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Abstract

We consider a model for sensory profiling data including translation, rotation and scaling. We

compare two methods to calculate an overall consensus from several data matrices: GPA and

STATIS. These methods are briefly illustrated and explained under our model. A series of

simulations to compare their performance has been carried out. We found significant

differences in performance depending on the variance of random errors and on the

dimensionality of the true underlying consensus. Therefore we investigated on the

dimensionality of the calculated group averages. We found both methods to give too many

dimensions compared to the true consensus. This finding is supported by some theoretical

considerations. Finally we propose a combined approach which takes advantage of both

methods and which gave better results in the simulations.
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1 Introduction

When analysing sensory profiling data several problems unknown in other fields occur. In

particular there are three main variations: the assessors use different ranges of scale, they

might confuse some of the attributes and they have different zeroes (for details see Arnold and

Williams, 1986). Several statistical methods have been developed to handle these problems

and to calculate a consensus from data matrices of a sensory profiling experiment. This

consensus or group average should reflect the true underlying data structure and indicate

which products are similar to each other and which ones differ strongly from each other. Two

different methods have been widely accepted for the analysis of such data by now. These are

Generalized Procrustes Analysis (GPA, see Gower, 1975) and STATIS (which abbreviates the

French expression "Structuration des Tableaux A Trois Indices de la Statistique", see Lavit et

al., 1994, or Schlich, 1996). Both methods are useful for fixed vocabulary as well as for free

choice profiling data. We illustrate a statistical model to explain sensory profiling data in a

formal way. For this purpose and to explain the methods, we have to use some matrix algebra.

Both methods give the true consensus if we neglect random errors in our model. We deal with

the question whether one of the methods leads to generally better results if random errors are

taken into consideration. In this case "better" means that the group average of one method is

systematically more similar to the true consensus than the result of the other. To do this a

measure of similarity has to be defined. Since theoretical investigations on the distribution of

the calculated group averages appear to be difficult, we carried out Monte-Carlo simulations.
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2 Model assumptions

We assume there is a number of n products or samples to be assessed. For simplicity of

notation we confine ourselves to experiments with fixed vocabulary with m attributes,

although at least our theoretical considerations are also valid for free choice profiling data.

Further we have p assessors each assessing all n products. Hence from each assessor we get an

(n,m)-matrix Xi containing his/her assessments. The rows of Xi correspond to the samples and

the columns correspond to the attributes. We assume that each product has some true co-

ordinates, measured in some ideal attributes. The (n,m)-matrix that contains these co-ordinates

will be denoted by C, the underlying true consensus. Without loss of generality this matrix is

supposed to have column-sums zero, that means the centre of the products lies in the origin.

While testing a sample the assessors are assumed to not perceive exactly the true C, but the

consensus with some random errors. We assume that these errors all have expectation zero

and are independent for different products and/or different assessors. The errors of one

assessor for one product may be correlated with an unknown correlation matrix iΣ , depending

on the assessor. Let the (n,m)-matrix Ei  contain these errors. Then a preliminary model is

given by

Xi = C + Ei . (1)

There are more sources of variation occurring in sensory profiling data. First, there is possibly

confusion of the variables. For example assessors might mix up bitterness with astringency

and vice versa (see Arnold and Williams, 1986), or they might use a linear combination of

several variables for what they denote by e. g. sweet. Such linear combinations can be

modelled by multiplication of C + Ei  from the right by an (orthogonal) rotation matrix Ri. In

order to be a rotation matrix Ri has to fulfil the property



4

R R Ii i
T

m= . (2)

To account for different ranges of scale used by the assessors, we multiply the matrices with

an isotropic scaling factor λi. Without loss of generality we assume λi > 0 for all i=1,… ,p,

because if we have a negative λi  then we can replace Ri  by (-1) Ri  which is still a rotation

matrix. Thus our model (1) modifies to

Xi = λi (C + Ei )Ri . (3)

Finally we take shifts of scale into consideration, i. e. we assume that assessors use different

zeroes. Such translation is modelled by adding a matrix with identical rows, which can be

written as 1n i
Tu  where ui might be any vector of length m and 1n is the n-vector of ones. Thus

our final model is

Xi = λi (C + Ei )Ri + 1n i
Tu . (4)

Note that we get a slightly different model if we modify the order in which these variations

occur. However, it can easily be shown that the distribution of Xi does not change if we add

the random errors after scaling and rotation. With this order we assume the assessors to

perceive the true consensus C exactly right but to make mistakes in giving values to their

perceptions. Even if both kinds of errors are supposed, the distribution of the Xi can be

modelled by (4). Equation (4) has been chosen to describe the model because it simplifies the

necessary steps in our simulations.
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3 Illustration of the methods

This section gives a short illustration of the properties of both methods in terms of our model

assumptions. Both methods try to estimate the true consensus C. The idea of GPA is to find

the inverse transformations for the ones made by the assessors. In the first step we multiply

with a translation matrix ω that centres the data matrices about the origin. After that, we

determine $λi , an estimate of the inverse λi
− 1 of λi. Then we determine $Ri , an estimate for the

inverse Ri
T  of Ri. The estimated consensus is given by the arithmetic mean CG of the

transformed data matrices

C
p

X RG i i i
i

p

=
=
∑1

1

$ $λω , (5)

where ω is the matrix that subtracts the column-wise mean.

STATIS uses the fact that the association matrices

W X Xi i i
T= ω ω (6)

contain all information about the n-dimensional product differences independent of the

number of attributes. Hence it can be applied to free choice profiling data without adding

columns of zeros. The main diagonal contains the squared Euclidean distances of the products

from the origin, the other entries are proportional to the cosine of the angle between the

corresponding products. So for each non-negative definite (n.n.d.) Wi  a matrix $Xi  that solves
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W X Xi i i
T= $ $  can be reproduced. This matrix is uniquely determined except for rotations. Since

the sum of n.n.d. matrices is also a n.n.d. matrix, this holds also if we consider a mean of

association matrices. Indeed, STATIS calculates

W u Wi i
i

p

=
=
∑

1
    with    ui

i

p

=
∑ =

1
1   and ui ≥ 0 for every i = 1,… ,p.

The weights ui are calculated via the RV-coefficient, which for matrices X and Y is given by

RV(X, Y) = 
tr XX YY

tr XX XX tr YY YY

T T

T T T T

( )

( ) ( ) 
. (7)

The weights are determined in such a way that assessors who judge similarly to the others get

bigger weights than those who disagree with most of the panel. The consensus CS is calculated

from C C WS S
T =  with the help of the singular value decomposition of W. For details see

Schlich (1996).
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4 Simulations

We compared the performance of GPA and STATIS under model (4) using Monte-Carlo

simulations. For the GPA the improved algorithm of ten Berge (1977) has been used. For

STATIS we had to decide whether we use the non pre-scaled or the pre-scaled version. Note

that if we do not pre-scale the matrices before calculating the mean, then we disregard that the

assessors might use different λi. Thus it may happen that a poor assessor gets too much

influence. For STATIS, the weights to calculate the mean of the association matrices are

developed from the RV-coefficients in such a way, that an assessor who agrees well with the

others gets a big weight and an assessor who disagrees with most of the others gets a small

weight. Since the RV-coefficient is independent from changes of scale, altogether the former

assessor might less influence the mean if he uses a narrow scale than the latter one does by

using a wide scale. Therefore we decided to use the pre-scaled version (see e. g. Qannari et al.,

1997) as this is clearly more appropriate to our model (4).

To compare the two methods, we derived data matrices from a given consensus C according

to our model (4). First of all we realise that we do not have to simulate all parts of the model.

If we consider the algorithms of both methods we notice that as a first step the data matrices

are centred around the origin. Therefore the translation does not influence the results, because

after this first step the matrices are identical whether we consider the model given in (4)

including the translation or the one given in (3) without it. Hence we can neglect the

translation and simulate the simpler model. Another essential step in both methods is the

scaling step. For STATIS the data matrices are normalized to uniform lengths. After this step

the data matrices are independent of the size of the isotropic scaling factors. This holds also

for the scaling step of GPA, for which the scaling factors are determined from minimizing an

Euclidean distance. The solution of this minimization problem is independent of the scaling
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factors in the model. Therefore we can drop the isotropic scaling factors in our simulations,

leaving besides C just the rotation matrix and the random errors.

Now assume the Xi being simulated according to (1). In the rotation step of the algorithm of

GPA, the rotation matrices $Ri  are determined in such a way that

( ) ( )trace $ $ $ $λ λ λ λi i i j j j

T

i i i j j j
j

i

i

p

X Q X Q X Q X Q− −
=

−

=
∑∑

1

1

1

is minimal if Q Ri i= $ , i = 1, ..., p. Now consider XiRi instead of Xi. That corresponds to the use

of (3) without the scaling factor. Then

( ) ( )trace $ $ $ $λ λ λ λi i i i j j j j

T

i i i i j j j j
j

i

i

p

X R Q X R Q X R Q X R Q− −
=

−

=
∑∑

1

1

1

is minimal if Q R R Ri i i
T

i= =~$ $ , i = 1, ..., p.

Remembering property (2) of orthogonal matrices, then after this first rotation step the data

matrices are independent of the rotation matrices from model (3). Therefore these could also

be neglected in simulations for GPA. Indeed, they can also be neglected for STATIS: The

consensus of STATIS is derived from the association matrices Wi given in (6). From property

(2) it is obvious that the association matrices do not depend on the rotation given in the model.

In all, for the simulations we can confine ourselves to the simple model (1). This is the reason

why we constructed the model with this order of adding random errors, rotation, scaling and
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translation. For another order, we would have had to consider a more complicated model than

given in (1).

We simulate data matrices from a consensus C according to (1). Here, three different matrices

have been used, namely

• the first seven attributes of the second assessor from a free choice profiling study among

eight different kinds of yoghurt reported by Dijksterhuis and Punter (1990),

• the scores of the first assessor on nine beef carcasses for seven characteristics reported by

Gower (1975),

• a matrix containing random numbers from a rectangular distribution over [0,100] with

eleven rows (products) and five columns (attributes).

Two of the matrices C come from the literature to give a realistic impression. Note that all

matrices are of similar size. However, we purposefully took an artificial data set of similar

size because we did not want to confound the effect of an artificial consensus with the

possible effects of size.

For all three consensus we considered 3, 9 and 15 assessors, that is 3, 9 and 15 matrices were

simulated respectively for each observation. The number of 3 panelists is very small.

However, it is the number reported by Gower (1975).

We also allowed for one or two outliers. Here outliers are understood in such a way that two

randomly chosen rows of a matrix have been exchanged. In practice this means that two

samples have been confused for the corresponding assessor. For the simulations we used an

additional simplification of the model. We assumed that the errors are independent and

identically distributed even for the different attributes measured by one assessor on one

product. That is, we varied model (1) such that mii I2σ=Σ . We used different sizes of 2
iσ  for

three different types of assessors. We define an assessor being ordinary if his/her error-
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variance is the same as the overall variance of the entries in C. A good assessor is defined by

having an error-variance which is 25 times smaller than that, and a poor assessor has a

variance of the errors which is 25 times larger than the ordinary variance. As will be

mentioned in section 6, this variance is very large and spoils the underlying consensus, so in

principle we simulate just random numbers for these assessors.

For the different situations we carried out 1000 repetitions for 3 and 9 assessors and, due to

time consuming calculations, only 500 repetitions whenever we had 15 assessors. We varied

the number of good respectively poor assessors and the number of outliers. All simulations

were carried out for each of the three consensus matrices. We calculated two different

estimated group averages for each simulated data set, one with the help of GPA and the other

with the help of STATIS. The performance of the methods was judged by comparing the

corresponding group averages to the true underlying consensus C. To make the comparison

possible, we needed a measure of similarity. Two measures can be derived directly from the

methods. The GPA induces an Euclidean distance between the matrices after a Procrustes

rotation. This is given by [ ]trace ( )( )C C R C C RG G G G
T− −  or, respectively,

[ ]trace ( )( )C C R C C RS S S S
T− − . Here, RG and RS are the orthogonal matrices that rotate CG

respectively CS in an optimal way to C (Schönemann, 1966). The smaller this distance is the

better the matrices correspond to each other. On the other hand, STATIS induces the use of

the RV-coefficient given in (7). It can be shown that the RV-coefficient is equivalent to

Pearson’s correlation coefficient between the association matrices if these are rearranged as

vectors. The bigger this value the better is the agreement between the matrices.

To avoid unfair advantages for one of the methods by using the measure of similarity induced

by it, we used both measures parallel. In case a method performs better by means of one
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measure and worse by means of the other, the corresponding observation has been counted as

undecided. So for each simulation, we counted one of the methods as performing better if by

means of both measures of similarity its result corresponded better to C than the result of the

other method.

5 Results

As the main result of the simulations we can point out that GPA performed better than

STATIS in significantly more than 50% of the observations. Some of the results are listed in

the following tables. As indicated in the tables the total number of repetitions was 1000

respectively 500 and the number of assessors varied from 3 over 9 to 15. Furthermore we

considered different numbers of good respectively poor assessors and also of outliers. The last

two columns of each table give the number of simulations for which GPA respectively

STATIS performed better. If the sum of the last two values of a row is less than the number of

repetitions, the missing observations are those in which the two different measures of

similarity gave different results, and where we would not decide which method performed

better.

(Table 1 about here)

Looking at Table 1, we notice that for this consensus GPA performed significantly better than

STATIS in all those cases where not only poor assessors occurred. In particular, this is

independent of the number of outliers. Note that STATIS is assumed to give small weights

and with them a small influence on the result to assessors with outliers. If all assessors are

poor, then the consensus of STATIS could be fitted better to the true consensus than the
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consensus of GPA. However, in this situation all data matrices consisted basically of random

numbers (see also the next section).

Similar results are to be found in Table 2, where results of the simulations for the consensus

constructed from Gower's (1975) data are presented.

(Table 2 about here)

Somewhat different results are derived for the random consensus reported in Table 3. Here we

observed STATIS to perform better than GPA in most of the simulations. Especially the

occurrence of outliers leads to a better performance of STATIS. Here GPA seems to perform

relatively well if there are no good assessors and if we have almost equal numbers of ordinary

and poor assessors. It also performed slightly better than STATIS if there are only good

assessors and no outliers.

(Table 3 about here)
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6 Dimensionality

We investigate on the surprising result that in Tables 1 and 2 STATIS performed better when

we considered only poor assessors, while in Table 3 GPA performed better when we

considered no good assessors and almost equal numbers of ordinary and poor assessors.

What happens if there are only poor assessors? These have been simulated with random errors

that have 25 times the variance of the entries of C. Then the variance is so big that the random

errors completely spoil the underlying consensus, the simulated data matrices almost contain

nothing but random numbers. In practice this would be a situation where all assessors cannot

perceive the differences between the products and therefore just give random numbers as

assessments. It seems that from purely random numbers STATIS creates a group average that

can be fitted better to structured consensus as considered in Tables 1 and 2, while GPA seems

to create a group average that can be fitted better to random structures as considered in Table

3. However, neither has any useful meaning.

Now consider the cases when there are at least some good assessors. How could it be

explained that GPA performed better for the more realistic consensus used in Tables 1 and 2,

while it generally performed poorer for the consensus constructed from random numbers?

If we turn our attention to the data matrix of random numbers, we expect this one to have a

higher dimensionality than the matrices given from true profiling studies (Wakeling et al.,

1992). More precisely, in a PCA of the random structure all components explain a similar

amount of variance and therefore the singular values are relatively similar. As a measure of

dimensionality we might therefore use the variance of the normalized singular values. Here

normalized means that the singular values have been multiplied with a constant, such that they
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add up to 1. We compared the dimensionality of the calculated group averages for both

methods with that of the underlying consensus C by means of Monte-Carlo simulations. The

higher the variance of the normalized singular values is, the smaller is the dimensionality of

the corresponding matrix. For these simulations the same matrix has been used as C as in

Table 1. The results are reported in Table 4. The last three columns give the number of

observations in which CG respectively CS had a higher dimensionality relative to C and (to

compare the methods) the number of observations, in which CG had a higher dimensionality

relative to CS.

We should note that both methods give results that have too many dimensions in comparison

to C, which is reasonable because we add random errors that destroy the underlying structure.

Furthermore, STATIS has this problem to a larger extent. This should be the reason why

STATIS has a weaker performance if the underlying consensus has a small dimensionality. On

the other hand, if the dimensionality of the consensus is already high, then the method cannot

give a result with many more dimensions and STATIS performs well.

(Table 4 about here)

Under our model assumption one aim of the analysis is to identify only the significant

dimensions, any other dimension included consists of pure noise, which should not be

interpreted. In a different model which allows each assessor to percieve just an individual part

of the true structure, it might be wise to include more dimensions that offer a richer sensory

interpretation of product differences. Although a discussion of these aspects appears

interesting, this is beyond the scope of this paper.

7 Theoretical considerations
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To support our findings in the simulations, we try some theoretical explanations. First we look

at the result CG of GPA, which is given in (5). If we insert our model assumptions (4) we get

C
p

CR R E R RG i i i i
i

p

i i i i i= +
=
∑1

1

( $ $ $ $ )λ λ λ λω .

Note that the rows of Ei are identically distributed. In the special instance C = 0 therefore

symmetry implies that the expectation of $ $λ λi i i i iE R R  is a matrix with identical rows and the

operator ω makes it zero. If C is not zero, then the expectation of each Xi is λiCRi, and if the

rotation-estimates $Ri  work well, then 
1

1p
CR Ri i i i

i

p $ $λ λ
=
∑  can be expected to be near a multiple

of the true consensus. We can therefore hope to get a CG of similar dimensionality as the true

consensus C.

If we insert our model (4) into the equation for the association matrices (6), we obtain

( )W CC E C CE E Ei i
T

i
T

i
T

i i
T= + + +λ ω ω ω ω2 .

The entries of Ei were assumed to have mean zero with independent rows. So the expectation

of Wi is given by ( )λ σ ωi
T

iCC m2 2+ , where )tr(12
ii m

Σ=σ . Therefore we expect W to have

(n-1) non-negligible dimensions, even if C has only one or two. Hence STATIS in general

overestimates the dimensionality if the dimension of C is low. In particular, if C = 0, we

expect W to be a multiple of ω and CS away from zero.
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It should be stressed that these considerations are for the case that the assessments of the

different attributes for one product by one assessor are allowed to be dependent. Therefore it

can be conjectured that the findings of the simulations can be generalized to the case of

general iΣ .

8 A combined approach

As an alternative to the use of usual GPA and STATIS we propose a combined approach, a

modified version of GPA. The simulations appear to imply that in practical situations GPA

performs better than STATIS. Nevertheless the weights used by STATIS appear useful. So we

tried to combine the algorithm of the GPA with the weights calculated via the RV-coefficient.

A simple approach is to weight the matrices equal to the weights calculated in the algorithm

of STATIS. Note that for STATIS we calculate a weighted mean of the association matrices

(6), that means the weights are derived for the X Xi i
T . Therefore we should use the square-

roots of these weights for GPA because here we calculate a mean from the rotated Xi

themselves. Several simulations showed, however, that we get even better if we use the

original weights instead of their square-roots. So we calculate the weighted mean

C u X RG i i i i
i

p

=
=
∑ $ $λω

1

where ui are the weights also used to calculate the mean for STATIS. It is true that the original

GPA already downweights poor assessors. The proposed variation does this to a much larger

extent.
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To compare this method with the usual GPA and STATIS we carried out several simulations

for the same situations as described above. Without giving the results in detail we can

summarize two aspects:

• the modified GPA performs better than STATIS in significantly more than 50% of the

simulations,

• the modified GPA also performs even better than GPA in more than half of the

simulations.

Hence the modified approach seems to be a useful alternative to both methods used until now.

9 Conclusions

Under some specific model assumptions for sensory profiling data we compared GPA and

STATIS by means of Monte-Carlo simulations. Under these assumptions GPA performed

better than STATIS in significantly more than half of the observations. However, STATIS

performed better when we considered basically only random numbers as judgements, or when

the underlying consensus had high dimensionality and not all assessors were very good. This

finding led us to investigate on the dimensionality of the calculated group average relative to

that of C. Simulations as well as theoretical considerations showed that both methods should

give a result that has too many dimensions. However, STATIS overestimates the

dimensionality of C to a larger extent than GPA. With increasing dimensionality of C this

problem seems to become less important. The decision whether the use of GPA or of STATIS

should be preferred by means of estimating the dimensionality of the true consensus could be

the issue for some future research. However, we propose to use a modified version of the GPA

to calculate an overall consensus from several data matrices. This approach combines the
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algorithm of GPA with the weights of STATIS and yielded significantly better results than

both other methods.

Finally it should be mentioned that our simulations are just a first step in comparing analysing

methods for sensory data. Further investigations should be made on a wider range of possible

data sets as well as under a refined model.
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Table 1: Simulation results for the consensus derived from the data of Dijksterhuis and Punter
(1990).

number of assessors better performance for
repetitions total good poor outliers GPA STATIS

1000 3 0 0 0 928 16
1000 3 3 0 0 778 15
1000 3 0 3 0 123 759

1000 9 0 0 1 1000 0
1000 9 9 0 1 353 0
1000 9 0 9 1 290 549

1000 9 3 3 0 954 0
1000 9 3 3 1 906 0
1000 9 3 3 2 881 0

500 15 0 0 1 500 0
500 15 15 0 1 243 0
500 15 0 15 1 210 211

500 15 0 0 2 500 0
500 15 15 0 2 142 0
500 15 0 15 2 217 212
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Table 2: Simulation results for the consensus derived from Gower's (1975) data.

number of assessors better performance for
repetitions total good poor outliers GPA STATIS

1000 3 0 0 1 805 70
1000 3 3 0 1 211 138
1000 3 0 3 1 267 571
1000 3 1 1 0 856 7
1000 3 1 1 1 956 0

1000 9 0 0 0 1000 0
1000 9 9 0 0 1000 0
1000 9 0 9 0 459 354

1000 9 4 0 0 1000 0
1000 9 0 4 0 978 1
1000 9 5 4 0 895 0
1000 9 4 0 1 999 0
1000 9 0 4 1 955 7
1000 9 5 4 1 938 0
1000 9 4 0 2 1000 0
1000 9 0 4 2 943 11
1000 9 5 4 2 929 0

500 15 5 5 0 500 0
500 15 5 5 1 500 0
500 15 5 5 2 500 0

500 15 8 0 0 500 0
500 15 0 8 0 497 0
500 15 7 8 0 499 0

500 15 3 3 2 500 0
500 15 9 3 2 497 0
500 15 3 9 2 500 0
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Table 3: Simulation results for the data matrix of random numbers.

number of assessors better performance for
repetitions total good poor outliers GPA STATIS

1000 3 3 0 0 421 403
1000 3 0 3 0 245 549
1000 3 3 0 1 38 701
1000 3 0 3 1 254 544
1000 3 1 1 0 69 546
1000 3 1 1 1 78 450

1000 9 9 0 0 477 370
1000 9 9 0 1 12 922
1000 9 9 0 2 9 962

1000 9 4 0 0 8 931
1000 9 0 4 0 446 355
1000 9 5 4 0 0 993
1000 9 4 0 1 3 931
1000 9 0 4 1 414 355
1000 9 5 4 1 1 956

500 15 8 0 0 5 480
500 15 0 8 0 261 147
500 15 7 8 0 0 496
500 15 8 0 1 3 477
500 15 0 8 1 271 149
500 15 7 8 1 1 488
500 15 8 0 2 2 489
500 15 0 8 2 250 149
500 15 7 8 2 1 476

500 15 3 3 0 65 326
500 15 9 3 0 0 499
500 15 3 9 0 56 331
500 15 3 3 1 56 342
500 15 9 3 1 0 499
500 15 3 9 1 40 289
500 15 3 3 2 76 305
500 15 9 3 2 0 496
500 15 3 9 2 41 303
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Table 4: Simulation results for the comparison of the dimensionalities.

number of assessors higher dimensionality
repetitions total good poor outliers for CG

relative
to C

for CS
relative

to C

for CG
relative to

CS

1000 3 0 0 0 1000 1000 0
1000 3 3 0 0 889 990 0
1000 3 0 3 0 1000 1000 0

1000 3 0 0 1 1000 1000 13
1000 3 3 0 1 891 999 72
1000 3 0 3 1 1000 1000 0

1000 9 0 0 0 1000 1000 0
1000 9 9 0 0 966 1000 0
1000 9 0 9 0 1000 1000 0
1000 9 0 0 1 1000 1000 0
1000 9 9 0 1 936 999 17
1000 9 0 9 1 1000 1000 0
1000 9 0 0 2 1000 1000 0
1000 9 9 0 2 967 1000 16
1000 9 0 9 2 1000 1000 0

1000 9 4 0 0 1000 1000 0
1000 9 0 4 0 1000 1000 0
1000 9 5 4 0 1000 1000 0


