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Multivariate Curve Resolution: A Possible Tool in the Detection of
Intermediate Structures in Protein Folding

J. Mendieta, M. S. Diaz-Cruz, M. Esteban, and R. Tauler
Departament de Quimica Analitica, Universitat de Barcelona, 08028 Barcelona, Spain

ABSTRACT Different multivariate data analysis techniques based on factor analysis and multivariate curve resolution are
shown for the study of biochemical evolutionary processes like conformational changes and protein folding. Several
simulated CD spectral data sets describing different hypothetical protein folding pathways are analyzed and discussed in
relation to the feasibility of factor analysis techniques to detect and resolve the number of components needed to explain the
evolution of the CD spectra corresponding to the process (i.e., to detect the presence of intermediate forms). When more than
two components (the native and unordered forms) are needed to explain the evolution of the spectra, an iterative multivariate
curve resolution procedure based on an alternating least squares algorithm is proposed to estimate the CD spectrum
corresponding to the intermediate form.

INTRODUCTION

The folding of a polypeptide chain in vitro into a native, With the explosive growth of chemometrics in recent
biologically active conformation is apparently a self-assem-years (Sharaf et al., 1986; Massart et al., 1988), a new
bly process (Anfinsen, 1973). Frequently, the folding occurggeneral approach involving the identification of a model
in a short period of time, which implies that this process isfrom numerical and statistical analysis of the data, without
not a random search of all possible conformations bugny a priori assumption about the nature or composition of
occurs along a defined pathway with structured intermedithe system under investigation, has been proposed to solve
ates (Creighton, 1985). The characterization of the foldinghe mixture analysis problefiang et al., 1993; Brown and
intermediates is of fundamental importance to understan@ear, 1993). Mixture analysis implies the estimation of the
the mechanism of protein folding. However, the detectionnumber of chemical species simultaneously present in the
and characterization of these intermediate structures is naonixture, the identification of these species, and the deter-
easy due to the highly cooperative process of protein foldmination of their concentration. Among the computational
ing, which makes the lifetime of these transient intermedi-and statistical methods used to solve mixture analysis prob-
ates too short to be detected by the more commonly usel¢ms, factor analysis (FA) (Malinowski, 1991), principal
experimental techniques. In some cases, transient structuregmponent analysis (PCA) (Wold et al., 1987a), and singu-
(molten globule statg¢scan be stabilized in solution using lar value decomposition (SVD) (Golub and Van Loan,
partially denaturing conditions (Ohgushi and Wada, 1983)1989) techniques play a key role, especially in the estima-
These molten globule states keep the greater part of thigon of the number of species contributing significantly to
secondary structure, but the ordered tertiary interactions arfé€ experimental data variance. In chemistry, FA, PCA, and
not present (Dolgikh et al., 1981). Unfolding of the molten SVD are very similar techniques with slightly different
globule state presents low cooperativity (Pfeil et al., 1986)formalisms for selection of dimensions and for changes of
which suggests that it can be smoothly transformed into th€oordinate axes (rotations). Derived from factor analysis,
unfolded form by a gradual destruction of its secondaryevolving factor analysis (EFA) (Gampp et al., 1986;
structure (Ptitsyn, 1987). Spectroscopic methods like cOVlaeder, 1987) and fixed-size moving window evolving
and NMR are normally used to study protein refolding. Thefactor analysis (FSMWEFA) (Keller and Massart, 1991) are
spectra obtained under partially denaturing conditions cortwo techniques that have been shown to be especially suit-
respond normally to a mixture of the denatured polypeptide@ble for the study of evolutionary processes like those
the intermediate structures, and the native form, whictPresent in chromatography and in chemical reaction pro-

makes the resolution and characterization of folding interc€sses. By using EFA and/or FSMWEFA techniques, the
mediates difficult. evolution of the chemical contributions along a particular
experiment can be mathematically estimated without any
prior assumption about the nature of these contributions or
: — o any assumption about a chemical model. These pure math-
Tgegglved for publication 1 December 1997 and in final form 16 Februaryematical solutions obtained by means of FA-derived meth-
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by the pH and/or ion complexation using spectrophotomet-

ric techniques (Casassas et al., 1994, 1995). The MCR . 10 ]
method has been also used in the study of metal-binding § 0.8 E
properties of peptides (Mendieta et al., 1996) and to solve o 067
mixture analysis problems in analytical chemistry (Tauler et % 0.4 A
al., 1993, 1994, 1996). ? 024

In the present work, several chemometric techniques suc- 0.0 E

cessfully applied to the study of evolutionary processes in
mixture analysis problems are extended to the study of
protein folding and conformational protein changes in bio- temperature (°C)
chemical problems. First, the possibilities of PCA in the _ _ o )
determination of the number of components are shown'.:IGURE 1 Relative proportlons of the nativ@) mt_ermedngtell])j and
. unordered 4) forms at different temperatures used in the simulation of the
Second, EFA and FSMWEFA methods are used to monitofata sets A and B.
the evolution of biochemical processes like protein folding.
Third, MCR is used for the detection, identification, and added to the exact numerical values. Spectra for the three
quantitation of folding intermediates in a simulated data sefo|ding pathways, data sets A, B, and C, were ordered in
representing a hypothetical folding pathway for polypep-three two-way data matriceB),, Dg, andD.. These ma-
tides. Finally, the deconvolution of the pure secondarytrices havenR rows, i.e.,nR spectra at the different inves-
structure contributions from the CD-detected species spegigated chemical conditions (i.e., different temperatures, pH
tra is shown by means of a least-squares data-fitting procesalues, etc.) anchC columns, i.e.,nC wavelengths,a,
dure. The folding pathways simulated in this work aremeasured spectrophotometrically, circular dichroism spec-
deliberately simplified to facilitate the comprehension of thetrometry, CD, in this case. Fig. 2 shows the plots corre-
proposed approach and to validate the results obtained byponding to these three simulated data matrices obtained for
using it. Real situations similar to those described here havghe three different folding pathways. No significant differ-
been proposed in the gradual disorganization of the seconénces can be observed by visual inspection of the data.
ary structure from the molten globule state to the unordered The three data matricds,, Dg, andD. can be analyzed
form (Ptitsyn, 1987). individually, one by one, or simultaneously, two by tvil,
together withD. and Dg together withD, (Fig. 3). Simul-
taneous analysis of two or more correlated data matrices
DATA MODEL (multiway data an_alysis, Wold et al., 1987b; Smi!de and
Doornbos, 1991) is a very powerful approach to increase
CD spectra corresponding to three different temperatureresolution of complex data systems. In this work, the simul-
dependent folding pathways have been simulated using th@neous analysis of several data matrices is illustrated with
reference spectra fat-helix, B-form, B-turn, and random-  the simultaneous study of a protein folding data matrix
coil described by Chang et al. (1978). In all these cases thgontaining a transient structure (data sets A and B) together
native form contains 40%o-helix, 40% B-form, 18%  with a protein folding data matrix where the intermediate is
p-turn, and 2% random-coil (species spectrum 1). The Unapsent (data set C). As previously described, in any of the
ordered form contains 85% random-coil, but an importantwo data sets, A and C or B and C, the native (species
amount (15%B-turn are preserved (species spectrum 2). Inspectra 1) and unordered forms (species spectra 2) are
a first data set A, a transient structure containing 35%common in the two matrices studied simultaneously,
a-helix, 5% B-form, 16%p-turn, and 44% random-coil has hereas the intermediate forms are not present in matrix C
been considered in the folding pathway (species spectrurind they are different in both matrices A and B (species 3 in
3). Ina second datasB a intermediate structure containing data set A and species 4 in data matrix B). For the simul-
5% a-helix, 35% B-form, 16% B-turn, and 44% random- taneous analysis of data matrid®g and D and Dy and
coil has been considered in the folding pathway (specie ., two augmented columnwise matric&,, D] and Dy,
spectrum 4). In data sets A and B the native form isp ] are built (see Fig. 3). A more detailed description of the
generated from the previously formed transient. In the casgifferent possible data arrangements for simultaneous anal-
of data set C, no transient form is involved in the folding ysis of several correlated data matrices in the context of
pathway. Fig. 1 shows the relative proportion of the threemultivariate curve resolution has been given elsewhere
forms present in the solution at different temperatures (thesgrauler, 1995; Tauler et al., 1995).
contributions will also be called concentration profiles of
species 1, 2 and 3, or 4). Spectra corresponding to differeri._tACTOR ANALYSIS AND PRINCIPAL
temperatures were obtained by linear combination of th OMPONENT ANALYSIS
species spectra 1, 2, and 3 (Fig. 1), corresponding to eac
form with coefficients equal to their relative proportion at Application of FA assumes that the experimental data are
each temperature. A small random noise with a zero meahilinear, i.e., that experimental data follow a linear additive
and a standard deviation equal to 0.005 signal units wamodel like that proposed by Beer's law for absorption
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FIGURE 2 Evolution of the spectra corresponding to the three different simulated folding pathways versus the temperature.

spectroscopy. These conditions are usually satisfied fonS,is chosen to minimize the residual data variancé&jn
most of the spectrophotometric techniques normally used iteaving in it, if possible, only the experimental error or noise
the study of protein folding and conformational protein (Malinowski, 1991). There are many methods proposed for
changes. A first basic goal of FA methods (Malinowski, the selection of the number of components; most of them
1991) is to mathematically decompose each experimentabork well for uniformly distributed homocedastic noise in
data matrixD (D4, Dg, or D¢) into a product of two abstract matrix E. However, when the noise is not uniformly dis-
matrices, denoted as the scores ma@inR, ng and the

componentsi§ contributing to the measured data. This canthe number of estimated componen8is higher than the
be expressed as

tributed, most of the proposed approaches fail. Moreover,

loadings matrixP'(nS, n@, for a preselected number of when instrumental and baseline contributions are present,
number of real chemical contributions. On the contrary, in

D=QP +E (1) reaction-based systems, the opposite effect can be also

observed, and the estimated pseudorank is lower than the
whereE is a residual matrix containing the variance notreal number of chemical contributions present in the system.
explained byQ andPT.

This phenomenon has been caltadk deficiency{Amrhein
etal., 1996) and it is related to the fact that in reaction-based
Detection of the number of components by PCA

systems the pseudorank depends on the number of indepen-

dent reactions present in the system. Resolution of rank-
The number of chemical contributions, or pseudorankdeficient systems is a matter of special interest at present
(mathematical rank in absence of noise), of the maixjx

(Amrhein et al., 1996; Izquierdo-Ridorsa et al., 1997).
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In this work the number of components is initially inves- plained data variance (lack-of-fit) decreases very slowly,
tigated by visual inspection of the magnitude of the singularsince these additional components describe only the noise
values of matrixD (Golub and Van Loan, 1989) and also contribution. Thus, from a purely mathematical analysis of
from the magnitude of residuals as a percentage of lack-ofdata, it is possible to estimate the number of components
fit or unexplained data variance iR, after a particular contributing to the data variance.
number of principal components has been extracted (Mali-
nowski, 1991). Obviously the two approaches are closely

. . . . . Data Set A
correlated, presenting the same information in a different 1.0 -
way. The basic assumption used by the two approaches is 09
that the major components (major singular values) are as- =
sociated with the chemical sources of data variation, which H 08 o
in the context of protein folding studied are interpreted as g 0.7
the different forms adopted by the polypeptidic chain (with 8
different proportions of secondary structure) during the 01 v
: 0.0 T

experiment.

Fig. 4 shows the normalized (divided by the largest one) 123456738
singular values versus the number of considered compo- number of components
nents for the data sets previously described. In data sets A Data Set B Data Set C
and B, three major components are clearly detected from 1.0 -4 1.0
these plots, since three singular values are much larger than ¢.g .09
the rest, which remain at the bottom of the plots at the noise 0.8 r 08
level. On the contrary, in data set C, only two major com-§ [ I
ponents are clearly distinguished from the noise level. & ®7 9 o g o7

These conclusions are also apparent from the result& Y 2 04
obtained in the PCA decomposition when different numbers 3 S . e I 0.0 %
of components are considered (Table 1). For data matrices 12345678 12345678
D, andDg, three components should be considered to leave

number of components number of components

the unexplained variance below 1%, whereas for data matrix

D¢ this is already achieved when only two components arg:GuRe 4 Normalized singular values corresponding to the data sets A,
considered. When more components are added, the uneg;and C versus the number of considered components.
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TABLE 1 Principal component analysis: percentage of lack tion of how these concentration profiles change along the
of fit experiment. The EFA method is based on the evaluation of

Data set* the magnitude of the singular values (or of the eigenvalues)
- A B c A C] B, C] associated with all the submatrices of a mabikuilt up by

adding successively one by one all the rows of the original

! 6L.7 5.1 °8.5 601 6.9 " data matrix. The calculations are performed in two direc-
2 2.02 2.21 0.53 1.89 189 . . NN :

3 0.53 0.55 0.51 0.54 055 tions: forward (in the same direction of the experlment),
4 0.49 0.50 0.47 0.52 0.53 starting with the two first spectra, and backward (in the
5 0.46 0.47 0.47 0.50 0.51 opposite direction of the experiment), starting with the last

Lack of fit = 100- V[E(d, — &)A/Sd, whered; are the CD data at WO spectra. In the forward direction, the detection of a new
temperaturé and wavelengtii, andd} are the PCA recalculated data using component is detected by the upsurging of a new singular
the specified number of components. value; in the backward direction, the disappearance of a
vData sets under study (see Data model section). _ component is detected by the upsurging of a new singular
Number of components considered in the PCA of the different data sets . . D e
under study. value. Singular values relateq Wlth .S|gn|flcant comppnents
become larger and clearly distinguished from the singular
values associated with noise, in their graphical representa-
tion (EFA plots, Fig. 5). Singular values related with the
From these results, and in agreement with the proposedoise are smaller and they are at the bottom of the EFA
model, it is rightly concluded that all the spectra corre-plots. Interpreting the EFA plots and appropriately joining
sponding to the data set C are explained by a linear comthe lines corresponding to forward and backward singular
bination of two spectra, the one corresponding to the nativealues (Gampp et al., 1986; Maeder, 1987) allow the esti-
form and the one corresponding to the unordered formmation of the regions or windows of existence of each
Instead, in the case of the data sets A and B, a thirdomponent and provide a first estimation of the abstract
component is needed to explain the evolution of the spectraoncentration profiles of the detected components. A more
From the only visual inspection of the data or from thedetailed description of the EFA plots can be found in
single wavelength analysis of data sets A, B, and C, ngrevious works (Gampp et al., 1986; Maeder, 1987; Tauler
significant differences could be detected between them (sesnd Casassas, 1988).
Fig. 2), and therefore the presence of intermediates could In Fig. 5 the EFA plots obtained in the analysis of
not be detected. matrices A—C are given. Two regions are clearly apparent in
In Table 1, also, the values of the percentage of lack-of-fithe three plots. One region at the bottom of these plots
for the augmented columnwise data matric,,[Dc] and  shows the evolution of lines describing the components
[Dg, D¢l, are given. As it was mentioned in the previous related to the experimental noise. These lines do not super-
section (Data model), the analysis of these augmented maede the limit of the noise level, approximately at log(0.085)
trices implies the simultaneous analysis of two experiments—2.3, where 0.005 is the standard deviation of the noise.
For columnwise augmented data matrice3,,[ Dc] and  The second region shows the evolution of the lines describ-
[Dg, D¢, the total number of components needed to deding the changes related in this case with the protein folding
scribe the data at the noise level is three, which is the samgrocesses. When the analysis is performed in the forward
as the number of components needed to satisfactorily exdirection (from lower to higher temperatures), three lines
plain the individual data matrice3, andDg. This means emerge for data sets A and B (1, 2, and 3), and two lines for
that columnwise matrix augmentation does not increase theata set C (1 and 2). In the three data sets, the first line (first
rank, and therefore that the species in mafix should  singular value) is in the upper part of the plot (log S$\2)
have the same spectra as the corresponding species in nfeam the beginning of the process, increases a little more,
tricesD, and Dg, which in this case is known to be true and then it keeps constant. This line is showing the average
from the data simulation. For unknown systems, this studyabsorption of the system when EFA is performed in the
of the rank of augmented matrices is extremely helpfulforward direction. Line 2 upsurges from the noise level
to check correspondence between species in differenthen more spectra are included in the analysis, showing
experiments. that at the corresponding temperatures, a new contribution
not explained by the average absorption (line 1) becomes
important and continues increasing steadily in the three data
systems. For data sets A and B, a third line upsurges (line 3)
Once the number of components is initially estimated byfrom the noise level in the middle of the plot showing the
PCA or SVD, the changes and structure of the experimentadvolution of a new contribution. This contribution does not
data matrix can be analyzed by using EFA (Gampp et al.appear in the analysis of data set C, in agreement with the
1986; Maeder, 1987; Keller and Massart, 1991). This apfact that in this case no third species is present. As stated
proach provides an estimation of the regions or windowsefore, the analysis is also performed backward, giving
where the concentration of the different components idines 1, 2', and 3, with identical meaning to before, but
changing or evolving and it also provides an initial estima-now looking at the experiment from higher to lower tem-

Evolving factor analysis
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peratures, i.e., increasing line§ 2’, 3’ will be interpreted pearance of extra lines not related to real chemical contri-
now as the disappearances of contributions. Now these twhutions. Additionally, weak chemical contributions and
sets of lines can be interpreted simultaneously, and as prestrongly correlated contributions are sometimes difficult to
posed by Gampp et al. (1986), an initial estimation of thedistinguish as new lines in the EFA plots. All this means
regions of existence of each species and also an initidhat some practice and expertise is needed to extract defin-
estimation of the evolution of the concentration profiles ofitive conclusions from the interpretation of EFA plots in the
the species involved in the process can be derived. Thighalysis of complex real systems with a large number of
interpretation will provide a firsabstractplot of the evo- ~ SPecies. These problems, however, do not decrease the
lution of the system when temperature is changed. Thigltility of EFA as an exploratory tool of those systems and
means that from a pure mathematical analysis of the daté‘,'so as a ma}thematical tool to provide an initial estimation
not only the number of contributions can be deduced, buPf the evolution of the main chemical contributions.

also, and even more importantly, how these contributions

change along the experiment. The windows of existence of

each species predicted by EFA for each experiment (Fig. 5velving factor analysis with a fixed-size

are coincident with those proposed in the simulation (FigMoving window

1). For real data with nonrandom noise contributions (likea closely related and complementary method to EFA is the
spectral baselines) the things become more complicatetdSMWEFA method (Keller and Massart, 1991). In this
because these contributions can also appear as upsurgiogse, the singular values are calculated for submatrices of
lines in the EFA plots (Tauler and Casassas, 1988). Howequal size moving in the same direction as the experiment is
ever, many times these lines stay at an intermediate regioperformed. The size of the matrix is chosen to be slightly
between noise and chemical contributions, and can be safehigher than the suspected number of components simulta-
distinguished. Nonlinear detector responses produce the apeously present (overlapping) along the experiment and
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kept constant. If this number is unknown, several sizes argalue remains again at the noise level, showing a region
attempted. The lower the size of the moving window, thewere only two chemical species are changing their contri-
better the local rank detection power; the larger the size obution in agreement with the constant concentration region
the window, the better resolution power between similarof the intermediate form. Both EFA and WSFWEFA plots
components. As with EFA, the appearance of a new comare only sensitive to changes and they are not sensitive to
ponent is distinguished with the upsurging of a new singulaiconstant contributions. At the end of the experiment, again
value. The interpretation of the FSMWEFA plots (Keller only two contributions are present. Similar patterns are
and Massart, 1991) allows the estimation of how manypresent in the FSMWEFA plot of data set B with a more
species coexist at the different stages of the experiment. selective region at the beginning of the experiment where
In Fig. 6 the FSWEFA plot obtained in the analysis of only one of the three contributions is clearly present for the
three data sets A, B, and C is given. The window size is fivewindow of the first five spectra. Finally, in the case of data
i.e., five singular values are calculated from the submatrixset C (Fig. 6), only two contributions are present along the
corresponding to each fixed size moving window. In datawhole experiment, with selectivity (only one contribution)
set A, at the beginning, three of the five lines are at theat the beginning and the end of the experiment.
bottom of the plot, at the noise level; the fourth line is The study of the mathematical structure of the data matrix
increasing and the fifth line is at the top of the picture. Thisby the two evolving factor analysis-related techniques (EFA
is interpreted as if two contributions are present at theand FSMWEFA) yielded a dynamic picture of the chemical
beginning of the experiment (first five spectra), with the process. The possibility to obtain this information from pure
second one increasing in importance. Between the sixth anehathematical means can be important not only to under-
16th window (see Fig. 6), a third singular value emergesstand the dynamic nature of the protein folding process, but
two times from the noise level, showing the appearance andlso to outline the chemical and mathematical constraints to
disappearance of a third contribution related to the intermebe applied in the resolution of the system by MCR (see next
diate form. Between these two peaks, the third singulasection).
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FIGURE 6 Fixed-size moving window window
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MULTIVARIATE CURVE RESOLUTION the concentration profiles is estimated from:
Multivariate curve resolution of a single C =DS" (3)
data matrix

. whereS" is the pseudoinverse (Golub and Van Loan, 1989)
MCR (Lawton and Sylvestre, 1971; Martens, 1979) is asf S matrix.

chemometric method included in the FA family of tech- ¢ i contrast an initial estimation of the concentration

niques (Malinowski, 1991). Its principal goals are the is0-qfijes is available, the best unconstrained least-squares

lation, resolution, and quantitation of the sources of variaggtimation of the spectroscopic contributions is estimated
tion in a particular data set. The outstanding feature of thig,q -

technique is that no a priori assumption about the contribu-

tion of the different factors in the global response are S=C*'D (4)
necessary. This feature can be of great importance in the

study of complex problems such as protein folding. InWhere nowC™ is the pseudoinverse & matrix.

previous works (Tauler et al., 1993-1996; Tauler and The least-squares solutions obtained in this way are pure
Casassas, 1992), MCR has been successfully applied to tieathematical solutions that probably will not be optimal

study of other types of evolutionary chemical and analyticaf"™om & chemical point of view. For instance, they can have
processes. negative concentrations. Therefore, an optimization proce-

From the local rank analysis and initial estimations ofdure is started by iteratively resolving the two equations

evolving profiles derived from EFA and related methods, aPT€Viously given and constraining, at each stage of the
constrained alternating least-squares (ALS) optimization idi€rative optimization, the _SOIUt'OnS to be non-negative
used to recover a physically meaningful set of concentration-@wson and Hanson, 1974; Bro and De Jong, 1997). Other

profiles and individual species spectra that best explain thgonstraints implemented during the ALS optimization can
observed data variance. be the closure (sum of the concentration of all forms at

As in FA methods, this recovery is based on the aSSump(jlfferent temperatures is equal to the total amount of pro-

tion that the data matrix is bilinear, ie., that it can beteln),the unimodality (concentration profiles have unimodal

decomposed in the product of two matrices peak or cumulative shapes), and the selectivity (at some
' temperatures only one form prevails). The selectivity con-

straint is very useful in protein folding because the native
form is, by definition, the one present at physiological
. . . . . conditions, i.e., it is the form at the starting conditions of the
In this equationC is the matrix whose columns describe experiment. Moreover, it can be supposed that at high
how the chemical contributions (concentration profiles)yenaturing conditions the only structure present in the so-
change during the process; for the particular case of thgiion is the unordered form. Local rank analysis by EFA is
analyzed data sets, the number of rows is equal t0 thg, jqoneous method to test at which conditions the native
number of temperatures included in the analysis or is €qughyms or the unordered forms are the only forms present in
to the number of spectra, and the number of columns ighe solution. As in the case of the non-negativity constraint,
equal to the number of detected contributions (spec’s). \yhen the selectivity constraint is applied during the iterative
is the matrix whose rows are the pure individual spectra a“%ptimization, the concentration value of only one compo-
with a number of columns equal to the number of wave-nent is allowed to be different from zero, at the temperature
lengths. Equations 1 and 2 show two possible ways of5jues where selectivity constraint is applied. This iterative
decomposition of the same data matrix. In fact, owing to thgyrocedure is carried out until the solutions and the data
rotational and intensity factor analysis decomposition amitting do not improve. Details about the implementation of
biguities, there are an infinite number of possible decom+hjs method are described elsewhere and it has been applied
positions of the data matrix, reproducing it equally well. to different types of chemical data (Casassas et al., 1994;
The conditions and constraints under which it is possible torauler and Casassas, 1992; Tauler et al., 1993-1996 and
recover the solutions of Eq. 2 foE and ST have been references therein).
studied elsewhere (Tauler et al., 1995; Manne, 1995). When The application of the ALS procedure to data sets A and
these conditions and the appropriate set of constraints am, using the non-negativity, closure, and selectivity con-
applied, the obtained solutions are very close or eventuallgtraints, allowed the estimation of the concentration profiles
equal to the true ones. Indeed, when the applied constraintihd spectra associated to each form of the protein. In Table
are the mathematical expression of previously known chemz the lack-of-fit values obtained after the ALS optimization
ical information, the recovered solutions are more easilyare given. They were obtained using a lack-of-fit converge
interpreted from a chemical point of view. A short summary criterion for the ALS optimization equal to 0.1% of differ-
of the optimization procedure proposed to iteratively solveence between two consecutive iterations. A lower conver-
Eq. 2 is given. gence criterion could be applied giving slightly lower lack-
When an initial estimation of the individual spectra is of-fit values, but considerably increasing the number of
available, the best least-squares unconstrained solution @erations. In all the cases, these lack-of-fit values are close

D=CS +E )
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TABLE 2 Multivariate curve resolution results

Data sets* (PCA) (ALS)3 Sl s s cy! c2 c3

A (3) 0.53 0.97 1.0000 0.9988 1.0000 0.9998 0.9997 0.9989

B (3) 0.55 0.70 1.0000 0.9597 0.9999 0.9997 0.9997 0.9991

C (2) 0.53 0.55 1.0000 — 1.0000 1.0000 — 1.0000

[A, C] (3) 0.54 0.62 1.0000 0.9999 1.0000 1.0000 0.9997 0.9999
1.0000** — 1.0000**

[B, C] (3) 0.55 0.64 1.0000 0.9997 1.0000 1.0000 0.9998 0.9999
1.0000** — 1.0000**

*Data sets under study (see Data section) by means of the ALS-MCR procedure. The number of components considered in the analysis is shown in
parentheses.

#Lack-of-fit using PCA (see equation under Table 1).

SLack-of-fit using ALS MCR procedure (see equation under Table 1, wiigis the reproduced data by means of the ALS MCR procedure).

TRecovery of species spectra: S1, spectrum of the native form; S2, spectrum of the intermediate form; S3, spectrum of the unordered form. Recovery
is measured by means of the correlation between the spectra used in the data simulation and those obtained using the MCR ALS procedure:
V(ss")/(ss)(s's'') wheres is theith true spectrum (column vector) used in the data simulatiorsfische corresponding spectrum calculated by means

of the ALS MCR procedures; is the saméth spectrum expressed as a transposed row vector to allow the dot product operation between vectors.
IRecovery of concentration profiles: C1, concentration profile of the native form; C2, concentration profile of the intermediate form; C3ationcentr

profile of unordered form. Recovery is measured as for spectra by means of the same equation and subésipetotgini) by c; (concentration profilé).

**Analysis of augmented matrice®\[ C] and B, C] give two concentration profiles for the native and unordered forms presented in both matrices.

to those obtained by PCA and to the noise level. Also inremaining unsolved rotational ambiguities present in the

Table 2 the similarities between the species profiles estianalysis of individual data matrices by the proposed MCR

mated by the ALS procedure and those used in the datmethod. These remaining ambiguities can eventually be
simulation are given. These similarities are evaluated as thieroken by using the simultaneous analysis of several data
correlation between the recovered and the simulated comnatrices by the proposed MCR method as it is shown in

centration or spectra profiles. In the case of data m&iiix  next section.

there is a total agreement between the ALS recovered con-

centration profiles and those used in the data simulation. For

matrices D, and Dg, the ALS recovered concentration Multivariate curve resolution of a set of

profiles, although very similar to the theoretical (used in thecorrelated data matrices

simulation) ones, they are not exactly equal, i.e., some smajCR can also be applied to the simultaneous analysis of
rotational ambiguities persisted and they were not comgeyeral experiments, each one of them given an individual
pletely recovered by the ALS optimization. During the ALS gata matrix (Tauler and Casassas, 1992; Tauler et al., 1993—
optimization, the spectra at the two extreme temperatures ofgge). In the data section it was already shown how differ-
the study, 25° and 50°C, were considered to be pure, i.ent individual data matrices can be arranged to give an
they were equgl to the species spectra of the two extremg,gmented columnwise data matrix. The two possible
forms, the native and the unordered forms. Therefore, @ojumnwise data matrices are written in a concise way (Fig.
selectivity constraint was applied at these two data POINt8) as p,, D] and Dg, DoJ. These two columnwise aug-

(see data treatment). All the other spectra at the different,ented matrices can be decomposed in the product of two
temperatures are considered to be mixture spectra, i.e., theyatrices

are a linear combination of the spectra of the native, unor-

dered, and intermediate forms. Accordingly to this, the pure [Da, Dc] =[Ca, CclST (5)
(species) spectra of the two extreme forms, the native and

the unordered, recovered by ALS are exactly equal to thos@"

used in the 5|mulat|on (see Table'2). Howeve.r, the species [Dg, De] = [Cq, CcST (6)
spectra of the intermediate forms in data matrices A and B,

recovered by ALS, are slightly different from the theoreticalwhere [C,, C] or [Cg, C.] are columnwise augmented
ones. Since there is no temperature where the intermediat®ncentration matrices ar®l is a nonaugmented species
forms are the only species present and their concentratiospectra matrix. In order to have a meaningful columnwise
profiles are always totally embedded in the others, thedata augmentation, the spectra of the common contributions
rotational ambiguities cannot be totally solved and the spectspecies) in matrice,, or Dg andD should be equal. This

tra recovery is not perfect. Fig. 7 shows the recoveredsituation is quite common if the experimental conditions do
spectra corresponding to the intermediate forms recoveredot change between experiments (ionic strength, solvent,
by the ALS procedure in the analysis of data sets A and Betc.). In the case of experiments changing the temperature,
In both cases the estimated spectrum approaches the spéwo effects can be observed. The first effect is a thermody-
trum of the intermediate form used in the data simulationnamic effect on the reaction equilibria, changing the relative
but it is not exactly equal to it. This is a consequence of theconcentrations of the different species (conformations,
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The alternating least-squares multivariate curve resolu-
tion method previously described for individual data matri-
ces can be easily extended to the analysis of the columnwise
augmented data matrices. The ratio between number of
unknowns and number of linear equations to be solved is
drastically reduced when the augmented columnwise data
matrix is analyzed with respect to when the individual data
matrices are analyzed. Thus, the system of equations be-
comes more overdetermined and constrained. Also, in the
simultaneous analysis of several experiments, additional
constraints can be applied during the ALS procedure, apart
from those used for the individual analysis. For instance, if
a species is known not to be present in a particular data set,
the appropriate column ranges in matfixcan be set to

zero. On the contrary, species that are common in different

experiments share their row spectra in masixand are on

the same column of matriC. Further details about how

these and other constraints are implemented for the simul-

taneous analysis of different data sets are given elsewhere.

The simultaneous analysis of a set of correlated data matri-

2 4 ces provides a powerful way to better solve the unavoidable
] FA ambiguities associated with the analysis of individual

1] data matrices.

] Simultaneous analysis of a set of correlated matrices falls

under the discipline of multiway data analysis, a field of

growing interest (Wold et al., 1987b). In particular, when a

set of correlated data matrices or three-way data have a

trilinear structure, the rotational ambiguities can be totally

] solved without ambiguities. In the case of the simultaneous

S — analysis ok correlated matrices, the experimental dafg,

180 190 200 210 220 230 240 250 have a trilinear structure if they can be decomposed by the

A (nm) following equation:

intermediate B

-

[9] (x10%, deg cm?dmol)
(=]
|

FIGURE 7 Comparison between the ALS recovered spectrum for inter-
mediate form lfnes) and the spectrum of the intermediate form used in the
simulation gymbol} in data sets A and B.

dij = E tCisSs (7

wheret,, Cis, ands, express the profiles in the three orders

of measurement: the row (descripioi.e., number of tem-
forms) involved in the equilibria considered. A second peratures), column (descriptgr i.e., number of wave-
possible effect of changes in temperature could be a phydengths), and tube (descripternumber of matrices) orders.
ical effect on the shape and intensity of the spectra, usuallyectorsc, ands, are, respectively, the pure species concen-
shown as a peak broadening effect, especially important itration and spectra profiles. Trilinear data, however, are
the infrared region. For UV spectroscopy peak broadeningarely obtained in protein folding studies by means of CD,
effects caused by temperature changes are less importaginhce it is difficult to have completely reproducible exper-
and can be considered negligible for narrow temperaturénent conditions (i.e., temperature, pH, etc.) and the con-
changes. Therefore, the spectral changes in the UV oleentration profiles of the same species in the different
served in the study of proteins using circular dichroismmatrices will not be described by a single vectay, and
when temperature is changed are mostly interpreted akey will evolve differently in the different experiments and
changes caused by the equilibria between different conforthey will have different shape. More commonly, the exper-
mations. On the contrary, when a columnwise data matrix i$mental data in the different simultaneously analyzed ma-
analyzed using the proposed procedure, the concentratidrices do not have a trilinear structure, but they still have
profiles of the common species in matricg or Cg and  common profiles in the spectral order, since the CD spectra
Cc (Egs. 5 and 6) are allowed to be different in the differentof the common species in the different data matrices are
experiments (data matrices) simultaneously analyzed. Thisqual. Therefore, the analysis of columnwise augmented
possibility is extremely important in the context of the data matrices provides a powerful way of increasing the
protein folding studies, since different folding pathwaysresolution of the system. For instance, if the resolution
are allowed to give different evolutions of the speciesconditions (Manne, 1995) are achieved for one species in
concentrations. the individual analysis of one of the matrices simulta-



2886 Biophysical Journal Volume 74 June 1998

neously analyzed, then it is also possible to resolve the sanef a set of correlated data matrices, as well as for evolving
species in the other matrices even if it was not possibldactor analysis, has been implemented in a set of homemade
when the matrices were analyzed individually. MATLAB (Version 4.2, MathWorks Inc., Cochituate Place,

In Table 2 the results achieved in the analysis of theMA, 1994) functions available upon request from one of the
columnwise augmented matricd3,|, D] and [Dg, D] are  authors (R.T.).
given. Lack-of-fit values are also in these two cases very
close to those obtained by means of PCA. Recovery of
concentration profiles of the native unordered and intermeDeconvolution of the CD spectra

diate forms in matriceB, andDg is improved significantly In order to further analyze the results, an estimation of

in relation to when these two matrices were analyzed indi- . : )
. L . secondary structure of the intermediate forms is made by the
vidually. The similarity values of these two concentration

deconvolution of the spectra recovered after their resolu-

. ‘& Mion. Since the data were simulated from basis spectra (see
recovery was practically total. Only a very small ambiguity he model), the deconvolution was performed by simple

was not totally solved for the spectrum of the unordere i : .
form (second species) in mati,, although the remainin east-squares data fitting using the Marquardt algorithm
P ’ 9 9 (Marquardt, 1963). In the case of real data, other more

difference is so small that it has no practical importance. In

Fig. 8 the concentration and spectra profiles achieved in thgowerful methods must be applied to take into account the

. ) : Ihfluence in the CD spectra of aromatics and other absorb-
columnwise simultaneous analysis of data sets A and C are _~ © : .
iven. As a conclusion, although the data analyzed did noj 2 side chainsa-chain length, etc. (Compton and Johnson,
9 ' K 9 Y 1986; Perczel et al., 1991).

have a trilinear structure, the rotational ambiguities were .
. : . Table 3 shows the comparison between the secondary
finally practically completely solved when columnwise aug- . . . .
. tructure present in the simulated intermediate and the sec-

mented matrices were analyzed by the proposed method. : .

o . ondary structure obtained after deconvolution of the ALS
This situation can be easily extrapolated to most of the . )

. . . -estimated intermediate spectrum for data sets A and B. The
mixture analysis problems expected to be present in protein

. i ! roportions of the different structural elements in the sim-
folding and conformational changes studied by means o . : . : . .
. . ulated intermediate form and in the estimated intermediate
spectrometric techniques.

The multivariate curve resolution method here described pectrum are very similar. These results confirm that the
intermediate spectrum recovered by the proposed MCR-

for both the analysis of a single data matrix or the analySISALS procedure gave the same structural features than the
one used in the data simulation.

a) The information provided by the study of the intermedi-

1.0 3 ate spectrum could not be obtained by the individual study
S 08 E of the spectra simulated at each temperature. For instance,
8 1 in Table 3 the deconvolution of the simulated spectra at the
o 0.6 temperatures 35°, 36°, 37°, and 38°C is shown. At these
® 04 Interm. temperatures the concentration of the intermediate form
2 0.2 - should be maximal; therefore, the influence of the spectrum
0.0 3 ) R A of the intermediate form in the simulated spectrum is also
) maximal. However, in both cases, data sets A and B, only a
25 30 35 40 45 30 35 40 45 50 smooth and gradual destruction of the secondary structure
temperature temperature could be observed with the increasing temperature, showing
that the recovery of the information about the structural
nature of the intermediate form is rather difficult by the
I b) study of individual spectra. Contrarily, the proposed multi-
'g 2 E variate approach allowed the recovery of the intermediate
R E nat. form spectrum and, therefore, allowed the study of its
g 1 E structural features.
o 07
S 4 J\interm.
1 E
2 27 CONCLUSIONS
= -3 denat.
2 4+ r———————— In summary, this study showed that FA-derived methods
190 200 210 220 230 240 like EFA and MCR methods can provide very powerful

tools to analyze the number, nature, concentration, and
evolution of the components needed to explain the spectra

FIGURE 8 Concentration profiles) and individual spectrabj recov- CorrESpondmg to a protein fOIdmg pathway. If more than

ered in the columnwise augmented simultaneous ALS analysis of data sef¥/0 component; (the nati\'/e and unordered forms) are
Aand C. needed to explain the evolution of the spectra, the resolution

A(nm)
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TABLE 3 Comparison between the structure present in the simulated intermediate and the secondary structure obtained after
deconvolution of the estimated intermediate spectrum of both data sets, A and B. The deconvolution of spectra corresponding
to the range of temperatures 35°-38°C are also shown

Data Set A Data Set B
Simulated Estimated Simulated Estimated
Intermediate  Intermediate 38° 37° 36° 35° Intermediate Intermediate 38° 37° 36° 35°
a-Helix 35 35.08 1845 2240 26.50 30.52 5 5.63 9.45 13.38 17.50 21.54
B-Sheet 5 5.53 9.67 13.61 1740 21.48 35 33.42 18.67 22.63 26.40 30.50
B-Turns 16 16.31 15.81 16.16 16.58 16.83 16 16.27 15.84 16.15 16.55 16.80
Random 44 43.08 56.06 47.83 39.52 31.18 44 44.68 56.03 47.82 39.52 31.21

Deconvolution was performed by simple least-squares data fitting using spectra described byeCila(iP78) as a basis.

of the spectrum corresponding to the intermediate form ca®ampp, H., M. Maeder, Ch. Meyer, and A. D. Zuberbuhler. 1986. Calcu-

be achieved using the MCR-ALS procedure proposed here lation of equilibrium constants from multiwavelength spectroscopic data
" model-free least-squares refinement by use of evolving factor analysis.

Posterior analysis of this spectrum yields an important Tgjanta.33:943-951.
amount of information about the secondary structure of th&solub, G. H., and Ch. F. Van Loan. 1989. Matrix computation. The Johns
possible intermediates. Hopkins University Press, Baltimore.

The total resolution of the intermediate forms by MCR is Izquierdo-Ridorsa, A., J. Saurina, S. Hernandez-Casou, and R. Tauler.

. - . . s e . 1997. Second order multivariate curve resolution applied to rank defi-
only possible if these intermediate forms exist in solution cient data obtained from acid-base spectrophotometric titrations of mix-

enough time to affect the response obtained by the tech- tures of nucleic baseShemometrics Intell. Lab. SyS8:183-196.
niques used in the structural analysis of proteins (CD, flukeller, H. R., and D. L. Massart. 1991. Peak purity control in liquid
orescence spectroscopy, or NMR). However, transient chromatography with photodiode array detection by fixed size moving

structures can be stabilized in solution in partially denatur- window evolving factor analysisinal. Chim. Acta246:379-390.
P y Lawson, C. L., and R. J. Hanson. 1974. Solving Least Squares Problems.

ing conditions, allowing their detection and resolution by MCR ' prentice-Hall, Englewood Cliffs, NJ.
even if the intermediates are present at low concentrations. | awton, W. H., and E. A. Sylvestre. 1971. Self-modeling curve resolution.
Technometrics13:617—633.

] ] .. Liang, Y.Z., O. M Kvalheim, and R. Manne. 1993. White, gray and black
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