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Abstract 

Mitchell, B.C. and Burdick, D.S., 1993. An empirical comparison of resolution methods for three-way arrays. Chemometrk and 
Intelligent Laboratory Systems, 20~ 149-161. 

In chemometrics applications it is common to resolve a trilinear array by solving a generalized eigenvalue problem, rather than 
by employing the iterative PARAPAC algorithm commonly used by psychometricians. Although an eigenanalysis-based procedure 
works perfectly in the absence of noise, it is not guaranteed to yield least squares resolutions when noise is present. The 
PARAPAC algorithm on the other hand is guaranteed to reduce the residual sum of squares at each iteration. 

In this paper we propose synthesizing the two methods by using the resolution generated by eigenanalysis as starting values for 
the iterative PARAPAC algorithm. We find for simulated four-component data at moderate noise levels that following an 
eigenanalysis resolution with PARAPAC frequently leads to significant improvement in the quality of the resolution. 

INTRODUCTION 

There are two main approaches to the trilinear 
analysis of three-way data arrays. One approach 
is to resolve the array by performing a general- 
ized eigenanalysis. Although they vary in details, 
several procedures based on this approach have 
been proposed in the chemometrics literature 
[l-4]. We will call such procedures EBPs for 
eigenanalysis-based procedures. 

The other main approach utilizes alternating 

Correspondence to: D.S. Burdick, Institute of Statistics and 
Decision Sciences, Duke University, Durham, NC 27708 
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least squares in an iterative procedure which ex- 
ploits the conditional linearity of the trilinear 
model. Its iterative nature means that starting 
values are required, but it is guaranteed to im- 
prove the least squares fit of the model to the 
data at each iteration. This approach is the one 
commonly used by psychometricians working in 
three-mode factor analysis [5,6]. Its prototype is 
the PABAPAC algorithm developed and popu- 
larized by Harshman. Chemists may be more 
familiar with this approach from the paper by 
Appellof and Davidson 171. We will use the term 
PARAFAC for procedures following this ap- 
proach because of its widespread use in the field 
of psychometrics. 
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In the absence of noise or when noise is low, 
both approaches work well [8,9]. If the noise is 
too high, on the other hand, neither method 
works very well: PARAFAC is sensitive to start- 
ing values and may encounter convergence prob- 
lems, while an EBP resolution may be unattain- 
able because of complex eigenvalues. Between 
these extremes, when the noise level is moderate, 
we can ask which of these approaches is better or 
if a synthesis is possible which combines features 
of both yielding a procedure superior to either. In 
this paper we undertake a simulation study in an 
attempt to answer this question. 

To facilitate the investigation we have created 
a collection of data arrays briefly described be- 
low. The Section ‘Procedures’ reviews both 
PARAFAC and EBPs. Uncorrected correlation 
coefficients introduced in the Section ‘Conver- 
gence and quality assessment criteria’ will provide 
the basis for both assessing the quality of resolved 
factor matrices and the convergence criterion for 
PARAFAC. The Section ‘Are EBPs enough?’ 
addresses the main issue of this article: Are EBPs 
enough, or should resolutions obtained by an 
EBP be followed up with PARAFAC? 

The empirical investigation utilizes 64 differing 
simulated three-way Z x J x K data arrays. Each 
array A has the trilinear form 

A=S+E 

where the ijk th element of S, which we refer to 
as the signal, is given by 

R 

(1) 
r=l 

for i = 1, 2,. . . , Z, j = 1, 2,. . . , J, and k = 1, 2, 
. . . ,K and E is a commensurate array of discrep- 
ancies, or noise. An alternative notation for Eqn. 
1 is the triple product [lo] given by 

s= @(X,Y,Z) (2) 

where X, Y, and Z are called the factor matrices 
comprising the signal. X is Z X R, Y is .Z X R, and 
Z is K x R. Each column of a factor matrix is 
referred to as a profile. So the second column of 
the factor matrix Y is called the second Mode Y 
profile. 

The rank of S is defined to be the smallest 
integer R for which an expression in the form of 
Eqn. 1 holds. If each factor matrix in Eqn. 2 has 
R linearly independent columns, then R must be 
the rank of the signal. 

For each signal S, a random array of noise was 
generated and factored in at the 25% level. For 
these particular arrays X is 40 X 4, Y is 40 X 4, 
and Z is 4 X 4. So A is a 40 X 40 X 4 three-way 
array whose signal S has rank 4. The exact details 
concerning the construction of these arrays can 
be found in the Appendix. 

A further distinctive characteristic of these 
arrays is the structure of the Mode Z profiles. An 
attempt has been made to mimic excitation emis- 
sion frequency arrays encountered in phase-re- 
solved fluorescence spectroscopy [11,12]. Theoret- 
ically, these profiles should be described by 

=C 
@krr 

=kr 
r 1+ 02r2 kr 

where rr denotes the fluorescence lifetime for the 
rth component, wk denotes the kth modulated 
frequency, and C, depends on, among other 
things, the concentration of the component [l]. 

PROCEDURES 

The objective of the resolution procedures is 
to obtain an estimate of the factor matrices of the 
signal portion of the array. This is, of course, 
complicated by the presence of noise. In order to 
undertake this task, EBPs require two distinct 
Z x J rank R matrices M, and M, which in the 
absence of noise would be of the form 

M,= c21xl @Y, + c&2 @Y, + ’ ’ - +$Rx, @y, 

where the vectors {xi, x2,. . .) xR) and {yi, y,, 
. . . ,yR} are the linearly independent columns of 
the factor matrices X and Y. These matrices can 
be written as 

M, = XD,Y’ and M, = XD,Y’ (3) 
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where the D,s are R x R diagonal matrices whose 
entries along the main diagonal eqUa1 zkra To 

obtain X and Y a generalized eigenanalysis is 
performed on M, and M, [1,4]. Given X and Y, Z 
can be readily found by linear least squares. 

The two matrices M, and M, arise as linear 
combinations of the Mode Z slabs of the array A. 
A Mode Z slab is obtained by fixing k = k,, 
letting i and j vary, thereby obtaining 

MkO = [“ijkol 

There is nothing mathematically special about 
Mode Z slabs. But in phase-resolved fluorescence 
spectroscopy, the Mode Z direction is usually 
much smaller than the other two. It is therefore 
natural to use this direction when consolidating 
to two slabs. 

PARAFAC exploits conditional linearity. Two 
of the factor matrices, say X and Y, are fixed and 
linear regression is used to obtain Z. Then Y and 
Z are held fixed and the same procedure is used 
to update X, and similarly for Y. This is done 
iteratively until the termination criterion is satis- 
fied. 

CONVERGENCE AND QUALITY ASSESSMENT CRITE- 
RIA 

We begin by introducing the uncorrected cor- 
relation coefficient (UCC). UCCs will provide the 
basis for both the assessment of the resolution 
and the termination criterion for PARAFAC. 

The uncorrected correlation coefficient for a 
pair of vectors is defined by 

UCC(n, Y) = /& =cos 0 (4) 

where 8 is the angle between the vectors x and y 
and x .y is the sum of the products of the corre- 
sponding elements of x and y. The UCC be- 
tween a pair of arrays is obtained from Eqn. (4) 
by regarding the arrays as vectors. The UCC is a 
closeness measure for vectors that is unaffected 
by scalar multiplication. 

The fit of the resolution to the data can be 
measured by first finding A^, the triple product of 

the resolved factor matrices X, Y, and Z, and 
then calculating the UCC between d and the 
data array A. The resulting score is referred to as 
f-l. 

n = UCC( d, A) 

where A is the data array and 

A= s(rz,P, 2) 

We next define a criterion for comparing reso- 
lutions. Suppose we have the two sets of factor 
matrices each with R columns, 

IX,, YAP Z,} and IX,, Ys, Z,] 

The columns correspond to the components of 
the resolutions but the correspondence may not 
be the same for both sets. For example, the first 
columns of the matrices in factor set A may 
correspond to the third columns of the matrices 
in factor set B. 

Define a matching to be one of the R! possible 
ways to correspond the columns in factor set A 
with the columns in factor set B, and consider all 
possible matchings. Obtain a score for each 
matching by calculating the UCC between corre- 
sponding profiles, and averaging these 3 R values. 
The criterion 9’ is the highest of the R! scores 
obtained by this process, i.e. 

T = max[ave(UCC)] 

This procedure can be applied to any two sets of 
commensurate factor matrices. If one set is a 
resolution and the other the signal, ‘I’ measures 
the quality of that resolution. 

The criterion chosen for terminating PARA- 
FAC, which we shall refer to as A, involves 
subtracting from 1 the value of T between the 
current resolution and the previous iteration: 

A = 1 - T(n,n-1) 

A small value of A indicates that successive itera- 
tions are nearly identical. 

The iterations are discontinued when A is less 
than some preset value A,. An alternative that is 
often used is the scaled change in the residual 
sums of squares (RSS). This involves finding the 
RSS for both the current and previous resolution, 
taking the difference, and dividing the result by 
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Fig. 1. The resolutions from the example obtained using LRA-1 (dashed curves) and PARAFAC (dotted curves), along with the 
signal (solid curves). The left column displays the profiles from the first factor while the right displays those from the second. The 
top row is Mode X, the middle Mode Y, and the bottom Mode 2. 
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Fig. 2. The resolutions from the example obtained using LRA-1 (dashed curves) and PARAFAC (dotted curves), along with the 
signal (solid curves). The left column displays the profiles from the third factor while the right displays those from the fourth. The 
top row is Mode X, the middle Mode Y, and the bottom Mode Z. 
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Fig, 3. The resolutions from the example obtained using LRA-4 (dashed curves) and PARAFAC (dotted curves), along with the 
signal (solid curves). The left column displays the profiles from the first factor while the right displays those from the second. The 
top row is Mode X, the middle Mode I’, and the bottom Mode 2. 
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Fig. 4. The resolutions from the example obtained using LRA-4 (dashed curves) and PARAFAC (dotted curves), along with the 
signal (solid curves). The left column displays the profiles from the third factor while the right displays those from the fourth. The 
top row is Mode X, the middle Mode Y, and the bottom Mode 2. 
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the current RSS. Its behavior is similar to that of 
A but A requires roughly 1 to 2% of the com- 
puter time. 

ARE EBPs ENOUGH? 

Since PARAFAC is an iterative procedure, it 
must have starting values and may require many 
iterations to converge to a resolution. EBPs, how- 
ever, are direct and relatively effortless. If the 
accuracy of the resolutions due to EBPs are suffi- 
ciently good, there is no need to look further. We 
can test this hypothesis by following an approach 
suggested by Sands and Young [13] in which the 
results of an EBP resolution are used as starting 
values for the iterative PARAFAC procedure. 

If applying PARAFAC generally leads to sub- 
stantially better resolutions, then perhaps the ex- 
tra effort is warranted. The question to be ad- 
dressed is: “Are EBPs enough?” In the context of 
our simulation the answer is “No”. Before pre- 
senting the data which supports this answer, we 
illustrate the potential improvement from 
PARAFAC with the following example, taken 
from the simulation. 

Example 

Figs. l-4 compare the resolutions obtained 
using an EBP and the EBP followed by 
PARAFAC on one of the data arrays. The EBP 
used is that suggested by Leurgans, Ross, and 
Abel (LRA) [3,4]. LRA suggest using a single 
Mode Z slab as M, and the sum of all of the 
Mode Z slabs as M,. Figs. 1 and 2 display the 
results when the first Mode Z slab is used. We 
shall refer to this as LRA-1. Fig. 1 displays the 
first and second factors. The Mode X profiles can 
be seen in the top row, Mode Y in the middle 
row, and Mode Z in the bottom. Upon inspection 
we see that the first Mode X profile due to the 
EBP is not a very accurate reconstruction of the 
signal, displayed along with it. After PARAFAC- 
ing, this profile, also displayed, becomes a much 
more accurate reconstruction. The same is true, 
to a lesser extent, of the second Mode Y profile. 
A quantitative corroboration of this observation 

TABLE 1 

The UCCs between the indicated resolved profile from the 
figures and the corresponding signal 

X,, Y,, and Z, refer to the factor matrices obtained using 
LRA-1, similarly X,, Y.,, and Z, are from LRA-4. X,, Yp, and 
Z, refer to the factor matrices obtained from PARAFAC 
using either of the LRA factor matrices as a start. Z, was 
found by applying a single PARAFAC iteration to X, and Y,, 
and similarly for Z,. 

Factor 
matrix 

Xl 
Yl 

Zl 

x4 

y4 

Z4 

X, 
Yp 
Z, 

Profile 

1st 

62.17 
97.79 
96.82 

11.51 
94.57 

- 95.38 

95.21 
99.09 
99.40 

2nd 3rd 4th 

99.88 97.94 99.29 
87.80 99.61 93.37 
99.80 99.08 99.56 

99.69 74.75 72.24 
76.10 92.30 45.89 
99.80 99.90 90.40 

99.82 98.72 99.21 
99.39 99.70 98.07 
99.65 99.72 99.91 

can be found in Table 1, which lists the UCCs 
between resolution and signal for the various 
profiles. 

In the table Xi, Y,, and Z, denote the factor 
matrices obtained using LRA-1, and similarly X,, 
Ys, and Z, denote those obtained by LRA-4. The 
factor matrices returned by PARAFAC were the 
same for each start and denoted X,, Y,,, and Z,. 
By inspection of the table, it can be seen that the 
UCC score for the first Mode X profile due to 
LRA-1 has been improved from 62.17 to 95.21% 
after PARAFACing. Similarly, the second Mode 
Y profile improved from 87.80 to 99.39%. 

For this particular data array PARAFAC has 
markedly improved the accuracy of the recon- 
struction due to the EBP. This is evident by 
inspecting either the figures or the table. This 
example also shows that the selection of M, and 
M, can have a marked effect on the EBP resolu- 
tion. For arrays with four Mode Z slabs, the four 
options for M, allowed by LRA can produce 
different resolutions. Of the four in this example, 
the one displayed in Figs. 1 and 2 represents the 
most accurate reconstruction of the signal as 
measured by T (refer to Table 2). The least 
accurate is displayed in Figs. 3 and 4. In spite of 



w B.C. Mitchell and D.S. Burdick/Chemom. Intell. Lab. Syst. 20 (1993) 149-161 /Original Research Paper 151 

TABLE 2 

Various values of fl and T when LRA and PARAFAC are 
applied to the data array in the example 

The subscripts used are: s, for signal; b, for beginning resolu- 
tion prior to PARAFAC; and f, for final resolution subse- 
quent to PARAFAC 

EBP T,, ‘T-k Tt., Qb f-h nb/nf 

LRA-1 94.42 98.99 94.92 96.85 97.56 99.27 
LRA-2 79.42 98.99 79.91 96.06 97.56 98.46 
LRA-3 92.17 98.99 93.91 96.65 91.56 99.07 
LRA-4 79.38 98.99 82.50 96.40 97.56 98.81 

their differences taking either as the starting value 
for PARAFAC leads to the same resolution. 

Various values of T and fi for this example 
are listed in Table 2. The subscripts used are: s, 
for signal; b, for beginning resolution prior to 
PARAFAC, and f, for final resolution after ap- 
plying PARAFAC. For example, T,, is the value 
of ‘I’ between the EBP factor matrices prior to 
PARAFAC and the signal matrices. The values 
in the first column under Tbs determine which 
EBP resolution was most accurate. Note that the 
values in the second column under TrS are all the 
same because the PARAFAC algorithm con- 

75 - 

50 -- 

25 -- 

verged to the same resolution for all four starting 
values. 

We turn now from the examples to the full 
simulated data sets. An EBP requires two slabs 
or linear combinations of slabs as input for the 
eigenanalysis. Following LRA, we use the sum of 
the four Mode Z slabs and a single Mode Z slab 
as input to the eigenanalysis. Varying the selec- 
tion of the single slab can yield as many as four 
starting values per data array for the PARAFAC 
algorithm. Occasionally the eigenanalysis pro- 
duces complex roots, so that less than four starts 
may actually occur for some arrays. All 64 arrays 
did have at least one usable starting value. Of the 
256 potential starts 32 were complex, so the anal- 
ysis is based on the remaining 224 starts. 

The results before and after PARAFAC for 
the 224 starts are compared in Fig. 5. The bar 
graph is that of the observed changes in ‘T multi- 
plied by 100. 

A’T’ = ‘I-‘, - Tbs 

AT is positive when PARAFAC improves the 
resolution. The predominance of positive values 
indicates that PARAFAC has a strong tendency 
to improve the resolutions due to EBPs. This 

Fig. 5. A bar graph of observed frequencies of various values of AT = TfS - ‘I’,, in percent. 
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conclusion is not limited to the LRA version of LRA-2 and LRA4. This is reinforced by findings 
EBPs. Similar results were obtained when other from the other arrays. Fig. 6 plots various values 
EBPs were put through the same comparison. of ‘Tbf along with R,/R,. 

Fig. 6 gives a statistical summary of the bf 
comparisons for the entire data set. A high value 
of Tbf means that the EBP resolution was close 
to the final resolution after applying PARAFAC. 
In other words if ‘I’,, is high little movement 
occurs during the PARAFAC iterations. The me- 
dian value of Tbf was 97.855, the lower and 
upper quartiles were 93.785 and 99.195, and the 
minimum and maximum were 71.02 and 99.93. 

In conclusion we find that T is much more 
sensitive to changes brought about by PARAFAC 
than is a. The evidence also suggests that apply- 
ing PARAFAC as a follow-up to an EBP may be 
the best strategy for obtaining a reliable resolu- 
tion. This is so even in instances where 
PARAFAC has minimal effect on the fit. 

The example can be used as a base for inter- 
preting these numbers. The first EBP resolution 
(LRA-1) depicted in Figs. 1 and 2 shows the 
amount of movement associated with an Tbf of 
94.92, which is above the lower quartile. The bad 
case (LRA-4) has an Tbf = 82.50 at the fourth 
percentile (8 out of 224 cases were lower). 

APPENDIX: THE DATA ARRAYS 

If we limit our attention to the criterion a, we 
may be lulled into the belief that PARAFAC 
does not make much difference. When PARA- 
FAC is applied to an EBP resolution, the fit to 
the data measured by fi generally does not re- 
flect the dramatic changes that may be occurring 
in the resolution. Consider the last three columns 
of Table 2. The fourth and fifth columns display 
R,, the fit to the data prior to PARAFAC, and 
fir, the fit subsequent to PARAFAC. The sixth 
column compares the two by taking the ratio. The 
ratios suggest that only modest changes are tak- 
ing place in the fit, while in the meantime, the 
Tbf values suggest that substantial changes are 
occurring in the factor matrices, particularly for 

We now describe in detail how the data arrays 
used in the empirical study and for the example 
were constructed. The excitation and emission 
profiles were constructed to resemble actual ob- 
served excitation and emission profiles found in 
the Appendix of ref. 14. The profiles used can be 
found in Tables 3 and 4. The frequency profiles 
were generated by specifying lifetimes and modu- 
lation frequencies, then applying Eqn. 5: 

wkrr 

(5) 

To construct the 64 data arrays used in the 
investigation, four Mode X factor matrices, four 
Mode Y factor matrices, and four Mode Z factor 
matrices were constructed. These were combined 
in a full 43 factorial design to generate 64 signal 
arrays. The Mode X and Mode Y factor matrices 
were constructed using the profiles listed in Table 
5. The four Mode Z factor matrices were con- 

fib/n,: I-II 

Tbf : 

I’* ” ” ’ ” I ““I’, ” ! ’ ” 8 ““‘I 
70% 80% 90% 100% 

Fig. 6. A box plot comparing stand-alone EBP resolutions with EBP followed by PARAFAC. The upper plot is the ratios of the two 
fits fib/flf. The lower plot is of &. 
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strutted using the lifetimes and frequencies listed 
in Tables 6 and 7 and then applying Eqn. 5. As 
an example, the (2, 3) element of Z, is given by 

15 x 0.100 
Z,(2,3) = 

1 + (15 x o.100)2 

and (4, 2) element of Z, is 

120 x 0.070 
Z,(4,2) = 

1 + (120 x 0.07* 

TABLE 3 

The Mode X signal profiles 

The Mode X and Mode Y factor matrices were 
chosen somewhat arbitrarily; however, some ef- 
fort was put forth to create factor matrices of 
varying degree of spectral overlap. It is evident 
from the lifetimes that this is indeed the case for 
the Mode Z factor matrices. 

The three-digit variable ID is used to identify 
the combination taken. For instance, setting ID 
to 224, indicates the signal 

~(224) = 8(X,, y2, z,) 

Xl x2 x3 x4 x5 X6 Xl X8 x9 x10 x11 x12 

1 1 0 10 100 
2 2 10 40 70 

10 10 100 100 80 
10 10 400 200 70 
10 20 560 240 40 
20 30 500 260 30 
20 50 120 120 40 
40 100 80 80 40 

50 230 110 90 20 
70 530 150 120 10 

120 130 170 80 5 
2.50 70 190 40 5 
230 40 180 40 4 
470 130 140 50 3 
300 30 90 40 2 
660 20 60 20 5 
220 20 40 5 10 
580 20 20 5 20 

30 10 10 6 50 
10 10 10 6 100 
4 8 10 7 140 
2 7 7 7 200 
1 5 5 10 300 
0 5 4 20 500 
0 4 4 40 400 
0 3 3 60 280 
0 3 3 110 30 
0 2 3 180 2 
0 2 2 240 1 
0 2 2 320 0 
0 1 2 500 0 
0 1 2 580 0 
0 1 1 300 0 
0 1 1 100 0 
0 0 1 10 0 
0 0 1 2 0 
0 0 0 1 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

30 90 
300 180 
710 220 
200 260 
80 600 

100 800 
130 160 
100 30 
50 20 
20 1 
30 1 
50 1 
60 1 
20 2 

2 5 
1 20 
0 60 
0 90 
0 160 
0 140 
0 330 
0 160 
0 270 
0 460 
0 10 
0 2 
0 1 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

10 
40 

200 
400 
630 
280 

30 
30 
50 
80 

110 
120 
110 
130 
140 
120 
70 
40 
20 
10 
5 
2 
2 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

30 20 
30 10 
60 10 

140 20 
200 80 
260 200 
150 500 
130 560 
130 470 
120 270 
110 80 
50 20 
30 2 
40 1 
60 0 
70 0 
40 0 
30 0 
30 0 
30 0 
30 0 
30 0 
20 0 
20 0 
20 0 
20 0 
30 0 
40 0 
80 0 

140 0 
200 0 
240 0 
360 0 
530 0 
580 0 
350 0 
110 0 
50 0 
40 0 
10 0 

2 250 
40 600 

180 400 
350 130 
460 140 
360 210 
140 300 
100 320 
120 230 
180 50 
280 30 
400 20 
530 10 
610 10 
600 5 
490 3 
340 2 
150 1 
40 1 
10 0 
10 0 
5 0 

10 0 
10 0 
2 0 
1 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
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As another example, if ID is set to 312, then the 
signal indicated is 

S(312) = Q (X,, Y,, Z,) 

report explicitly. To reproduce them calculate 
ND) as indicated above, and generate noise 
arrays via the Matlab code: 

The Mode X and Mode Y profiles were normal- rand('norma1') 

ized so that X’X and Y ‘Y had ones on the main rand('seed',ID) 

diagonal and the Mode Z profiles were calculated N=rand(2,2); 

from Eqn. 5. The data arrays are much to large to N=rand(40,160); 

TABLE 4 

The Mode Y signal profiles 

Yl Y2 Y3 Y4 YS y6 Y7 YE Y9 YlO Yll Y12 

0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 1 0 0 0 0 0 5 
0 0 0 0 0 2 0 0 0 0 0 10 
0 0 0 0 0 10 0 0 0 0 0 20 
0 1 0 0 0 20 0 0 0 1 0 30 
0 2 0 0 0 20 0 0 0 2 0 60 
1 5 0 0 0 10 0 0 0 40 0 130 
2 5 0 0 0 20 0 0 0 400 0 280 

10 10 0 0 0 110 0 0 0 460 0 460 
10 10 0 0 0 510 0 0 0 550 1 550 
10 10 1 0 0 550 0 0 0 350 2 570 
10 10 2 0 0 490 0 1 0 250 5 530 

200 10 5 0 0 310 0 2 0 150 10 460 
640 10 10 0 0 190 1 10 0 80 30 380 
320 10 20 0 0 100 2 50 0 50 60 300 
710 20 40 0 0 60 10 120 0 30 160 240 
270 60 100 0 0 40 20 230 0 20 280 170 
360 330 180 0 1 20 30 380 0 10 390 130 
200 400 280 0 2 10 200 530 0 5 500 90 
110 580 370 0 80 5 730 620 0 2 550 60 
100 520 420 0 270 4 310 650 0 1 550 40 
60 290 440 0 490 4 240 560 0 0 540 30 
40 260 450 1 460 3 480 540 0 0 510 20 
30 210 440 2 350 3 210 500 0 0 460 20 
20 120 430 10 250 2 130 520 0 0 380 20 
30 80 400 20 200 2 220 430 1 0 330 20 
40 60 380 50 160 2 120 340 2 0 270 10 
30 50 370 200 110 1 50 270 10 0 220 10 
20 40 350 470 70 1 40 220 20 0 180 10 
20 30 330 560 50 1 40 180 80 0 140 10 
10 30 300 430 40 1 30 150 300 0 110 10 
10 20 280 300 30 0 20 120 600 0 80 5 
10 202 250 230 20 0 20 90 730 0 70 5 
2 20 230 190 10 0 20 70 550 0 60 5 
1 10 200 160 2 0 10 60 360 0 50 2 
0 10 180 120 0 0 10 50 260 0 40 1 
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TABLE 5 REFERENCES 

The Mode X and Mode Y factor matrices. Each profile should 
be normalized 

Factor Mode X Factor Mode Y 
matrix profiles matrix profiles 

‘1 ‘6 x1O ‘3 x1 ‘1 YlO Ys Y2 Y7 

x2 x3 x2 x10 x5 y2 Y2 Y9 Y7 Y12 

x3 x4 xs x7 x11 y3 Y3 Yl2 YlO Yll 

x4 x9 x12 x11 x3 y4 y6 y9 y4 y8 

D.S. Burdick, X.M. Tu, L.B. M&own and D.W. Millican, 
Resolution of multicomponent fluorescent mixtures by 
analysis of the excitation-emission-frequency array, Jour- 
nal of Chemometrics, 4 (1990) 15-28. 
E. Sanchez and B.R. Kowalski, Tensorial resolution: a 
direct trilinear decomposition, Journal of Chemometrics, 4 
(1990) 29-45. 

TABLE 6 

The lifetimes used to construct the four Mode Z factor 
matrices. The lifetime units are 10m6 s 

Tr 0.001 0.010 0.100 1.000 

T2 0.005 0.010 0.100 0.500 

T3 0.010 0.005 0.050 0.100 

T4 0.050 0.070 0.200 0.500 

TABLE 7 

The frequencies in MHz used to construct each Mode Z 
profile 

S.E. Leurgans and R.T. Ross, Multilinear models: applica- 
tions in spectroscopy, Statistical Sciences, 3 (1992) 289-319. 
S.E. Leurgans, R.T. Ross and R.B. Abel, A decomposition 
for 3-way arrays, SIAM Journal on Matrix Analysis and 
Application, in press. 
R.A. Harshman and M.E. Lundy, The PARAFAC model 
for three-way factor analysis and multidimensional scaling, 
in Law, Hattie and McDonald (Editors), Research Methods 
for Multilinear Data Analysis, Praeger, 1984, pp. 122-215. 
R.A. Harshman, Foundations of the PARAFAC proce- 
dure: models and conditions for an exploratory multi-mode 
factor analysis, UCLA Working Papers in Phonetics, 16 
(1970) l-84. 
C.J. Appellof and E.R. Davidson, Strategies for analyzing 
data from video fluorometric monitoring of liquid chro- 
matographic effluents, Analytical Chemistry, 53 (1981) 
2053-2056. 

0 5 15 60 120 

Finally, the simulated data arrays are given by 

8 D.W. Millican and L.B. M&own, Fluorescence lifetime 
selectivity in excitation-emission matrices for qualitative 
analysis of a two-component system, Analytical Chemistry, 
61 (1989) 580-583. 

A=SO (1+0.2W) 

where 1 is an array of all ones and 0 denotes 
term by term multiplication. The factor 0.25 is 
how we define 25% noise. The choice 0.25 was 
somewhat arbitrary, however, after preliminary 
investigation did appear to give rise to arrays that 
were neither too easy nor to difficult to resolve. 
Finally, actual discrepancies encountered in 
phase-resolved fluorescence spectroscopy are 
most likely a combination of additive and multi- 
plicative noise. A fundamental assumption be- 
hind the PARAFAC routine is additive noise. As 
a result we thought it would be interesting to 
investigate the performance given multiplicative 
noise. One final note, the array used in the Ex- 
ample, which was one of the 64 simulated arrays, 
was generated by setting ID equal to 321. 

9 D.W. Millican and L.B. McGown, Fluorescence lifetime 
resolution of spectra in the frequency domain using multi- 
way analysis, Analytical Chemistry, 62 (1990) 2242-2247. 

10 J.B. Kruskal, Rank, decomposition and uniqueness for 
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(Editors), Multiway Data Analysis, Elsevier, Amsterdam, 
1989, pp. 7-18. 

11 L.B. McGown and F.V. Bright, Phased-resolved fluores- 
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1408. 

12 L.B. McGown and D.S. Kreiss, Spectral fingerprinting 
using phased-resolved fluorescence spectroscopy, SPIE, 
910 (1988) 73-80. 

13 R. Sands and F.W. Young, Component models for three- 
way data: an alternating least squares algorithm with opti- 
mal scaling features, Psychometrika, 45 (1980) 39-67. 
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