 2% random-coil (species spectrum 1). The un-
ordered form contains 85% random-coil, but an important
amount (15%)b-turn are preserved (species spectrum 2). In
a first data set A, a transient structure containing 35%
a-helix, 5%b-form, 16%b-turn, and 44% random-coil has
been considered in the folding pathway (species spectrum
3). In a second data set B a intermediate structure containing
5% a-helix, 35% b-form, 16% b-turn, and 44% random-
coil has been considered in the folding pathway (species
spectrum 4). In data sets A and B the native form is
generated from the previously formed transient. In the case
of data set C, no transient form is involved in the folding
pathway. Fig. 1 shows the relative proportion of the three
forms present in the solution at different temperatures (these
contributions will also be called concentration profiles of
species 1, 2 and 3, or 4). Spectra corresponding to different
temperatures were obtained by linear combination of the
species spectra 1, 2, and 3 (Fig. 1), corresponding to each
form with coefficients equal to their relative proportion at
each temperature. A small random noise with a zero mean
and a standard deviation equal to 0.005 signal units was

added to the exact numerical values. Spectra for the three
folding pathways, data sets A, B, and C, were ordered in
three two-way data matrices,DA, DB, andDC. These ma-
trices havenR rows, i.e.,nR spectra at the different inves-
tigated chemical conditions (i.e., different temperatures, pH
values, etc.) andnC columns, i.e.,nC wavelengths,l,
measured spectrophotometrically, circular dichroism spec-
trometry, CD, in this case. Fig. 2 shows the plots corre-
sponding to these three simulated data matrices obtained for
the three different folding pathways. No significant differ-
ences can be observed by visual inspection of the data.

The three data matricesDA, DB, andDC can be analyzed
individually, one by one, or simultaneously, two by two,DA

together withDC andDB together withDc (Fig. 3). Simul-
taneous analysis of two or more correlated data matrices
(multiway data analysis, Wold et al., 1987b; Smilde and
Doornbos, 1991) is a very powerful approach to increase
resolution of complex data systems. In this work, the simul-
taneous analysis of several data matrices is illustrated with
the simultaneous study of a protein folding data matrix
containing a transient structure (data sets A and B) together
with a protein folding data matrix where the intermediate is
absent (data set C). As previously described, in any of the
two data sets, A and C or B and C, the native (species
spectra 1) and unordered forms (species spectra 2) are
common in the two matrices studied simultaneously,
whereas the intermediate forms are not present in matrix C
and they are different in both matrices A and B (species 3 in
data set A and species 4 in data matrix B). For the simul-
taneous analysis of data matricesDA and DC and DB and
DC, two augmented columnwise matrices [DA, DC] and [DB,
DC] are built (see Fig. 3). A more detailed description of the
different possible data arrangements for simultaneous anal-
ysis of several correlated data matrices in the context of
multivariate curve resolution has been given elsewhere
(Tauler, 1995; Tauler et al., 1995).

FACTOR ANALYSIS AND PRINCIPAL
COMPONENT ANALYSIS

Application of FA assumes that the experimental data are
bilinear, i.e., that experimental data follow a linear additive
model like that proposed by Beer’s law for absorption

FIGURE 1 Relative proportions of the native (F), intermediate (M), and
unordered (Œ) forms at different temperatures used in the simulation of the
data sets A and B.
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spectroscopy. These conditions are usually satisfied for
most of the spectrophotometric techniques normally used in
the study of protein folding and conformational protein
changes. A first basic goal of FA methods (Malinowski,
1991) is to mathematically decompose each experimental
data matrixD (DA, DB, or DC) into a product of two abstract
matrices, denoted as the scores matrixQ(nR, nS) and the
loadings matrixPT(nS, nC), for a preselected number of
componentsnS, contributing to the measured data. This can
be expressed as

D 5 QPT 1 E (1)

where E is a residual matrix containing the variance not
explained byQ andPT.

Detection of the number of components by PCA

The number of chemical contributions, or pseudorank
(mathematical rank in absence of noise), of the matrixD,

nS, is chosen to minimize the residual data variance inE,
leaving in it, if possible, only the experimental error or noise
(Malinowski, 1991). There are many methods proposed for
the selection of the number of components; most of them
work well for uniformly distributed homocedastic noise in
matrix E. However, when the noise is not uniformly dis-
tributed, most of the proposed approaches fail. Moreover,
when instrumental and baseline contributions are present,
the number of estimated componentsnS is higher than the
number of real chemical contributions. On the contrary, in
reaction-based systems, the opposite effect can be also
observed, and the estimated pseudorank is lower than the
real number of chemical contributions present in the system.
This phenomenon has been calledrank deficiency(Amrhein
et al., 1996) and it is related to the fact that in reaction-based
systems the pseudorank depends on the number of indepen-
dent reactions present in the system. Resolution of rank-
deficient systems is a matter of special interest at present
(Amrhein et al., 1996; Izquierdo-Ridorsa et al., 1997).

FIGURE 2 Evolution of the spectra corresponding to the three different simulated folding pathways versus the temperature.
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In this work the number of components is initially inves-
tigated by visual inspection of the magnitude of the singular
values of matrixD (Golub and Van Loan, 1989) and also
from the magnitude of residuals as a percentage of lack-of-
fit or unexplained data variance inE, after a particular
number of principal components has been extracted (Mali-
nowski, 1991). Obviously the two approaches are closely
correlated, presenting the same information in a different
way. The basic assumption used by the two approaches is
that the major components (major singular values) are as-
sociated with the chemical sources of data variation, which
in the context of protein folding studied are interpreted as
the different forms adopted by the polypeptidic chain (with
different proportions of secondary structure) during the
experiment.

Fig. 4 shows the normalized (divided by the largest one)
singular values versus the number of considered compo-
nents for the data sets previously described. In data sets A
and B, three major components are clearly detected from
these plots, since three singular values are much larger than
the rest, which remain at the bottom of the plots at the noise
level. On the contrary, in data set C, only two major com-
ponents are clearly distinguished from the noise level.

These conclusions are also apparent from the results
obtained in the PCA decomposition when different numbers
of components are considered (Table 1). For data matrices
DA andDB, three components should be considered to leave
the unexplained variance below 1%, whereas for data matrix
DC this is already achieved when only two components are
considered. When more components are added, the unex-

plained data variance (lack-of-fit) decreases very slowly,
since these additional components describe only the noise
contribution. Thus, from a purely mathematical analysis of
data, it is possible to estimate the number of components
contributing to the data variance.

FIGURE 3 Data arrangement in single ma-
trices DA, DB, and DC (a) and augmented
columnwise matrices [DA, DC] and [DB, DC]
(b).

FIGURE 4 Normalized singular values corresponding to the data sets A,
B, and C versus the number of considered components.

Mendieta et al. Multivariate Curve Resolution in Protein Folding 2879



From these results, and in agreement with the proposed
model, it is rightly concluded that all the spectra corre-
sponding to the data set C are explained by a linear com-
bination of two spectra, the one corresponding to the native
form and the one corresponding to the unordered form.
Instead, in the case of the data sets A and B, a third
component is needed to explain the evolution of the spectra.
From the only visual inspection of the data or from the
single wavelength analysis of data sets A, B, and C, no
significant differences could be detected between them (see
Fig. 2), and therefore the presence of intermediates could
not be detected.

In Table 1, also, the values of the percentage of lack-of-fit
for the augmented columnwise data matrices, [DA, DC] and
[DB, DC], are given. As it was mentioned in the previous
section (Data model), the analysis of these augmented ma-
trices implies the simultaneous analysis of two experiments.
For columnwise augmented data matrices, [DA, DC] and
[DB, DC], the total number of components needed to de-
scribe the data at the noise level is three, which is the same
as the number of components needed to satisfactorily ex-
plain the individual data matricesDA andDB. This means
that columnwise matrix augmentation does not increase the
rank, and therefore that the species in matrixDC should
have the same spectra as the corresponding species in ma-
trices DA and DB, which in this case is known to be true
from the data simulation. For unknown systems, this study
of the rank of augmented matrices is extremely helpful
to check correspondence between species in different
experiments.

Evolving factor analysis

Once the number of components is initially estimated by
PCA or SVD, the changes and structure of the experimental
data matrix can be analyzed by using EFA (Gampp et al.,
1986; Maeder, 1987; Keller and Massart, 1991). This ap-
proach provides an estimation of the regions or windows
where the concentration of the different components is
changing or evolving and it also provides an initial estima-

tion of how these concentration profiles change along the
experiment. The EFA method is based on the evaluation of
the magnitude of the singular values (or of the eigenvalues)
associated with all the submatrices of a matrixD built up by
adding successively one by one all the rows of the original
data matrix. The calculations are performed in two direc-
tions: forward (in the same direction of the experiment),
starting with the two first spectra, and backward (in the
opposite direction of the experiment), starting with the last
two spectra. In the forward direction, the detection of a new
component is detected by the upsurging of a new singular
value; in the backward direction, the disappearance of a
component is detected by the upsurging of a new singular
value. Singular values related with significant components
become larger and clearly distinguished from the singular
values associated with noise, in their graphical representa-
tion (EFA plots, Fig. 5). Singular values related with the
noise are smaller and they are at the bottom of the EFA
plots. Interpreting the EFA plots and appropriately joining
the lines corresponding to forward and backward singular
values (Gampp et al., 1986; Maeder, 1987) allow the esti-
mation of the regions or windows of existence of each
component and provide a first estimation of the abstract
concentration profiles of the detected components. A more
detailed description of the EFA plots can be found in
previous works (Gampp et al., 1986; Maeder, 1987; Tauler
and Casassas, 1988).

In Fig. 5 the EFA plots obtained in the analysis of
matrices A–C are given. Two regions are clearly apparent in
the three plots. One region at the bottom of these plots
shows the evolution of lines describing the components
related to the experimental noise. These lines do not super-
sede the limit of the noise level, approximately at log(0.005)5
22.3, where 0.005 is the standard deviation of the noise.
The second region shows the evolution of the lines describ-
ing the changes related in this case with the protein folding
processes. When the analysis is performed in the forward
direction (from lower to higher temperatures), three lines
emerge for data sets A and B (1, 2, and 3), and two lines for
data set C (1 and 2). In the three data sets, the first line (first
singular value) is in the upper part of the plot (log SV.2)
from the beginning of the process, increases a little more,
and then it keeps constant. This line is showing the average
absorption of the system when EFA is performed in the
forward direction. Line 2 upsurges from the noise level
when more spectra are included in the analysis, showing
that at the corresponding temperatures, a new contribution
not explained by the average absorption (line 1) becomes
important and continues increasing steadily in the three data
systems. For data sets A and B, a third line upsurges (line 3)
from the noise level in the middle of the plot showing the
evolution of a new contribution. This contribution does not
appear in the analysis of data set C, in agreement with the
fact that in this case no third species is present. As stated
before, the analysis is also performed backward, giving
lines 19, 29, and 39, with identical meaning to before, but
now looking at the experiment from higher to lower tem-

TABLE 1 Principal component analysis: percentage of lack
of fit

n#

Data set*

A B C [A, C] [B, C]

1 61.7 55.1 58.5 60.1 56.9
2 2.02 2.21 0.53 1.89 1.89
3 0.53 0.55 0.51 0.54 0.55
4 0.49 0.50 0.47 0.52 0.53
5 0.46 0.47 0.47 0.50 0.51

Lack of fit 5 100 z =[((dij 2 d*ij )
2]/(d2

ij wheredij are the CD data at
temperaturei and wavelengthj, andd*ij are the PCA recalculated data using
the specified number of components.
*Data sets under study (see Data model section).
#Number of components considered in the PCA of the different data sets
under study.
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peratures, i.e., increasing lines 19, 29, 39 will be interpreted
now as the disappearances of contributions. Now these two
sets of lines can be interpreted simultaneously, and as pro-
posed by Gampp et al. (1986), an initial estimation of the
regions of existence of each species and also an initial
estimation of the evolution of the concentration profiles of
the species involved in the process can be derived. This
interpretation will provide a firstabstractplot of the evo-
lution of the system when temperature is changed. This
means that from a pure mathematical analysis of the data,
not only the number of contributions can be deduced, but
also, and even more importantly, how these contributions
change along the experiment. The windows of existence of
each species predicted by EFA for each experiment (Fig. 5)
are coincident with those proposed in the simulation (Fig.
1). For real data with nonrandom noise contributions (like
spectral baselines) the things become more complicated
because these contributions can also appear as upsurging
lines in the EFA plots (Tauler and Casassas, 1988). How-
ever, many times these lines stay at an intermediate region,
between noise and chemical contributions, and can be safely
distinguished. Nonlinear detector responses produce the ap-

pearance of extra lines not related to real chemical contri-
butions. Additionally, weak chemical contributions and
strongly correlated contributions are sometimes difficult to
distinguish as new lines in the EFA plots. All this means
that some practice and expertise is needed to extract defin-
itive conclusions from the interpretation of EFA plots in the
analysis of complex real systems with a large number of
species. These problems, however, do not decrease the
utility of EFA as an exploratory tool of those systems and
also as a mathematical tool to provide an initial estimation
of the evolution of the main chemical contributions.

Evolving factor analysis with a fixed-size
moving window

A closely related and complementary method to EFA is the
FSMWEFA method (Keller and Massart, 1991). In this
case, the singular values are calculated for submatrices of
equal size moving in the same direction as the experiment is
performed. The size of the matrix is chosen to be slightly
higher than the suspected number of components simulta-
neously present (overlapping) along the experiment and

FIGURE 5 Evolving factor analysis
plot corresponding to the simulated data
sets A, B, and C.
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kept constant. If this number is unknown, several sizes are
attempted. The lower the size of the moving window, the
better the local rank detection power; the larger the size of
the window, the better resolution power between similar
components. As with EFA, the appearance of a new com-
ponent is distinguished with the upsurging of a new singular
value. The interpretation of the FSMWEFA plots (Keller
and Massart, 1991) allows the estimation of how many
species coexist at the different stages of the experiment.

In Fig. 6 the FSWEFA plot obtained in the analysis of
three data sets A, B, and C is given. The window size is five,
i.e., five singular values are calculated from the submatrix
corresponding to each fixed size moving window. In data
set A, at the beginning, three of the five lines are at the
bottom of the plot, at the noise level; the fourth line is
increasing and the fifth line is at the top of the picture. This
is interpreted as if two contributions are present at the
beginning of the experiment (first five spectra), with the
second one increasing in importance. Between the sixth and
16th window (see Fig. 6), a third singular value emerges
two times from the noise level, showing the appearance and
disappearance of a third contribution related to the interme-
diate form. Between these two peaks, the third singular

value remains again at the noise level, showing a region
were only two chemical species are changing their contri-
bution in agreement with the constant concentration region
of the intermediate form. Both EFA and WSFWEFA plots
are only sensitive to changes and they are not sensitive to
constant contributions. At the end of the experiment, again
only two contributions are present. Similar patterns are
present in the FSMWEFA plot of data set B with a more
selective region at the beginning of the experiment where
only one of the three contributions is clearly present for the
window of the first five spectra. Finally, in the case of data
set C (Fig. 6), only two contributions are present along the
whole experiment, with selectivity (only one contribution)
at the beginning and the end of the experiment.

The study of the mathematical structure of the data matrix
by the two evolving factor analysis-related techniques (EFA
and FSMWEFA) yielded a dynamic picture of the chemical
process. The possibility to obtain this information from pure
mathematical means can be important not only to under-
stand the dynamic nature of the protein folding process, but
also to outline the chemical and mathematical constraints to
be applied in the resolution of the system by MCR (see next
section).

FIGURE 6 Fixed-size moving window
evolving factor analysis plot with a window
size of 5 corresponding to the simulated data
sets A, B, and C.
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MULTIVARIATE CURVE RESOLUTION

Multivariate curve resolution of a single
data matrix

MCR (Lawton and Sylvestre, 1971; Martens, 1979) is a
chemometric method included in the FA family of tech-
niques (Malinowski, 1991). Its principal goals are the iso-
lation, resolution, and quantitation of the sources of varia-
tion in a particular data set. The outstanding feature of this
technique is that no a priori assumption about the contribu-
tion of the different factors in the global response are
necessary. This feature can be of great importance in the
study of complex problems such as protein folding. In
previous works (Tauler et al., 1993–1996; Tauler and
Casassas, 1992), MCR has been successfully applied to the
study of other types of evolutionary chemical and analytical
processes.

From the local rank analysis and initial estimations of
evolving profiles derived from EFA and related methods, a
constrained alternating least-squares (ALS) optimization is
used to recover a physically meaningful set of concentration
profiles and individual species spectra that best explain the
observed data variance.

As in FA methods, this recovery is based on the assump-
tion that the data matrix is bilinear, i.e., that it can be
decomposed in the product of two matrices,

D 5 CST 1 E (2)

In this equationC is the matrix whose columns describe
how the chemical contributions (concentration profiles)
change during the process; for the particular case of the
analyzed data sets, the number of rows is equal to the
number of temperatures included in the analysis or is equal
to the number of spectra, and the number of columns is
equal to the number of detected contributions (species).ST

is the matrix whose rows are the pure individual spectra and
with a number of columns equal to the number of wave-
lengths. Equations 1 and 2 show two possible ways of
decomposition of the same data matrix. In fact, owing to the
rotational and intensity factor analysis decomposition am-
biguities, there are an infinite number of possible decom-
positions of the data matrix, reproducing it equally well.
The conditions and constraints under which it is possible to
recover the solutions of Eq. 2 forC and ST have been
studied elsewhere (Tauler et al., 1995; Manne, 1995). When
these conditions and the appropriate set of constraints are
applied, the obtained solutions are very close or eventually
equal to the true ones. Indeed, when the applied constraints
are the mathematical expression of previously known chem-
ical information, the recovered solutions are more easily
interpreted from a chemical point of view. A short summary
of the optimization procedure proposed to iteratively solve
Eq. 2 is given.

When an initial estimation of the individual spectra is
available, the best least-squares unconstrained solution of

the concentration profiles is estimated from:

C 5 DS1 (3)

whereS1 is the pseudoinverse (Golub and Van Loan, 1989)
of S matrix.

If in contrast an initial estimation of the concentration
profiles is available, the best unconstrained least-squares
estimation of the spectroscopic contributions is estimated
from:

S5 C1D (4)

where nowC1 is the pseudoinverse ofC matrix.
The least-squares solutions obtained in this way are pure

mathematical solutions that probably will not be optimal
from a chemical point of view. For instance, they can have
negative concentrations. Therefore, an optimization proce-
dure is started by iteratively resolving the two equations
previously given and constraining, at each stage of the
iterative optimization, the solutions to be non-negative
(Lawson and Hanson, 1974; Bro and De Jong, 1997). Other
constraints implemented during the ALS optimization can
be the closure (sum of the concentration of all forms at
different temperatures is equal to the total amount of pro-
tein), the unimodality (concentration profiles have unimodal
peak or cumulative shapes), and the selectivity (at some
temperatures only one form prevails). The selectivity con-
straint is very useful in protein folding because the native
form is, by definition, the one present at physiological
conditions, i.e., it is the form at the starting conditions of the
experiment. Moreover, it can be supposed that at high
denaturing conditions the only structure present in the so-
lution is the unordered form. Local rank analysis by EFA is
an idoneous method to test at which conditions the native
forms or the unordered forms are the only forms present in
the solution. As in the case of the non-negativity constraint,
when the selectivity constraint is applied during the iterative
optimization, the concentration value of only one compo-
nent is allowed to be different from zero, at the temperature
values where selectivity constraint is applied. This iterative
procedure is carried out until the solutions and the data
fitting do not improve. Details about the implementation of
this method are described elsewhere and it has been applied
to different types of chemical data (Casassas et al., 1994;
Tauler and Casassas, 1992; Tauler et al., 1993–1996 and
references therein).

The application of the ALS procedure to data sets A and
B, using the non-negativity, closure, and selectivity con-
straints, allowed the estimation of the concentration profiles
and spectra associated to each form of the protein. In Table
2 the lack-of-fit values obtained after the ALS optimization
are given. They were obtained using a lack-of-fit converge
criterion for the ALS optimization equal to 0.1% of differ-
ence between two consecutive iterations. A lower conver-
gence criterion could be applied giving slightly lower lack-
of-fit values, but considerably increasing the number of
iterations. In all the cases, these lack-of-fit values are close
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to those obtained by PCA and to the noise level. Also in
Table 2 the similarities between the species profiles esti-
mated by the ALS procedure and those used in the data
simulation are given. These similarities are evaluated as the
correlation between the recovered and the simulated con-
centration or spectra profiles. In the case of data matrixDC,
there is a total agreement between the ALS recovered con-
centration profiles and those used in the data simulation. For
matrices DA and DB, the ALS recovered concentration
profiles, although very similar to the theoretical (used in the
simulation) ones, they are not exactly equal, i.e., some small
rotational ambiguities persisted and they were not com-
pletely recovered by the ALS optimization. During the ALS
optimization, the spectra at the two extreme temperatures of
the study, 25° and 50°C, were considered to be pure, i.e.,
they were equal to the species spectra of the two extreme
forms, the native and the unordered forms. Therefore, a
selectivity constraint was applied at these two data points
(see data treatment). All the other spectra at the different
temperatures are considered to be mixture spectra, i.e., they
are a linear combination of the spectra of the native, unor-
dered, and intermediate forms. Accordingly to this, the pure
(species) spectra of the two extreme forms, the native and
the unordered, recovered by ALS are exactly equal to those
used in the simulation (see Table 2). However, the species
spectra of the intermediate forms in data matrices A and B,
recovered by ALS, are slightly different from the theoretical
ones. Since there is no temperature where the intermediate
forms are the only species present and their concentration
profiles are always totally embedded in the others, the
rotational ambiguities cannot be totally solved and the spec-
tra recovery is not perfect. Fig. 7 shows the recovered
spectra corresponding to the intermediate forms recovered
by the ALS procedure in the analysis of data sets A and B.
In both cases the estimated spectrum approaches the spec-
trum of the intermediate form used in the data simulation,
but it is not exactly equal to it. This is a consequence of the

remaining unsolved rotational ambiguities present in the
analysis of individual data matrices by the proposed MCR
method. These remaining ambiguities can eventually be
broken by using the simultaneous analysis of several data
matrices by the proposed MCR method as it is shown in
next section.

Multivariate curve resolution of a set of
correlated data matrices

MCR can also be applied to the simultaneous analysis of
several experiments, each one of them given an individual
data matrix (Tauler and Casassas, 1992; Tauler et al., 1993–
1996). In the data section it was already shown how differ-
ent individual data matrices can be arranged to give an
augmented columnwise data matrix. The two possible
columnwise data matrices are written in a concise way (Fig.
3) as [DA, DC] and [DB, DC]. These two columnwise aug-
mented matrices can be decomposed in the product of two
matrices

@DA , DC# 5 @CA , CC#ST (5)

and

@DB, DC# 5 @CB, CC#ST (6)

where [CA, CC] or [CB, CC] are columnwise augmented
concentration matrices andST is a nonaugmented species
spectra matrix. In order to have a meaningful columnwise
data augmentation, the spectra of the common contributions
(species) in matricesDA or DB andDC should be equal. This
situation is quite common if the experimental conditions do
not change between experiments (ionic strength, solvent,
etc.). In the case of experiments changing the temperature,
two effects can be observed. The first effect is a thermody-
namic effect on the reaction equilibria, changing the relative
concentrations of the different species (conformations,

TABLE 2 Multivariate curve resolution results

Data sets* (PCA)# (ALS)§ S1¶ S2¶ S3¶ C1\ C2\ C3\

A (3) 0.53 0.97 1.0000 0.9988 1.0000 0.9998 0.9997 0.9989
B (3) 0.55 0.70 1.0000 0.9597 0.9999 0.9997 0.9997 0.9991
C (2) 0.53 0.55 1.0000 — 1.0000 1.0000 — 1.0000
[A, C] (3) 0.54 0.62 1.0000 0.9999 1.0000 1.0000 0.9997 0.9999

1.0000** — 1.0000**
[B, C] (3) 0.55 0.64 1.0000 0.9997 1.0000 1.0000 0.9998 0.9999

1.0000** — 1.0000**

*Data sets under study (see Data section) by means of the ALS-MCR procedure. The number of components considered in the analysis is shown in
parentheses.
#Lack-of-fit using PCA (see equation under Table 1).
§Lack-of-fit using ALS MCR procedure (see equation under Table 1, whered*ij is the reproduced data by means of the ALS MCR procedure).
¶Recovery of species spectra: S1, spectrum of the native form; S2, spectrum of the intermediate form; S3, spectrum of the unordered form. Recovery
is measured by means of the correlation between the spectra used in the data simulation and those obtained using the MCR ALS procedure:
=(sis*i 9)/(sisi)(s*is*i 9) wheresi is theith true spectrum (column vector) used in the data simulation ands*i is the corresponding spectrum calculated by means
of the ALS MCR procedure.si is the sameith spectrum expressed as a transposed row vector to allow the dot product operation between vectors.
\Recovery of concentration profiles: C1, concentration profile of the native form; C2, concentration profile of the intermediate form; C3, concentration
profile of unordered form. Recovery is measured as for spectra by means of the same equation and substitutingsi (spectrumi) by ci (concentration profilei).
**Analysis of augmented matrices [A, C] and [B, C] give two concentration profiles for the native and unordered forms presented in both matrices.
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forms) involved in the equilibria considered. A second
possible effect of changes in temperature could be a phys-
ical effect on the shape and intensity of the spectra, usually
shown as a peak broadening effect, especially important in
the infrared region. For UV spectroscopy peak broadening
effects caused by temperature changes are less important
and can be considered negligible for narrow temperature
changes. Therefore, the spectral changes in the UV ob-
served in the study of proteins using circular dichroism
when temperature is changed are mostly interpreted as
changes caused by the equilibria between different confor-
mations. On the contrary, when a columnwise data matrix is
analyzed using the proposed procedure, the concentration
profiles of the common species in matricesCA or CB and
CC (Eqs. 5 and 6) are allowed to be different in the different
experiments (data matrices) simultaneously analyzed. This
possibility is extremely important in the context of the
protein folding studies, since different folding pathways
are allowed to give different evolutions of the species
concentrations.

The alternating least-squares multivariate curve resolu-
tion method previously described for individual data matri-
ces can be easily extended to the analysis of the columnwise
augmented data matrices. The ratio between number of
unknowns and number of linear equations to be solved is
drastically reduced when the augmented columnwise data
matrix is analyzed with respect to when the individual data
matrices are analyzed. Thus, the system of equations be-
comes more overdetermined and constrained. Also, in the
simultaneous analysis of several experiments, additional
constraints can be applied during the ALS procedure, apart
from those used for the individual analysis. For instance, if
a species is known not to be present in a particular data set,
the appropriate column ranges in matrixC can be set to
zero. On the contrary, species that are common in different
experiments share their row spectra in matrixST and are on
the same column of matrixC. Further details about how
these and other constraints are implemented for the simul-
taneous analysis of different data sets are given elsewhere.
The simultaneous analysis of a set of correlated data matri-
ces provides a powerful way to better solve the unavoidable
FA ambiguities associated with the analysis of individual
data matrices.

Simultaneous analysis of a set of correlated matrices falls
under the discipline of multiway data analysis, a field of
growing interest (Wold et al., 1987b). In particular, when a
set of correlated data matrices or three-way data have a
trilinear structure, the rotational ambiguities can be totally
solved without ambiguities. In the case of the simultaneous
analysis ofk correlated matrices, the experimental data,dijk ,
have a trilinear structure if they can be decomposed by the
following equation:

di jk 5 O tkscissjs (7)

wheretks, cis, andsjs express thesprofiles in the three orders
of measurement: the row (descriptori, i.e., number of tem-
peratures), column (descriptorj, i.e., number of wave-
lengths), and tube (descriptork, number of matrices) orders.
Vectorscs andss are, respectively, the pure species concen-
tration and spectra profiles. Trilinear data, however, are
rarely obtained in protein folding studies by means of CD,
since it is difficult to have completely reproducible exper-
iment conditions (i.e., temperature, pH, etc.) and the con-
centration profiles of the same species in the differentk
matrices will not be described by a single vector,cs, and
they will evolve differently in the different experiments and
they will have different shape. More commonly, the exper-
imental data in the different simultaneously analyzed ma-
trices do not have a trilinear structure, but they still have
common profiles in the spectral order, since the CD spectra
of the common species in the different data matrices are
equal. Therefore, the analysis of columnwise augmented
data matrices provides a powerful way of increasing the
resolution of the system. For instance, if the resolution
conditions (Manne, 1995) are achieved for one species in
the individual analysis of one of the matrices simulta-

FIGURE 7 Comparison between the ALS recovered spectrum for inter-
mediate form (lines) and the spectrum of the intermediate form used in the
simulation (symbols) in data sets A and B.
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neously analyzed, then it is also possible to resolve the same
species in the other matrices even if it was not possible
when the matrices were analyzed individually.

In Table 2 the results achieved in the analysis of the
columnwise augmented matrices [DA, DC] and [DB, DC] are
given. Lack-of-fit values are also in these two cases very
close to those obtained by means of PCA. Recovery of
concentration profiles of the native unordered and interme-
diate forms in matricesDA andDB is improved significantly
in relation to when these two matrices were analyzed indi-
vidually. The similarity values of these two concentration
profiles are practically equal to one, which means that the
recovery was practically total. Only a very small ambiguity
was not totally solved for the spectrum of the unordered
form (second species) in matrixDB, although the remaining
difference is so small that it has no practical importance. In
Fig. 8 the concentration and spectra profiles achieved in the
columnwise simultaneous analysis of data sets A and C are
given. As a conclusion, although the data analyzed did not
have a trilinear structure, the rotational ambiguities were
finally practically completely solved when columnwise aug-
mented matrices were analyzed by the proposed method.
This situation can be easily extrapolated to most of the
mixture analysis problems expected to be present in protein
folding and conformational changes studied by means of
spectrometric techniques.

The multivariate curve resolution method here described
for both the analysis of a single data matrix or the analysis

of a set of correlated data matrices, as well as for evolving
factor analysis, has been implemented in a set of homemade
MATLAB (Version 4.2, MathWorks Inc., Cochituate Place,
MA, 1994) functions available upon request from one of the
authors (R.T.).

Deconvolution of the CD spectra

In order to further analyze the results, an estimation of
secondary structure of the intermediate forms is made by the
deconvolution of the spectra recovered after their resolu-
tion. Since the data were simulated from basis spectra (see
the model), the deconvolution was performed by simple
least-squares data fitting using the Marquardt algorithm
(Marquardt, 1963). In the case of real data, other more
powerful methods must be applied to take into account the
influence in the CD spectra of aromatics and other absorb-
ing side chains,a-chain length, etc. (Compton and Johnson,
1986; Perczel et al., 1991).

Table 3 shows the comparison between the secondary
structure present in the simulated intermediate and the sec-
ondary structure obtained after deconvolution of the ALS
estimated intermediate spectrum for data sets A and B. The
proportions of the different structural elements in the sim-
ulated intermediate form and in the estimated intermediate
spectrum are very similar. These results confirm that the
intermediate spectrum recovered by the proposed MCR-
ALS procedure gave the same structural features than the
one used in the data simulation.

The information provided by the study of the intermedi-
ate spectrum could not be obtained by the individual study
of the spectra simulated at each temperature. For instance,
in Table 3 the deconvolution of the simulated spectra at the
temperatures 35°, 36°, 37°, and 38°C is shown. At these
temperatures the concentration of the intermediate form
should be maximal; therefore, the influence of the spectrum
of the intermediate form in the simulated spectrum is also
maximal. However, in both cases, data sets A and B, only a
smooth and gradual destruction of the secondary structure
could be observed with the increasing temperature, showing
that the recovery of the information about the structural
nature of the intermediate form is rather difficult by the
study of individual spectra. Contrarily, the proposed multi-
variate approach allowed the recovery of the intermediate
form spectrum and, therefore, allowed the study of its
structural features.

CONCLUSIONS

In summary, this study showed that FA-derived methods
like EFA and MCR methods can provide very powerful
tools to analyze the number, nature, concentration, and
evolution of the components needed to explain the spectra
corresponding to a protein folding pathway. If more than
two components (the native and unordered forms) are
needed to explain the evolution of the spectra, the resolution

FIGURE 8 Concentration profiles (a) and individual spectra (b) recov-
ered in the columnwise augmented simultaneous ALS analysis of data sets
A and C.
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of the spectrum corresponding to the intermediate form can
be achieved using the MCR-ALS procedure proposed here.
Posterior analysis of this spectrum yields an important
amount of information about the secondary structure of the
possible intermediates.

The total resolution of the intermediate forms by MCR is
only possible if these intermediate forms exist in solution
enough time to affect the response obtained by the tech-
niques used in the structural analysis of proteins (CD, flu-
orescence spectroscopy, or NMR). However, transient
structures can be stabilized in solution in partially denatur-
ing conditions, allowing their detection and resolution by MCR
even if the intermediates are present at low concentrations.
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