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Points of view analysis (PVA), proposed by Tucker and Messick in 1963, was one of the 
first methods to deal explicitly with individual differences in multidimensional scaling, but at 
some point was apparently superceded by the weighted Euclidean model, well-known as the 
Carroll and Chang INDSCAL model. This paper argues that the idea behind points of view 
analysis deserves new attention, especially as a technique to analyze group differences. A 
procedure is proposed that can be viewed as a streamlined, integrated version of the Tucker and 
Messick Process, which consisted of a number of separate steps. At the same time, our pro- 
cedure can be regarded as a particularly constrained weighted Euclidean model. While fitting 
the model, two types of nonlinear data transformations are feasible, either for given dissimi- 
larities, or for variables from which the dissimilarities are derived. Various applications are 
discussed, where the two types of transformation can be mixed in the same analysis; a quadratic 
assignment framework is used to evaluate the results. 

Key words: points of view, individual differences, group differences, nonlinear multivariate 
analysis, nonmetric multidimensional scaling, distance components, composite dissimilarities, 
variable clustering. 

1. Introduction 

Points of view analysis (PVA) as proposed by Tucker and Messick (1963) was one 
of the first methods that sought a compromise between two approaches to the multi- 
dimensional scaling (MDS) analysis of dissimilarity data for objects or stimuli obtained 
from different individuals (sources). One approach was based on group averages, where 
groups were chosen a priori; the other was an analysis on an individual level. The 
objective of a points of view analysis is to obtain different multidimensional spaces for 
different groups of individuals, each having a particular viewpoint about the object 
interrelationships; the groups have to be empirically derived. Before summarizing the 
Tucker and Messick approach, and the issues that were raised with respect to the 
procedure, some preliminary notation must be given. 

Dissimilarity data are available for N objects, obtained from M > 1 different 
sources or individuals, m = 1 . . . .  , M. The dissimilarity data may be represented in 
two different forms; the first is a symmetric matrix A m = {~ijm}, of order N x N,  
containing the dissimilarities ~ijm between pairs of objects {i, j} according to source m. 
We assume Am is normalized so that the sum of squares of the off-diagonal elements is 
2N. The alternative representation is a vector 8m, of order l, where l = N ( N  - 1)/2, 
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containing the dissimilarities ~ijm for each object pair for which i < j ;  here, the sum of  
squares of  the elements is set equal to N.  

The index set {1, . . . ,  M} is assumed to be partit ioned into subsets Js,  s = 
1 ,  . . . ,  r ,  giving the sources that form the s-th group; M s  indicates the number  of  
indices in Js- An important  feature of  the procedure  is that the partitioning of  the 
sources into groups is not known a priori. For  each of  the r groups a representat ion 
space Xs is sought; the dimensionality of  Xs is assumed to be Ps ,  and the rows of  X s 
give the coordinates for  the N objects in the representat ion space for group s. 

A squared distance between a pair of  objects {i, j} in X s is defined by 

d~.(Xs) = (ei - e j ) ' X s X ' s ( e i  - ej) ,  

whe'fe e i is the i-th column of  the N × N identity matrix I. Applying the squared 
distance function, D2(.), to map coordinates X s , into squared distances gives the matrix 
formulation: 

D2(Xs) = a s l '  + l a ]  - 2XsX~, 

with 1 an N-vec tor  of  all l ' s  and ots an N-vec tor  containing the diagonal elements of  
XsX~. 

Given these preliminaries, the following steps can be distinguished in the original 
Tucker  and Messick (1963) procedure.  The dissimilarities are represented in the vectors  
~m, and are regarded as variables that can be subjected to a principal component  
analysis (PCA) to give principal component  scores in r dimensions, 1 <-- r --< M,  where 
r denotes  the assumed number  of  different points of  view. Each  principal components  
gives a weighted average (linear combination) of  the original M dissimilarity variables. 
Since the principal axes orientation may not be the most appropriate one for displaying 
different viewpoints, a rotation to simple structure is sought. This implies that only the 
s-th group of  variables obtains high loadings on the s-th component ,  while all o ther  
groups get low loadings. Transforming the weights obtained in the PCA accordingly, 
gives a rotated component ,  denoted as 

M 

0s = M  -1 Z amsSm, 
m = l  

s = 1 . . . .  , r ,  where ares is an element of  the transformed weight matrix A = {a,ns} that 
represents  simple structure.  Next ,  the weights in A are used to obtain 

M 

Os = M -1 ~ amsZ~,,, 
m = l  

s = 1, . . .  , r, where each O s is a differently weighted average (linear combination) of  
the matrices z~ m . The final step proposed in Tucker  and Messick (1963) consisted of  r 
separate multidimensional scaling analyses fitting Euclidean distances D(X s) to each of  
the O s . 

Ross (1966) criticized the method; among other  things, he focuses on the possibility 
that a point of  view might not be a linear combination of  judgements  of subjects. Cliff 
(1968), who reviews the method favorably, argues that this criticism can be refuted by 
realizing that Ross misinterprets the intention of  Tucker  and Messick with respect  to 
what a point of view really is: It is not a way of looking at the objects, but  it is a 
structure for  the objects obtained by an MDS. Another  objection by Ross concerns  the 
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fact that an arbitrary linear combination might give negative weights for some dis- 
similarity sources, and could result in a dissimilarity matrix for which no Euclidean 
solution exists. In the procedure that will be described below, it is guaranteed that the 
weights are always positive; moreover, they turn out to be Tucker's (1951) congruence 
coefficients between each separate dissimilarity source and the distances fitted in the 
points of view. 

Carroll and Chang (1970) proposed the INDSCAL model as an alternative to points 
of view analysis; the model is also discussed in Horan (1969) and Bloxom (1978). This 
so-called weighted Euclidean model (we will consider this term and INDSCAL model 
as interchangeable) does not fit weights to the dissimilarity sources, but fits weights for 
the dimensions of an unknown space X common to all sources. Carroll and Chang state 
that PVA is little more powerful than doing separate scalings, and question the fact that 
no explicit assumptions are made about the possible communality of the multidimen- 
sional structures. Since its introduction, the weighted Euclidean model has become the 
dominant model to analyze individual differences. Yet, it is the purpose of the present 
paper to show there is still room for the PVA model, explicitly when one is interested 
in finding subsets of individuals (clusters of sources) that have the same frame of 
reference. Thus, PVA is truly different from doing separate scalings because it is not 
known a priori which sources belong to the same points of view; therefore, we will 
perform a clustering task that assigns the sources to different points of view. 

In the weighted Euclidean model, individual differences are defined on dimensions 
of the common space; points of view are defined on the distances, and the spaces can, 
but need not, be interpreted in terms of dimensions. It is also possible to look at 
clusters, structures, or more and other directions than the principal dimensions. In the 
weighted Euclidean model, the dimensions in X are not constrained to be uncorrelated; 
in a points of view analysis, the distances in the several Xs are not restricted to be 
uncorrelated. Whether multiple points of view are really different or actually very 
similar can be investigated by using quadratic assignment procedures, as discussed, for 
example, in Hubert (1987). 

2. A Comprehensive Objective Function for Points of View Analysis 

In the previous section it was shown that points of view analysis deals with three 
different tasks: the first is to find principal components and weights applying the PCA 
model to given dissimilarity variables; the second is to find an optimal rotation to simple 
structure, and the final task is to find optimal representation spaces for the objects on 
the basis of the rotated components (the composite dissimilarities). In this section a 
least squares loss function will be introduced that integrates these different optimization 
tasks. The loss function is defined on the distances in the representation spaces, and 
thus fits into the STRESS framework, for which Kruskal (1964a, 1964b) and Guttman 
(1968) laid the foundation. 

If tt'll 2 denotes a least squares discrepancy measure such that 

Ilam~ A* - D(Xs)l[ 2 = tr (amsZ~* - D(X~))'(ams A* - D(X~)), 

the PVA loss function can be written as 

r 

STRESS(A;A'~ , . . . ,  A~;X1 , . . . , X r )  = M -1 E E 
s = l m E J ~  

[lamsz~*z - D(Xs)ll 2, (1) 
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which is a function of three sets of parameters. For the moment, consider h~ . . . . .  h ~  
as given, so without loss of generality A* = Am; then the loss function has to be 
minimized over the weight matrix A and the points of view X l , . . . ,  Xr. Since a 
perfect, but trivial, solution is easily obtained by setting A = 0 and Xs = 0, it is 
required, without loss of generality, that tr(XsXs) = I. The loss function must also be 
minimized over A = {ares } U f~, where f~ is the set of all restricted weight matrices that 
give some form of simple structure; explicitly, it is required that a source A* contrib- 
utes to a single point of view, so only one element of the m-th row of A is not equal to 
zero. 

The objective function in (1) will be minimized by constructing a convergent al- 
gorithm using various components from the majorization approach to multidimensional 
scaling (de Leeuw, 1988; de Leeuw & Heiser, 1980; Meulman, 1986). In the following, 
the components of the algorithm will be discussed. 

Fitting the Multidimensional Structures 

The overall minimization problem in (1) can be partitioned into several parts. First 
of all, for fixed A and A~, . . .  , A~ ,  the problem of finding X1, . . . ,  Xr consists of r 
separate MDS tasks. For each group of sources one must minimize 

STRESS(X~) = M -1 ~ IlamsA* - D(X~)ll 2, (2) 
mEJs 

which is a function of X s only. The objective function (2) can be simplified in the 
following way. Define the composite dissimilarity matrix for the sources that constitute 
the s-th group as 

Os = M / I X  a ,~ ,h* ;  
m E J s  

then (2) can be written as 

STRESS(Xs) = X 
mEJ~ 

IlamsA~ - osl l  2 + MslIO~ - D(Xs)ll2], (3) 

where M s indicates the number of sources assigned to group s. The first term on the 
right-hand-side of (3) gives stress due to heterogeneity of sources within group s; the 
second term gives the group stress, with respect to the optimally aggregated dissimi- 
larity matrix Os. 

Because the loss due to heterogeneity is a constant term with respect to X s , (3) is 
minimized by minimizing ItOs - D(Xs)ll 2 over x s . The latter can be done by using the 
majorization algorithm for MDS in its simplest form (e.g., see de Leeuw, 1988). For 
each representation space X s compute, from a starting point Xs °, the Guttman trans- 
form 'Xs: 

Ks -1 o o = N B(Xs)X s. (4) 

The elements of the N x N matrix B(X °) can be defined in terms of the elements of two 
auxiliary matrices: the N × N matrix, o o B (Xs), whose elements are 

b~(Xs°)= Ms1 ~_~ amst~, 
ijm 

rn E ,I ~ 

if i # j and d~j(X~) # O, 

o o du(X~) 
bu(Xs) = O, if dij(X °) = O, 
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and the N x N diagonal matrix B*(X°),  with diagonal elements 

* o bii(X~) = l 'B°(Xs°)ei.  

Then,  

B(X o) B , (Xs  o) o o = - B (Xs). 

The theory of  the majorization algorithm for MDS guarantees that 

l l O s  - D ( ~ s ) l l  2 -< I I o ~  - D ( X ° ) I I  2 

Thus,  by repeatedly computing the Guttman transform, a series of  convergent  config- 
urations is obtained. When STRESS(Xs °) - STRESS(X s) -< e, with e some preset  
small value, the (possibly local) minimum of  (3) will be achieved. In the actual mini- 
mization of  the overall loss function (1), there is no need to converge to the minimum 
of  (3) in each step; as long as the strict inequality STRESS(Xs) < STRESS(Xs °) holds, 
a single Guttman transform Xs suffices to decrease the loss in (1). When the overall 
STRESS(A; AT . . . .  , A ~ ;  Xl ,  • • • ,  Xr) has attained its minimum with respect  to e, it 
must also be true that STRESS(Xs °) - STRESS(~,s) -< e. 

Assigning the Sources to Different Points of  View 

The second step in the algorithmic scheme should minimize (1) over  A E 12, for  
fixed AT, • • • ,  A ~  and XI,  • • • ,  Xr. In this paper, we explicitly require that the index 
sets Js are mutually exclusive, so that each dissimilarity source contributes to only one 
point of  view, but other  approaches are also possible. To solve for A, first construct  A, 
minimizing 

• M 

STRESS(A)  = M - '  ~ ~'~ llamsA* - D(Xs)ll 2, 
s = l m = l  

over  A unrestricted. By setting the partial derivatives with respect  to ares equal to zero,  
one obtains 

ares = (2N) -I  tr (A*D(Xs) ) .  (5) 

(The dissimilarity matrices were assumed to be normalized so that the sum of  squares 
of  the elements is 2N.)  The estimates in (5) are positive by definition, and because 
tr (XsXs) = 1, the sum of squares of  the elements in D(X s) is equal to 2N,  so that (5) 
gives Tucker ' s  (1951) congruence coefficient between the individual dissimilarities and 
the distances in the s-th point of  view. The congruence coefficient is defined on normed 
vectors of  raw scores,  it is an association coefficient for ratio scales, and reflects the 
degree to which two variables are identical up to a positive multiplicative transforma- 
tion. Therefore ,  it may also be called the coefficient of  proportionality (Zegers & ten 
Berge, 1985). When dissimilarities are represented i n / -vec to r s  8 *  and distances in 
/-vectors d(Xs) = {dij(Xs) for i < j} that contain the lower diagonal elements of  the 
matrix D(X s) in some predetermined order,  then 8 ~  8 *  = d(Xs) 'd(Xs) = N.  Now,  
the congruence coefficient between source rn and point of  view s is given by 
N- 18~ d(Xs). 

When each source is assigned to only one group, the index set {1, . . .  , M} must 
be partit ioned into nonoverlapping subsets; in that case the constraints on the weight 
matrix A can be written in the form A = WG, where W is a diagonal matrix, of  order  
M × M, containing a single weight Wmm for each source A *  on its diagonal, and G is 
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a binary and orthogonal matrix, of  order  M × r, that assigns each source z~* to one of  
the r groups. So 

IIA - WGII 2, 

is minimized over  W and G. This function, which finds nonoverlapping clusters of  
dissimilarity sources A m , can be fitted row after row. The diagonal elements of  W are 
found as Wmm - = max (~,nl, • • • ,  Amr); in the (unlikely) case that some values in the 
m-th row of  A are exactly equal, we would need an " u n t i e "  procedure.  Next ,  G is 
obtained by  setting gins = 1 if ares = W,nm, and 0 otherwise,  and the restricted weight 
matrix is set to A = WG. Because the weights A are a function of  dissimilarities and 
distances (in (5)), the result of  the allocation of  sources to groups is invariant over  
rotation of  the axes in the point of  view spaces. 

3. Nonlinear Generalizations 

In the previous section it was described how the general loss function (1) is min- 
imized over  X1, • . . ,  Xr and A; in this section nonlinear generalizations (i.e., finding 
the optimal A * )  will be discussed. There  are two different approaches.  First,  the 
relation with Girl's (1990) approach to nonlinear principal components  analysis will be 
considered; it will be shown that this approach,  when applied to distance variables, 
reduces to nonmetric scaling. Next ,  a second form of  transformation will be proposed,  
originating from the distance approach to nonlinear multivariate analysis (Meulman, 
1986, 1992). Finally, the two possibilities will be combined. 

In Girl (1990) a system of  nonlinear MVA techniques is developed that has 
the notion of  homogenei ty as starting point. In a principal components  analysis, the 
N × M data matrix Z is analyzed, whose columns are defined by N-vec to r s  zm, 
m = 1, . • . ,  M,  that contain observations on the variables assumed to have means of  
zero and sums of  squares of  one. The measurements  on the objects for the M variables 
define the rows in Z. In the Girl system, a nonlinear PCA in r dimensions can be written 
in the form of  the loss function: 

r M 

STRIFE(q1 , .  • .,qM;Xl,. • .,x~;A) = M-1  ~ 
s = l m = l  

II ams q m - -  XS II 2, (6) 

that has to be minimized over  X = {x 1 , . . . ,  Xr}, constrained so that X'X = I, over  
A = {ares}, and over  ql . . . .  , qM, satisfying qmqm = 1 and qm E Fro, where  Fm 
indicates the set of  admissible transformations of  the given variable z m . 

The class of transformations may be defined differently for  each variable Zm, and 
includes nominal transformations (that preserve equal values in z m by forcing ties in 
qm), monotonic  transformations (that maintain the order  of  the elements of  Zm in qm), 
and linear transformations (which implies setting qm = Zm, since it was required that 
qm qm = 1). The use of  the loss function in (6) suggests that each weighted t ransformed 
variable amsqm should resemble the unknown xs as closely as possible, where x s turns 
out to be the normalized s- th principal component  (Girl, I990, chap. 3). 

Transformation of  the variables in PCA can be applied straightforwardly to points 
of  view analysis, when the latter is regarded as a components  analysis of  dissimilarity 
variables. When 6 *  denotes the optimal transformation of  a given dissimilarity variable 
6 m, then (6) could be viewed as a nonlinear variety of  the original PVA procedure  
(Verboon & van der Kloot,  1989), replacing qrn by 6 *  and x s by 0 s . The weight matrix 
A will in general not give a simple structure, but as is remarked in Girl (1990, chap. 4 
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& 10), it is possible to generalize (6) to restricted {ams} ,  requiring, for instance, some 
ares to be zero. 

When the variables are dissimilarities, the components are optimal with respect to 
replacing the M variables 8 *  by a fewer number of (latent) dissimilarity variables. The 
particular linear combination, however, will in general not be optimal for the final step 
in a PVA (i.e., obtaining a low-dimensional space in which the distances between the 
objects resemble the composite dissimilarities in xs as closely as possible). Therefore, 
we propose to find optimal distance components, minimizing 

r 

S T R E S S ( 6 ] , . . . , 8 ~ ; X ~ , . . . , X r ; A )  = M -1 ~ ~ IlamsS*m - d(X~)ll 2, (7) 
s=  l m~.J~ 

satisfying 8% 8 *  = N and 8 *  E Am. Here, Am denotes the set of admissible trans- 
formations of 8 m , when the variables are dissimilarities, A m is typically chosen as a set 
of monotonic transformations. The vector d(X s) = {di j (X s) for i < j} contains the 
lower diagonal elements of the matrix D(X s) in some predetermined order, so (7) is a 
special case of the general loss function (1). 

Including general monotonic transformations of the dissimilarities brings us to the 
domain of  nonmetric multidimensional scaling, originating from Shepard (1962a; 1962b) 
and Kruskal (1964a; 1964b). In fact, the KYST program (Kruskal, Young, & Seery, 
1973) could be used to find a single point of view, because it fits a single X to several 
optimally transformed dissimilarity matrices, where the latter contribute differentially 
to the aggregated dissimilarity matrix. (In KYST, ams is absorbed in * 8 m, i.e., the latter 
is not normalized.) So (7) can also be viewed as a generalization of KYST, where 
multiple configurations (points of view) are found by applying cluster restrictions to A. 

The transformed dissimilarities are called pseudo-distances, and are usually re- 
stricted to be monotonic with the given vector 8 m . When ~m denotes the unrestricted 
estimate, obtained by setting partial derivatives with respect to 8 *  in (7) equal to zero, 

d(Xs) 
~ m = - - i f m ~ J s ,  

ares 

it is easy to show that we minimize (7) by minimizing 

Ilgm - 8 " t l  2, 

over 8 *  ~ A m , satisfying 8% 8 *  = N, where A m denotes the set of admissible 
monotonic transformations of 8 m . A m can be chosen as the set of general monotonic 
transformations as in Kruskal (1964a, 1964b), but another possibility is to choose A m as 
the set of monotonic spline transformations of a particular degree, with a prechosen 
number of knots, as in Ramsay (1982a, 1982b). 

The second nonlinear generalization is of a different nature. Considering the loss 
function (6) in the analysis of the data matrix Z, instead of approximating amsqm 
directly, one can approximate D(amsqm),  the set of distances generated by a weighted 
variable. This approach is consistent with Meulman (1992), and applied to PVA it 
implies the minimization of 

r 

STRESS(q1 , . . . , qM;Xj  , . . . ,Mr ,A)  = M -~ ~ 
s = l m E J ~  

IID(amsqm) - D(Xs)ll 2. (8) 
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Due to the homogeneity of the Euclidean distance function, D(amsqm) = amsD(qm),  
and by setting A* = D(qm), (8) turns into another special case of (1). 

The optimal transformations of the variables are obtained by the following proce- 
dure, derived from the majorization algorithm for MDS with restrictions on the con- 
figuration (de Leeuw & Heiser, 1980). In the minimization of (8), the representation 
spaces X s generate target values dij(X s) that have to be approximated, and qm is 
considered a restricted one-dimensional configuration. When qO denotes a starting 
point that satisfies the constraints, the unrestricted estimate elm is obtained by com- 
puting the so-called reversed Guttman transform (Meulman, 1986) defined by analogy 
with (4) as 

e r a  --1 O O = N B(qm)qm, 

where 

B(q °) = B*(q °) - BO(q°). 

Here, the elements of B°(qm °) are given by 

dij(Xs) 
o o = if m E Js, i # j  and dij(q°m)Y~0; bij (am) dij(qO) ' 

O O bij(qm) = 0, if dij(q °) = 0, 

and the diagonal elements of B*(qm °) as 

b *  z Ox ii tqm) = I 'B  °(q°)ei. 

The basic theory of the majorization algorithm implies that 

[[amsD(~m) - D(Xs)[[ 2 -< I[amsD(q °) - D(Xs)[[ 2 

Using the results from de Leeuw and Heiser (1980), it can be shown that also 

[lamsD(qm) - D(x~)ll a ~ llam, D(qO) _ D(Xs)[[ 2, 

when 

£1m = argmin ]l~l,~ - qmll 2, 

where the minimization is over qm E Fro, satisfying qmqm = 1, with F m the set of all 
admissible transformations of a given variable z m . As in (6) the transformations may be 
nominal (preserving ties), monotonic (preserving order), or linear (setting qm = Zm). 
The normalization qmqm = I is equivalent to v m v  m ' B *  'R* = N a n d  ~ i ~ . j ~ j  2 = 2N.  

In this application of PVA, the sources A* are generated by the variables, the 
columns of the transformed multivariate data matrix Q = {q~, • • . ,  qM}, and different 
subsets of variables are assumed to generate different viewpoints about the interrela- 
tionships between the objects, the rows of Q. The squared weights in A could be viewed 
as a replacement for the squared component loadings in an ordinary principal compo- 
nents analysis, and their means as equivalent to the eigenvalues. In fact, the STRESS 
in PVA equals 1 ~..m~,s 2 - -  a m $  • 

Combining (7), where dissimilarities are transformed, and (8), where variables are 
transformed, in the form of the general objective function (1), creates the possibility of 
analyzing mixtures of data that consist of dissimilarities and multivariate data for the 
same set of N objects. I f a  multivariate data matrix Z is available at the outset, one still 
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has the choice of considering each A*  either as a monotonic transformation of D(z m), 
or as D(qm), with either nominal, ordinal, or numerical transformations for qm. 

4. Points of View Analysis Regarded as a Constrained Weighted Euclidean Model 

The model discussed above has a very particular relation with the weighted Eu- 
clidean model. Due to the normalization .2 d 2 ~ . i ~ . j ~ i j r n  = ~ i ~ j  i j ( X s )  = 2N, and the 
homogeneity of the distance function, STRESS can be written as 

STRESS = M -1 E E 
s = l m E J s  

Ilam~A* - D(X~)ll 2 

= M -1 Ila*m - D(am XAII 2 
s = l m E J s  

Furthermore, if one defines a Ps × Ps diagonal matrix Cm(s) with all diagonal elements 
equal to ares  , then 

M-~ E E I lA*m-D(amsXs)l l2=M-1 ~ E IlA*m-D(XsCm(s))ll 2. 
s =  l m ~ J s  s =  l m E J ,  

Now, for instance, consider the situation with two points of view, so s = 1, 2. Define 
the N × p matrix X, where p = (Pl  + P2), with the dimensions from X1 and X 2. Also, 
define Cm as a p × p diagonal matrix, with the first P l diagonal elements equal to aml 
and the next P2 diagonal elements equal to am2. Then, 

r M 

M -l ~ ~ Ila*  - O(X~Cm(~))ll 2 = M -1 ~'~ Ila*m - D ( X C m ) l l  2, 
s =  I m E J s  m = 1 

where the term on the right-hand-side gives the weighted Euclidean model in the 
STRESS framework. By the definition of A in our PVA, either aml or am2 = 0, so the 
matrices Cm have a very particular structure. The diagonal elements of each Cm can be 
collected in the rows of an M x p matrix; for a hypothetical analysis with two points 
of view, each with two dimensions, the structure of the corresponding INDSCAL 
weights are given in Table 1. 

So, individual weights are different within a group for which a separate point of 
view is fitted, but the dimension weights are equal (we assumed the configurations Xs 
to have a certain shape; if instead the dimensions would be given equal sums of squares, 
the corresponding weights would be proportional). A quite different model for groups 
using the weighted Euclidean framework has recently been proposed by Winsberg and 
De Soete (in press). In their so-called latent class model, the weights are equal within 
groups and different across dimensions. For a comparison with our restricted model, 
the corresponding INDSCAL weight structure is given at the right-hand-side of Table 
I. Further research is needed to investigate whether it would be worthwhile to combine 
features from the two approaches. 

5. Points of View Analysis in Action 

To discuss the properties of PVA as presented in this paper in more detail, data will 
be analyzed that were obtained from a questionnaire study among the members of  the 
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G1 

TABLE 1 
Constrained INDSCAL Weight Patterns for Not-normalized Dimensions in X 
According to Two Different Group Models (Groups are indicated by GI, G2) 

II] I I I I I I  I i H I I I I I I  I 

Points of view approach Latent class approach 

Dimension Dimension 
1 2 3 4 1 2 3 4 

all all 0 0 
fl21 fl21 0 0 

am1 am1 0 0 G1 

aM~ 1 aM 11 0 0 

all a12 a13 a14 
all a12 a13 a14 

all a12 a13 a14 

all a12 a13 a14 

0 0 a(Ml+l)2 a(Ml+l)2 a21 a22 a23 a24 

G2 0 0 am2 am2 G2 ~1 a ~  am a ~  

0 0 aM22 aM22 a21 a22 a23 a24 

Second Chamber of the Dutch Parliament in 197%1980 (the data were kindly made 
available by the Department of Political Science of the University of Leiden). In this 
study, 139 of the 150 members of the parliament (MP's) participated; they belong to 11 
different political parties, and a short description is given in Table 2. From the extensive 
questionnaire, several variables were chosen for different applications of PVA, the data 
always pertaining to the same set of 139 MP's. The parties in Table 2 are ordered by 
using averages within parties derived from a variable that gives the position that the 
MP's assigned themselves to on a political left-right scale, with a range from 1 (ex- 
tremely left) to 9 (extremely right). 

In the first application, data are analyzed that give the MP's position with respect 
to 8 political issues, measured by self-ratings on a 9-point scale. The lower and upper 
end of the scales for the political issues is given in Table 3, as well as the marginal 
frequencies of the categories. In the interpretation of the results, the skewness of some 
of the distributions of the MP's over the categories should be taken into account. In the 
second application, data are used that were expressed in values on so-called sympathy 
scales, ranging from 0 (extremely unappealing) to 100 (extremely appealing): each MP 
gave a score to each of the parties residing in Parliament in 1979 (described in Table 2). 

Analysis o f  the Political Issues 
For these data a points of view analysis is applied that accommodates the two 

different types of nonlinear transformations. Two natural questions arise when analyz- 
ing political issues: first, whether they can be captured adequately in a single point of 
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TABLE 2 
Political Parties in the Dutch Parliament in 1979-1980, 

Party Membership of  the Respondents, and Mean Self Rating. within Parties 
on the Left (1)-Right (9) Scale in the Questionnaire 

Number of  Mean 
Label Party Description Respondents Left-Right 

CPN Communists 0 
2 PSP Pacifistic socialists 1 1.00 
3 PPR Radicals 3 1.33 
4 PvdA Social democrats 53 2.70 
5 DS70 Social democrats (economically conservative) 1 3.00 
6 D66 Liberals (economically progressive) 8 3.25 
7 ARP Protestants 12 4.00 
8 KVP Catholics 24 4.21 
9 CHU Protestants 9 5.00 

10 VVD Liberals (economically conservative) 25 5.04 
11 GPV Very conservative Calvinists 1 7.00 
12 SGP Very conservative Calvinists 2 8.50 

BP Farmers Party 0 
CDA Mer~er of ARP, KVP and CHU 

view (dominated by the left-right dimension), or do they require more than one; sec- 
ondly, whether parties are homogeneous with respect to the positions that their MP's 
have on the various issues. To include party membership in the analysis, an indicator 
matrix B was constructed, with N = 139 rows and 11 columns, indicating for each MP 
to which of the 11 parties (s)he belonged. From the indicator matrix B, dissimilarities 
between the MP's were derived; although any dissimilarity measure could have been 
considered, the chi-square distance was selected that is also used in homogeneity 
analysis (or multiple correspondence analysis). The particular use here is similar to 
Girl's (1990) approach to principal components analysis, being a mixture of PCA as in 
(6) and homogeneity analysis. The squared x2-distance between two MP's i and j is 
defined by 

x~(B) = (el - e j ) 'BM-1B'(e i  - ej) = d/~(BM-l/2), (9) 

where the matrix M-1 = (B'B)-I is a diagonal matrix that has the inverse of the column 
marginals of B on its diagonal. 

Because all dissimilarities between MP's that belong to the same party are zero, 
and all dissimilarities between the MP's of two different parties are equal, many ties 
exist in D(BM -1/2) = {Xi2(B)} 1/2. Therefore, the dissimilarities were transformed 
monotonically with Kruskal's primary approach to ties that allows ties in the data to 
become untied in the transformation. Thus, within-party pseudo-distances remain 
smaller than between-parties pseudo-distances, and the latter are monotonic with the 
original chi-square distances. 

By contrast, the 8 political issue variables were treated as follows. We chose to 
define A*  as D(qm) as in (8) to find a transformation of the variables; although other 
monotonic transformations of the data in z m could have been considered, to obtain 
smooth transformations, F m w a s  defined as the set of monotonic spline transformations 
(as in the approach to PCA in Ramsay, 1989; Winsberg & Ramsay, 1983). Second- 
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Issue 

TABLE 3 
Political Issues in the Questionnaire 

, ,  , , , , ,  

Lower End (1) ......................... (9) Upper End 

1 Develop- 
ment aid 

2 Abortion 

3 Law & 
Order 

4 Income 
Differences 

5 Employees' 
Participation 

6 Taxes 

7 Armies 

The government should 
spend much more money on 
development aid 

The government should 
spend much less money 
on development aid 

The government should 
prohibit abortion under 
all circumstances 

Every woman has the 
right to decide for 
herself on this matter 

The government takes too 
rigorous measures against dis- 
turbances of the Queen's peace 

The differences in income 
should remain as they are 

The government should 
take even more rigorous 
measures 

The differences in 
income should become 
much smaller 

Only management should 
decide in matters that concern 
the company 

Taxes should be raised so 
that more money will become 
available for public provisions 

The government should insist 
on reducing armed forces, even 
if this would imply risk 

Employees should have 
their say in decisions 

Taxes should be lowered 
so that everybody can 
decide for him/herself 

The government should 
maintain strong armed 
forces. 

8 Nuclear The number of nuclear power 
Energy plants should be increased 

rapidly 
Marginal Frequencies of Categories 

Issue 1 2 3 4 5 6 7 8 9 

Nuclear power plants 
should not be built at all 

1 29 35 25 20 24 2 3 1 0 

2 3 14 6 7 11 7 16 28 47 

3 6 11 23 23 46 14 12 3 1 

4 1 4 1 9 12 23 31 34 24 

5 0 1 0 3 9 10 28 45 43 

6 11 11 29 23 25 19 14 5 2 

7 16 13 17 21 25 12 16 7 10 

8 2 3 10 18 24 12 20 27 23 

degree splines with two interior knots were used, which fixes the number of parameters 
fitted for each variable to four. 

Figure 1 gives the transformation of the issue variables. It is important to scrutinize 
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0.2 Development Aid 0.2 Abortion 

0.0 0.0 

-0.1 -0 .1 .  

-0.2 -0.2 

1 2 3 4 5 6 7 8 9  1 2 3 4 5 6 7 8 9  

Income Differences Employees' Participation 
0.2 0.2. °lyl° j 0.0 0.0 . . . .  

-0.1 -0.1 , 

-0.2 . . . . . . . . .  -0.2 . . . . . . . . .  
1 2 3 4 5 6 7 8 9  1 2 3 4 5 6 7 8 9  

Armi~ NuclearEnergy 
0.2 0.2 

0.0 0.01 

-0.1 -0.11 

-0.2 -0.2 

Law & Order 
0.2 °ly ! 0.0 . 

-0.1 

-0.2 . . . . . . . . .  

1 2 3 4 5 6 7 8 9  

Taxes 
0.2 

1 2 3 4 5 6 7 8 9  

1 2 3 4 5 6 7 8 9  1 2 3 4 5 6 7 8 9  
FIGURE 1. 

Analysis of political issues and party membership: Optimal monotonic spline transformations for 8 political 
issues. 

these, because the values on the original scales were equally-spaced, but generally this 
may not be true after the monotonic spline transformations. When the transformation 
is a concave function as for Development Aid, the lower end of the scale (much more 
money) is emphasized, while the upper end (less money) is de-emphasized. When the 
transformation is a convex function as for Employees '  Participation, the lower end 
(only management should decide) is de-emphasized; the upper end (employees should 
have their say too) is emphasized, probably because this is not a very extreme state- 
ment. When the transformations are viewed together with the marginal frequencies of  
the categories in Table 3, the curves are steep when the associated marginal frequencies 
are large, while the curves are flat when the marginal frequencies are small (compare 
the concave function for Development Aid, with marginal frequencies 29, 35, 25 for the 
categories 1, 2, 3 and marginal frequencies 2, 3, I for the categories 6, 7, 8); in short, 
it turns out that the optimal spline transformations follow the cumulative frequency 
distributions very closely. 

Two points of view were considered; the first displays the left-right dimension, but 
in the second, the positions of the MP's vis-a-vis political issues do not correlate well 
with the left-right continuum. Table 4 gives the weights and the badness-of-fit values for 
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TABLE 4 
Weights and Loss for Each Source, and 

Partitioned Loss: Total Stress = Heterogeneity + Group Stress 

First Point 
of  View 

Sovree Weight 
Law & O r d e r  0.900 
Income Differences 0.893 
Employees'  Participation 0.829 
Taxes 0.902 
Armies 0.896 
Nuclear Energy 0.893 
Development aid 
Abortion 
Party Membership 

Total 
Stress 

First point o f  view 0.144 
Second point o f  view 0.057 
Overall 0.201 

Second Point 
of View 
Weiuht 

0.895 
0.901 
0.933 
Hetero- 

0.104 
0.043 
0.147 

Loss in Applicable 
Point of View 

Stress Heteroueneitv 
0.190 0.144 
0.203 0.149 
0.313 0.202 
0.187 0.148 
0.197 0.145 
0.202 0.147 
0.199 0.164 
0.189 0.158 
0.129 0,068 

Group Mean 
Stress 
0.040 0.886 
0.014 0.907 
0.054 0.894 

each source. The overall stress value, described in (1), is the sum of the partitioned 
stress values given in (3). The mean square of the weights (replacing the sum of the 
eigenvalues in an ordinary PCA) is 0.799, which is 1---Overall Stress; the Group Stress 
in (3) is 0.040 for the first viewpoint and 0.014 for the second viewpoint, and the Stress 
due to Heterogeneity within groups is 0.104 and 0.043, respectively. 

The two points of view found by the analysis are as follows (the weights are given 
in parenthesis): the first is formed by the variables Law & Order (0.90), Income Dif- 
ferences (0.89), Employees' Participation (0.83), Taxes (0.90), Armies (0.90) and Nu- 
clear Energy (0.89), and the second by Development Aid (0.90) and Abortion (0.90); the 
monotonically transformed dissimilarities derived from party membership were fitted 
(weight: 0.93) with the second point of view. 

The first point of view is represented in Figure 2; the 139 MP's are represented by 
points with the labels from Table 2 that indicate their party membership. Also, points 
are given for the parties: these are the centroids of individual MP's who belong to the 
same party. Finally, the political issues that constitute the first point of view are rep- 
resented as vectors, whose coordinates are the correlations between the transformed 
variables and the two dimensions. 

The space is in principal axes position; since the eigenvalues are 0.85 and 0.15, 
there is a very dominant first dimension. When the order of the parties along this 
dimension is compared with the ordering from left to right in Table 2, it might be 
considered closely related to the assumed left-right continuum (in contrast with the self 
rating, DS70 is positioned on the conservative side). MP's that are positioned left from 
the origin are more likely to feel that income differences should be smaller, and nuclear 
power plants should not be built when compared to MP's right from the origin; also, 
they feel stronger that armies should be reduced, and that the government takes too 
rigorous action against disturbances of the peace. To a smaller extent, MP's right from 
the origin felt that with respect to Employees' Participation, only Management should 
decide, while those to the left endorsed Taxes being raised for public provisions. 
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0.1-  

0 . 0 -  
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,~6 4 9 7 
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8 
I I I 

-0.1 0.0 0.1 
FIGURE 2. 

Analysis of political issues and party membership: Multidimensional structure according to Employees' 
Participation and Taxes versus Income Differences, Nuclear Energy, Law & Order, and Armies. 

The second point of view separates Abortion and Development Aid from the other 
political issues; Figure 3 gives the positions of the MP's. The configuration is certainly 
not one-dimensional (the eigenvalues are 0.52 and 0.48). Abortion separates the de- 
nominational parties GPV, SGP, CHU, KVP, and ARP (that feel that abortion should 
be prohibited) from the parties that feel that every woman has the right to decide for 
herself: these parties are the left-wing PSP, PPR, PvdA, and D66, but also the eco- 
nomically conservative VVD and DS70. The extreme positions towards Development 
Aid are taken by the PPR and PSP (much more money), and DS70, SGP, and GPV (less 
money); a small distinction is found between the ARP, CHU, KVP (more money), and 
PvdA and D66 (somewhat more). None of the two directions given by the issue vari- 
ables display the left-right dimension. And the compromise, the first dimension, posi- 
tions the (conservative) VVD to the left of ARP, CHU, and KVP, which is considerably 
different from its position on the left-right dimension in Figure 2. 

As is clear from Figure 3, there is quite some heterogeneity within parties; this 
heterogeneity can be inspected more closely through the transformed dissimilarities 
according to party membership. Because ties were allowed to be untied, within-party 
pseudo-distances will differ from the original zero dissimilarities, and large discrepan- 
cies from zero indicate large heterogeneity. The within-party pseudo-distances were 
grouped into seven classes, and the frequencies for each class computed. The cumu- 
lative frequency distributions (expressed in proportions) are displayed in Figure 4 (the 
small parties were omitted from this graph). Compared to KVP and CHU, PvdA and 
VVD are more homogeneous and ARP is less so, while D66 displays a remarkable 
heterogeneity. 
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FIGURE 3. 
Analysis of political issues and party membership: Multidimensional structure according to Abortion, De- 

velopment Aid, and Party Membership• 
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Cumulative frequency distributions displaying heterogeneity within parties, derived from grouped within- 
party pseudo-distances. Proportions (vertical axis) versus pseudo-distances (horizontal axis). 
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S o u r c e  # 
PSP  T 
PPR 3 
PvdA 52 
DS70 0 
1366 7 
ARP 0 
KVP 0 
C H U  0 
VVD 1 
GPV 0 
SGP  0 

TABLE 5 
Distribution of  MP's over Two Points of  View, Mean Weights and 

Partitioned Loss: Total Stress = Heterogeiaeity + Group Stress 
, , , , , ,  

First Point 
o f  View 

Mean Mean 
Weight Stress 
0.886 0.215 
0.930 0.135 
0.930 0.133 

Hetero- 
genei~ 
b.176 
0.112 
0.113 

0.857 0.263 0.199 

0.843 0.289 0.216 

T 6 ~  I-Ietero- 
Stress 

First point of  view 0.070 0.058 
Second point of  view 0.113 0.087 
Overall 0.183 0.145 

Second Point 
o f  View 

Mean Mean Hetero- 
# Weight Stress geneitv 
--0 

0 
1 0.948 0.101 0.106 
1 0.883 0.221 0.157 
1 0.846 0.284 0.191 

12 0.884 0.216 0.165 
24 0.914 0.162 0.135 

9 0.927 0.140 0.124 
24 0.850 0.275 0.197 

1 0.930 0.134 0.118 
2 0.806 0.348 0.235 

Group Mean 
Stress Weight 
0.012 0.9~0 
0.026 0.887 
0.038 0.901 

Analysis of the Sympathy Scales 
The second application concerns the sympathy data. Here we wish to investigate 

whether members of parliament being in different positions in the political spectrum 
possibly have a different system of sympathies towards the other parties. To explore 
this question, the MP's are considered judges of the interrelationships between the 
political parties, so one has to consider the MP's as the columns of the data matrix or 
the variables, and the parties as the rows or the objects. This implies there are 139 
dissimilarity matrices, one for each MP, of order 14 x 14, since there are 14 different 
parties judged (there are 3 more parties than the number of parties for which we have 
MP's, because the CPN and BP MP's did not participate in the questionnaire, and CDA 
only acts as a stimulus party, since it is the result of a merger between ARP, KVP, and 
CHU). In this application, the sympathy scales were treated in a similar way as the 
issue variables in the previous application: not the dissimilarity variables, but the given 
variables were optimally transformed to give distances D(qm), using second-degree 
monotonic splines with one interior knot, which fixes the number of parameters fitted 
for each sympathy scale to three. 

Two points of view were considered; a single point of view clearly did not fit the 
data, and two points of view were considered sufficient in terms of goodness-of-fit. The 
mean squared weight is 0.817 (l--Overall Stress), the Group Stress in (3) is 0.012 for the 
first viewpoint and 0.026 for the second viewpoint, and the Stress due to Heterogeneity 
within groups is 0.058 and 0.087, respectively. Table 5 gives the distribution of the MP's 
over the two points of view, and weights and badness-of-fit values, which have been 
averaged over sources that belong to the same political party. The overall stress value, 
described in (1), is the sum of the partitioned stress values given in (3), and is equal to 
the weighted sum over parties, divided by M, the total number of sources. 
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FIGURE 5. 
First viewpoint in analysis of political sympathy scales: Left-wing point of view. 

The first group is formed by 64 sources and seems to represent the MP's who, 
according to their self ratings, are left from the center in the political spectrum. There 
are 4 exceptions: one member of the PvdA and one member of D66 are in the second 
group and (as in the first example), so is the MP of DS70. But, one member of the VVD, 
whose other 24 MP's are in the second group, is in the first group. In the configurations 
for the point of views, the objects are represented by 14 political party points. 

The first point of view is displayed in Figure 5; it is fitted to the group of sources 
that consists of the MP's of PvdA (52 out of the total 64), and the MP's of PSP, PPR and 
D66, and could be called "the left-wing point of view". The object point for the PvdA 
party is represented at the left-hand-side of the Figure: on the average, the largest 
sympathy in the first point of view is for the PvdA. Next, moving to the right, there are 
two parties that are separated from each other in the second dimension: the PPR which 
is more left-wing than PvdA, and D66 which is more to the center. More distant are the 
even more left-wing PSP, in the second dimension close to the PPR, and the more 
center ARP, in the second dimension closer to D66; next follow the CPN and the VVD. 
Distances become quite large between the PvdA on the one hand, and the denomina- 
tional parties KVP, CHU, GPV, and SGP, on the other. The CDA is located in between 
the three participating parties (but closer to the KVP and CHU than to the ARP). There 
is also little sympathy for DS70, which is understandable since it is a conservative 
secession from the PvdA, and there is no sympathy at all for the very right-wing BP. 
The overall configuration can be captured in an elliptical structure (as drawn in Figure 
5); starting at the point for the CPN, and moving clockwise along the ellipse in the 
direction of the PSP, the left-right order is recovered (see Table 2). The VVD does not 
fit on the ellipse; there is more sympathy for the VVD in the left-wing point of view than 
can be explained from the left-right scale. From a substantive point of view, the polit- 
ical structure can easily be understood by looking at the distances between the political 
parties, but the dimensions cannot be given a politically relevant interpretation. 

Inspecting the data of the MP of the VVD who is in the first group, it turns out that 
this MP ranks the parties almost perfectly in reverse order compared to the average MP 
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Second viewpoint in analysis of political sympathy scales: Center-right-wing point of view. 
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of the PvdA. Compared to the average MP of the VVD, this MP has much less sym- 
pathy for PvdA, D66, and ARP, and much more for GPV and SGP. The MP of the PvdA 
who does not fit into the left-wing point of view, ranks the parties with decreasing 
sympathy as (CDA CHU KVP ARP) (GPV SGP) (VVD D66 PvdA) DS70 PPR (PSP 
CPN BP), where the parentheses indicate tied values. A first conclusion might be that 
the point of view analysis perfectly discovered a coding error in the party membership 
variable; however, this is unlikely considering other data available, so perhaps it should 
be concluded that this MP is changing his or her political affiliation. 

Figure 6 shows the second point of view; it could be called the "center-right-wing 
point of view". The majority of the MP's that adhere to this viewpoint belong to the 
parties that merged into CDA (Christian Democrats); MP's of parties that are more 
conservative are also allocated to this viewpoint. One part of the Christian democrats 
has great sympathy for parties that are more left-wing (PvdA and D66), while the others 
have more sympathy to parties that are more to the right (VVD, GPV, SGP, and DS70). 
There is little sympathy for the small extreme left-wing parties PPR, PSP, and CPN, 
and the extreme right-wing BP. The latter political parties fall outside the ellipse that 
orders the parties from left to right when we start at the D66 point and move counter- 
clockwise towards the ARP; in the center-right-wing point of view there is more sym- 
pathy for the PvdA than can be explained from the left-right scale. 

The major agreement between the two viewpoints seems to be the antipathy to- 
wards the extremely right-wing BP. But, in the left-wing point of view, the distances 
between the BP and CHU, KVP, CDA, SGP, GPV, and DS70 are small, while in the 
center-right-wing point of view they are large. The same is true for the distance between 
CDA and CPN. It is exactly the other way around for the distances between PvdA and 
CHU, KVP, CDA, SGP, GPV, and DS70; in the left-wing point of view they are large, 
and in the center-right-wing point of view they are small. 
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FIGURE 7. 

Ordinary principal components analysis of dissimilarity variables: Component loadings for sources in two 
dimensions. 

Application of Principal Components Analysis to Dissimilarity Variables 

To see how the points of  view analysis has behaved,  the obtained dissimilarity 
variables 8 *  were also analyzed in an ordinary principal components  analysis in two 
dimensions. The component  loadings are displayed in Figure 7, and the sources are 
labeled according to the group structure found in the PVA. 

Basically, the same two clusters are obtained (the arrows that symbolize the two 
points of  view are drawn through the average loadings for each group). Close to the 
horizontal axis, however ,  several sources are found that would have been difficult to 
allocate to one of the two groups on the basis of  their loadings. 

Application of the weighted Euclidean model to the Sympathy Scales 
To study the properties of  the PVA analysis compared to the original weighted 

Euclidean model, the sympathy scales were also analyzed by minimizing the loss func- 
tion 

STRESS(X;  C1, . . .  , C m )  = M -1 

m 

E 
M = I  

I l a ~  - D(XCM)II 2, 

over  the common space X and the diagonal weight matrices C1 . . . .  , C M for  given 
A*  = D(qm) , with the latter again obtained from the points of  view analysis. A special 
purpose algorithm was developed,  based on the majorization approach detailed in 
Heiser  and Stoop (1986). There is some freedom to choose from different, but coherent ,  
normalizations; because we wish the common space to have an explicit shape, the 
weights were normalized so that M -1Y.m C2 = I (this is equivalent to normalized 
dimensions in X, having sum of  squares of  one, and non-normalized weights). 

Since there were 2 × 2 dimensions in the points of  view analysis, the I N D S C A L  
model was first fitted with 4 common dimensions; the stress was 0.145, so the 139 
individual spaces (each using four parameters) fit the data only slightly bet ter  than the 
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FIGURE 8. 
Two canonical correlation analyses of the three INDSCAL dimensions with the two dimensions in the first 
(on the left) and second (on the right) point of view, respectively. Correlations of the original dimensions with 
the canonical variates (linear combinations of the INDSCAL dimensions). 

2 point of view spaces (using 1 parameter per source, with the total stress 0.183). 
However, two of the dimensions of the INDSCAL solution turned out to be highly 
correlated. Therefore, a three-dimensional INDSCAL model was fitted; the stress of 
the solution was 0.158, which is acceptable compared to the four-dimensional solution 
since fewer parameters are fitted. 

To see how the three-dimensional INDSCAL solution relates to each of the two- 
dimensional points of view, two canonical correlation analyses were carried out. The 
correlations of the dimensions with the canonical variates are depicted in Figure 8. At 
the left-hand-side, the relation with the first point of view (POVI) is given; the right- 
hand-side provides the relation with the second point of view (POV2). It is clear that the 
first dimension (P1) in POV1 is the first INDSCAL dimension (II), and the second 
dimension (P2) of POV1 is the (reversed) second INDSCAL dimension (I2). With 
respect to the second point of view, it turns out that I2 is close to P1 in POV2, but the 
third INDSCAL dimension (I3) is in between P1 and P2. Because I2 and I3 are not 
highly correlated, the choice was made to depict the INDSCAL solution in two figures: 
Figure 9 gives I2 versus I1, and Figure I0 displays I3 versus I2. 

Because the sum of squares in the first and second dimension of the INDSCAL 
common space is 0.384 and 0.326, respectively, Figure 9 does not show the clearly 
dominant first dimension of POV1 in Figure 5 (the canonical analysis ignores the size of 
the dimensions). Apart from the size of the second dimension, a very obvious difference 
between the two Figures is the position of the extreme left-wing CPN with respect to 
the extreme right-wing BP. In Figure 9 they are very close; in Figure 5 they are 
separated by the calvinist SGP-GPV cluster. Comparing Figure I0 with Figure 6, we 
especially notice the different position of PvdA: in Figure 6 it is close to D66, and in 
Figure 10 it is close to SGP, DS70 and GPV; the latter is not easy to explain politically. 

The weights from the INDSCAL analysis are depicted in Figure 11; the points are 
labeled with the group structure from PVA. In the graph at the left, the sources in the 
first group are separated from the other group in the first dimension. The sources that 
form the second group are scattered along the second dimension. The graph at the right 
shows the relation between dimension 3 versus 2. Sources in the second group that 
have small weights on the second dimension have large weights on the third dimension, 
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INDSCAL analysis of political sympathy scales: Parties in dimension 2 (vertical axis) versus dimension 1 
(horizontal axis). 

and vice versa, while the first group has small weights for both the second and third 
dimension. There are a few weight patterns that are peculiar, given the PVA group 
structure. Going back to the data, it turned out that these sources did not fit very well 
in the solution. Nevertheless, inspecting the Pearson correlations for both the trans- 
formed sympathy scales and the derived dissimilarity variables, the average correlation 
(ignoring the sign) for these sources with the other sources in the group to which they 
were assigned was larger than the average correlation with the other group. 

To see whether our analysis of PVA as a constrained weighted Euclidean model 
holds, diagnostics have been computed using the group structure from PVA. Table 6 
partitions the total variance ~'-m IlXCm II z into groups x dimensions; also, the average 
weights are given. The normalization of the weights is dependent on the normalization 
of the configuration X. The sum of squares of X is given in the third column; the first 
two columns of weights apply to unnormalized X; the last two columns apply to a 
normalized X. The latter columns clearly show that the average weights in the first two 
PVA dimensions (0.887 and 0.246) are close to the average INDSCAL weights (0.870 
and 0.207) for the first group in Dimensions 1 and 2. PVA Dimensions 3 and 4 (average 
weights 0.820 and 0.338) resemble the average INDSCAL weights for the second group 
(0.713 0.396) in Dimensions 2 and 3. The weights in PVA that are zero by definition, are 
in INDSCAL 0.143 (for the first group on dimension 3) and 0.204 (for the second group 
on dimension I). So, PVA viewed as a constrained weighted Euclidean model seems to 
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FIGURE 10. 
INDSCAL analysis of political sympathy scales: Parties in dimension 3 (vertical axis) versus dimension 2 

(horizontal axis). 

do quite well considering the fact that fewer parameters are fitted (139 + 14 × 4 instead 
of 139 × 3 + 14 × 3). 

Are Multiple Points of View Really Different? 
In an ordinary INDSCAL analysis, the distinction between different groups can be 

investigated afterwards on the basis of the weights pattern (Jones, 1983; Shiffman, 
Reynolds, & Young, 1981). When instead two or more different points of view have 
been obtained, their possible similarity can be investigated by the use of quadratic 
assignment procedures (see Hubert, 1987, for an extensive review). In the analysis of 
the sympathy scales, the similarity between the two spaces is captured in the correla- 
tion between the two distance vectors d(X1 ) and d(X2), which turns out to have a very 
small value of 0.042. To estimate the probability of a correlation as large or larger than 
0.042 occurring by a random displacement of the points, the coordinates in X2 were 
permuted, with the number of random permutations set to 5000. The Monte Carlo 
distribution is given in Table 7; with a p-value of 0.314, there is no evidence of com- 
munality between the two viewpoints. 

For the PVA of the political issues, a choice was made to define the similarity 
between the two point of view spaces on the similarity between the party points. In the 
separate spaces, the party points are the centroids of the MP's who belong to the same 
party. Because the marginal frequencies (the weights assigned to the centroids) are very 
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different, the correlation should take these different frequencies into account. When the 
centroids are given in YI = M-tB'X1 with Y2 = M-1B'X2, with B and M as defined 
in (9), the correlation is considered between d(BY 1) and d(BY2). The observed corre- 
lation is 0.287; the Monte Carlo distribution of the grouped correlations is given in 
Table 8; the p-value is 0.109, so there is no strong evidence that the two sets of 
centroids are giving the same structure. 

A Bootstrap Study o f  PVA and INDSCAL 
To study the stability of both the PVA and the INDSCAL solutions, a bootstrap 

was performed, with I00 bootstrap samples for each technique, where the random 
sampling was done with respect to the M = 139 sources in the data. Table 9 summa- 
rizes the results for object points and dimensions. First, the sum of squared distances 
of each object point to the average of its corresponding I00 bootstrap points is given 

TABLE 6 
Diagnostics for PVA and INDSCAL by Partitioning into Groups x Dimensions 

Across Groups and Dimensions: Total Variance/M = 1 - STRESS 
' 'Y"I" n .  II1' I" q " "  

SSQ Weights Weights 
Variance Coordinates SSQ Unequal SSQ = 1.00 

Dimension G 1 G2 in X G 1 G2 G 1 G2 

PVA 
1 50.451 0.000 0.929 0.920 0.000 0.887 0.000 
2 3.871 0.000 0.071 0.920 0.000 0.246 0.000 
3 0.000 50.638 0.855 0.000 0.855 0.000 0.820 
4 0.000 8.608 0.145 0.000 0.855 0.000 0.338 

1 48.949 4.344 0.383 1.405 0.330 0.870 0.204 
INDSCAL 2 3.660 41.350 0.324 0.364 1.253 0.207 0.713 

3 2.137 16.627 0.135 0.389 1.078 0.143 0.396 
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TABLE 7 
Monte Carlo Distribution of Grouped Correlations 

Between Distances in First Permutation Study 
Sample size of  5000, Observed Correlation is 0.042; 

p-value = 0.314 
II ii 

Class f cf  f/N cf/N 
IIIIIIII IIIIII I I 

.641 - .739 5 5 0.001 0.001 

.491 - .641 22 27 0.004 0.005 

.342 - .491 150 177 0.030 0.035 

.192 - .342 408 585 0.082 0.117 

.042 - .192 987 1572 0.197 0.314 
-.108 - .042 2194 3766 0.439 0.753 
-.258 - - .108 1230 4996 0.246 0.999 
- .290 - - .258 4 5000 0.001 1.000 

(the variance of the two-dimensional coordinates for each object). The total of these 
within-bootstrap-group variances was also partitioned dimensionwise. 

It turns out that object points are more stable in the points of view dimensions than 
in the INDSCAL dimensions, with the third INDSCAL dimension being especially 
unstable. Perhaps it should be concluded that the INDSCAL analysis should be re- 
stricted to two dimensions only; reanalyzing the data gives two dimensions that cor- 
relate almost perfectly with the first two dimensions of the three-dimensional solution. 
The stress is 0.182, which is virtually equal to the stress in PVA, while INDSCAL 
involves more parameters (139 x 2 + 14 × 2) than PVA (139 + 14 x 4). Because the 
shape of the two-dimensional INDSCAL common space is completely spherical, it 
gives us no information about the different viewpoints that different groups of MP's 
have on the structure of the political parties in parliament (of course, the individual 
spaces will show the variation between individual MP's). For displaying group differ- 
ences, we would need additional information, as provided in the PVA model. 

6. Discussion 

The primary purpose of this paper has been to show that the concept of points of 
view analysis is worthwhile for the analysis of heterogeneous sources on a group level. 

TABLE 8 
Monte Carlo Distribution of Grouped Correlations 
Between Distances in Second Permutation Study 

Sample size of  5000, Observed Correlation is 0.287; 
p-value = 0.109 

Class f cf  f/N c f ~  
.496 - .683 79 79 0.016 0.016 
.287 - .496 466 545 0.093 0.109 
.078 - .287 1154 1699 0.231 0.340 

-.131 - .078 1834 3533 0.367 0.707 
- .339 - - .131 1386 4919 0.277 0.984 
-.473 - .339 81 5000 0.016 1.000 
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TABLE 9 
Bootstrap Study of Point of  View Analysis 

and Weighted Euclidean Model (INDSCAL) 
100 Bootstrap Analyses For Each Model 

i , , , , l l l  i ' [ " l Y [ " ? l  i i  i 

Sum of squared distances to average bootstrap coordinates 

Point of  views INDSCAL dimensions 

Source 1 2 1,2 2,3 

CPN 0.020 0.019 0.043 0.126 
PSP 0.021 0.017 0.034 0.158 
PPR 0.013 0.043 0.030 0.204 

PvdA 0.011 0.031 0.021 0.024 
D66 0.013 0.027 0.020 0.052 

ARP 0.013 0.030 0.020 0.082 
KVP 0.008 0.016 0.017 0.047 
CHU 0.010 0.009 0.010 0.040 
CDA 0.010 0.014 0.008 0.062 
VVD 0.022 0.024 0.014 0.033 

DS70 0.075 0.047 0.099 0.061 
GPV 0.017 0.028 0.032 0.029 
SGP 0.020 0.019 0.029 0.033 

BP 0.006 0.021 0.039 0.163 
Total 0.259 0.341 0.451 1.114 

Dimension 1 0.096 0.144 0.127 0.324 
Dimension 2 0.163 0.197 0.324 0.790 

Since sources may be homogeneous within groups and heterogeneous between groups, 
the strength of the points of view analysis concept is in its parsimonious display of 
objects in r ~ 2 points of view. 

Tucker and Messick's original procedure was called an individual differences 
model; we agree with Carroll and Chang (1970) that if the objective of analysis is 
individual differences scaling, application of the weighted Euclidean or INDSCAL 
model would be more appropriate, since individual viewpoints are displayed in separate 
spaces and each individual source has the possibility to be distinct from all other 
sources. As an analysis for groups, the INDSCAL common space may not be the best 
way to display their differences; in fact, the common space does not need to fit any 
group or individual. More restricted INDSCAL models have been proposed, requiring, 
for example, that each individual source may use only t < p dimensions, where p 
denotes the dimensionality of the common space. In this line of thought, the PVA 
procedure proposed in this paper is more restricted: sources that are found to be a 
homogeneous group must use exactly the same t dimensions (with dimension weights 
that are proportional). A mixture of the two models (the weighted Euclidean model 
within different points of view) remains a topic for further research. 

Kiers (1989) discusses the relationship between various approaches to three-way 
scaling from a different perspective. He notes there is resemblance in lay-out between 
Tucker and Messick's original approach and the French method STATIS (based on 
Escoufier, 1973), but finds them clearly different in several respects. From our per- 



JACQUELINE J. MEULMAN AND PETER VERBOON 33 

spective, the similarity is more obvious. Both deal with (dis)similarity matrices, treated 
as variables, from which linear combinations are formed that are subsequently sub- 
jected to a secondary analysis. A basic problem in both the Tucker and Messick pro- 
cedure and STATIS is how to avoid negative weights in a subsequent linear combina- 
tion when the first composite matrix has been taken out (a problem that is not 
encountered in the procedure proposed in this paper). A related approach applied 
directly to given variables is in Escoufier (1988), where it is proposed to find non- 
overlapping subsets of variables to obtain different composites, which is a similar 
objective pursued by imposing the particular constraints on the weights in our proce- 
dure. 

There is also a relationship with what is called "homogeneity analysis as a first 
step" in Girl (1990, chap. 3). Here, categorical variables are quantified in r different 
ways. Next, these r sets of optimally scaled variables are used to obtain r principal 
components solutions in Pr dimensions. Related work on quantifying categorical vari- 
ables in a three-way framework is Saporta (1975), and the extensive review in Kiers 
(1989). 

The procedure described in this paper could be generalized to allow sources to be 
assigned to t points of view, where I -< t < r (giving overlapping clusters). When 
variables are optimally transformed and assigned to more than one point of view, one 
has the choice between identical or possibly different optimal transformations with 
respect to the different points of view. This extension, however, needs further inves- 
tigation with respect to its data analytical merits. Another possible extension would 
allow the given matrices z~ m to be asymmetric. 

In the procedure described, the (dissimilarity) variables were assumed to consti- 
tute different groups for which points of view were fitted. Algebraically, the fitting 
procedure involved a differential aggregation over homogeneous sources that gave 
different composite matrices that were optimal with respect to the Euclidean distances 
to be fitted. It is important to realize that the basic idea of differential aggregation is very 
general, and can be applied to any other multivariate analysis technique, either in a 
two-way or three-way framework. 

The present technique gives overall dissimilarity measures in Os, the result of the 
optimal aggregation over a group of homogeneous sources. When the sources &* are 
homogeneous at the outset, we choose s equal to l, and our procedure will be identical 
to an analysis with the multidimensional scaling program KYST. Other work in the area 
of finding a composite matrix is given in Escoufier (1980) and Gower (1971). A related 
procedure of differential weighting of variables to find an optimal representation is 
found in De Soete, DeSarbo, and Carroll (1985), who simultaneously estimate variable 
importance weights and the corresponding ultrametric tree. The procedure proposed in 
the present paper combines aspects of the work just referenced. 

The individual dissimilarity sources in the analysis may be given directly or may be 
derived. The latter may be from numerical variables, ordinal variables (for which a 
monotonic transformation is fitted) or nominal variables, in which only unordered 
classes of observations are considered. Unordered classes can either be represented 
through new scale values, preserving the class structure, that give a single transforma- 
tion of the categorical variables, or by a more-dimensional representation in the form of 
class-centroids of object points. 

The PVA procedure finds clusters of sources, and weights the sources differen- 
tially. As a bonus, it finds composite dissimilarity matrices. Although a composite 
matrix O s is optimal for least squares Euclidean distance fitting, it could also be ana- 
lyzed afterwards by other techniques, for example by a cluster analysis. 
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