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DECOMPOSING EVENT-RELATED POTENTIALS: 
A NEW TOPOGRAPHIC COMPONENTS MODEL * 

Joachim M&KS * * 

Institut ftir Angewandte Mathematik, Universitiit Heidelberg, D-6900 Heidelberg, F.R. G. 

“Component” notions inherently used with measurement approaches, raw peak determination, 
PCA and generator approaches are discussed. By combining aspects of them all, a new model of 

ERP decomposition is established; quite profitable and surprising mathematical properties are 

illustrated and discussed. 

1. Introduction 

Average event-related potentials (ERPs) recorded from the scalp are con- 
ceived as composite phenomena having several distinct subprocesses. An 
important general goal of data analysis is to provide ways to measure these 
subprocesses and, ideally, to identify them. However, different measurement 
approaches emphasize different aspects of the data, and, thereby implicit 
assumptions enter which can be seen as a particular way of defining what a 
subprocess is. There are three main approaches to the measurement of 
subprocesses which will be reviewed in the following. 

The traditional approach to measuring subprocesses is to determine peaks 
and latencies (one may subsume area measures as well) of the waveforms in 
their temporal order. Such a procedure derives from the experience that 
similar deflections are repeatedly observed for many subjects and experiments. 
Calling some deflection a “component” requires that for most subjects it 
exhibits the same polarity within certain latency limits and a similar topo- 
graphic pattern when studied in comparable experimental situations. Some of 
them received widely accepted names (e.g., “the Nl”, “the P3”, likewise NlOO, 
P300) as they were indeed found within narrow latency ranges and with 
specific topographic patterns related to particular experimental factors. This 
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view to ERPs constitutes a “common sense” and a kind of methodological 
baseline, and any fresh approach is likely to be measured by its capability to 
agree with it. Measuring raw peaks has in fact been successful in identifying 
and pinning down basic properties of event-related potentials. It certainly is a 
fruitful step towards understanding a set of ERPs, and suffices in many 
instances to answer what has been asked from the data. Still, component here 
is a loose and qualitative notion referring to the criteria latency, topography, 
and reproducibility in a way which defies its use in quantitative modelling. 

Traditional peak measurements emphasize the sequential occurrence of the 
deflections and inherently assume that at peak-time there is just one subpro- 
cess active (cf., Donchin & Heffley, 1978). Further problems are subjectivity 
when determining the peaks, and the difficulty actually obtaining the mea- 
sures. 

As an answer to these issues principal component analysis (PCA) entered 
the scene and was tutorially popularized by the above paper (see as well, 
Chapman, McCrary, Bragdon, & Chapman, 1979; Glaser & Ruchkin 1976). It 
allows that at any latency more than one subprocess contributes and has other 

profitable features: 

l More information of the data is retained: a subprocess is represented by a 
complete time course and not by just two numbers (amplitude and latency). 
This also provides a better access to slow processes without a clear peak 
(but compare Verleger & Mocks, 1987). 

l The data of several subjects (sample) is used for quantifying subprocesses, 
which evidently can strongly improve reliability and determinacy of the 
measurement. This is a key difference to simple peak measurements in that 
determining subprocesses becomes directly a statistical approach. This way 
it is possible to exploit the fact that subprocesses may be present with 
interindividual stability, being disregarded by approaches proceeding sub- 
ject by subject. 

The PCA approach gained considerable popularity. This is understandable 
from its advantages but also from the fact that its results were frequently in 
good accordance with peak measurement findings. It appears that the tradi- 
tional emphasis on sequentially positioned peaks gave the background for 
preferring ‘simple structure’ solutions in PCA as achieved through Varimax 
rotations - other compelling reasons are seemingly missing. Actual application 
of PCA and interpreting its results raised a number of issues and there is a 
continuing debate about its pros and cons, how to apply it properly and 
whether to use it all (cf., Callaway, Halliday, & Herning 1983; Donchin & 
Heffley, 1978; see McCallum, Curry, Cooper, Pocock, & Papakostopoulos, 
1983; Mocks, 1986; Mocks & Verleger, 1985, 1986; Rockstroh, Elbert, Bir- 
baumer, & Lutzenberger, 1982; Rbsler & Manzey, 1981; Verleger & Mocks, 
1987; Wastell, 1981; Wood & McCarthy, 1984). 
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A further distinct attempt to quantify subprocesses aims at localising the 
electrical generators within the brain. These approaches emphasize the in- 
tracranial physiological substrate of the scalp activity; a component belongs to 
the activity of a fixed piece of brain tissue, commonly modelled by a current 
dipole. By using biophysical head models the attempt has been made to 
recompute from scalp potentials the loci of all sources and to obtain the time 
course of their activity (cf. Nunez, 1981; Scherg & von Cramon, 1985,1986) or 
vice versa (e.g., Lutzenberger, Elbert, & Rockstroh, 1987). These approaches 
proceed subject by subject as simple peak measurement does and interindivid- 
ual aspects are only studied afterwards. 

The notion of components suggested by a generator view as adopted by, for 
example, N;iat;inen and Picton (1987) appears well defined by identifying 
components with scalp contributions of distinct physiological units. Another 
definite but quite opposite approach was taken by Donchin, Ritter, and 
McCallum (1978) who stressed the role of experimentally induced variations in 
determining subprocesses. Both approaches, however, do not explicitly state 
what is always implicitly assumed: interindividual reproducibility. Speaking of 
components in either view, of course denotes .a reproducible phenomenon 
which is observable for many or most subjects. It will be shown here that it is 
quite worthwhile to explicitly refer to interindividual features in decomposi- 
tion approaches. 

In the following section a basic decomposition model is established which 
appears in accordance to all approaches. By looking more closely at inherent 
assumptions of PCA and their conceptual limitations, a new model for 
decomposing ERPs is introduced, which in a way combines aspects of all three 
approaches. Some important mathematical properties of the new decomposi- 
tion model are given and discussed, as far as possible, in an intuitive manner. 
Illustrations with synthetic data follow and some potential concerns with this 
approach are addressed. Finally the problem of how experimental factors can 
be specifically incorporated, is discussed. 

2. Just one subject 

The customary way of applying PCA to ERPs proceeds by using the time 
points of a fixed interval as “variables” while all other data modes (electrodes 
X subjects X experimental conditions) enter as “observations”. Assume for the 
moment, that there is just one subject in one experimental condition, such that 
the data may be arranged in a two dimensional array (a matrix), time x 

electrodes, which I like to write x(t, I) denoting the data value for time t at 
electrode 1. The approach of PCA then reduces to assuming that there are 
k=l,..., K basic functions of time, ck(t) say, which are common to all 
electrodes, and there is a set of coefficients b,(Z) independent of time 
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measuring the strength of presence of the component ck(t) and the I-th 
electrode. All contributions add up to approximate the data: 

K 

(1) 
k=l 

Some remarks: A further symbol for the residual (noise) was, for simplicity, 
omitted on the right hand side of (l), since the discussion will concentrate on 
the non-error part of this and following models. The decomposition model (1) 
is more general than what is usually assumed in PCA, which rather refers to a 
particular method for solving such a decomposition; here, in slight abuse, PCA 
stands for this type of model as well. 

The decomposition model (1) is in accord with the “generator” approaches. 
Indeed, if it is assumed, for example, that the activity observed at the 
electrodes is due to K dipole generators, each having a fixed orientation 
during the epoch, then model (1) may be straightforwardly derived. (Those are 
customary conditions on generators used, e.g., by McCarthy & Wood, 1985; 
Scherg & von Cramon, 1985). Equation (1) is also implied by the more general 
concept of “aggregates” (Mocks, 1988), which emphasizes the synchrony in 
time of point current sources and involves distributed generating tissue as well. 

Now suppose that there are indeed K dipole generators producing the scalp 
activity, a situation which can be ideally realized in a simulation (e.g., the data 
presented by C.C. Wood at the meeting). Do we have a chance to identify 
their time functions using just the scalp data and relying on the decomposition 
(l)? Unfortunately not. An infinity of different sets of component functions 
may be used, with the b’s altered appropriately, to reproduce precisely the 
same scalp data (a familiar statement of this fact is the well known inde- 
terminacy of PCA components with respect to rotations; compare also Mocks 
& Verleger, 1986; Wood & McCarthy, 1984. Fixing one solution out of the 
infinity needs more assumptions. The following are made by PCA: 

The coefficients are “uncorrelated” or “orthogonal” which just means to 
require that C,b,(l)b,,([) = 0 for any two k, k’. If all the true b,(l) and 
b,r(l) have the same sign, e.g., if they are due to deep radial dipoles, then 
this assumption cannot be fulfilled. That is why in PCA usually the mean 
x( t, .) should be presubtracted producing positive and negative signs for 
the b’s in order to make it at least possible that the assumption is fulfilled. 
At first orthogonal components are required, meaning that X,ck( t)c,,( t) = 0 
for any k, k’, to render the “ unrotated” solution. This would be some 
solution, yet, any other rotated version does as good. Choosing an ap- 
propriate rotation is “solved” by convention; customarily the Varimax 
rotation is used, yielding in general non-orthogonal component functions an 
output, while preserving orthogonality for the b’s (compare Lutzenberger, 
Elbert, Rockstroh, & Birbaumer, 1981). 
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These are solely formal mathematical requirements, quite restrictive in fact, 
in order to ensure that the extraction procedure works, that is ends up with 
one solution, but they are obviously not driven by subject-matter insights. At 
best, the Varimax criterion here can be conceived as a hypothesis about the 
physiological reality, however, entering backdoors in a non-conscious way 
(Mocks & Verleger, 1986). Valid results in the sense of approximating basal 
brain processes cannot be guaranteed by PCA, rather one has to put up with a 
principally descriptive outcome fixed by mathematical stipulation. The genera- 
tor approaches as well need a set of additional assumptions in order to achieve 
a definite result from the data, for example Scherg and von Cramon (1985) 
assume that generators produce at most triphasic waveforms. 

Despite these issues model (1) constitutes a biophysically well established 
basis. It is the point of intersection of PCA and generator approaches. 
However, the model in its unconstrained form leaves no chance to find its real 
constituents. 

3. Several subjects and a new model 

Traditional peak measurements and generator approaches (to date) look at 
their subprocesses subject by subject. The sample enters only afterwards, when 
single findings are studied statistically, for example, with regard to homogene- 
ity and scatter across subjects. PCA directly employs the sample when 
determining its subprocesses; the way this is done can be conceived as an 
enlargement of (1): The topographical coefficients b,(l) get a further index i 

for the subjects yielding b,(l, i), say, denoting for the ith subject the strength 
of presence of the k-th component at electrode 1. Formally (1) is altered to 

K 

x(t, I, i) = c ck(r)bk(l, i)> (2) 
k=l 

where, of course, the data x as well has got an additional i. Actual extraction 
by PCA uses the same constraints as reported above, now applying to the 
b,(l, i). Employing (2) implies that: 

0 Component functions are the same for all subjects. 
0 Topographical distributions may vary across subjects, and through (2) there 

is no restriction in whatever manner. 

Relating this to the traditional notion of components, emphasis is put on a 
homogeneous time course across subjects, while homogeneity of topographical 
patterns stands back. By a same right one could for example stress the latter 
coming to the following model: 

K 

x(t, I, i) = c c,(t, i)bk(l). 
k=l 

(3) 
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Here the i was added to the component functions, allowing that they vary 
across subjects, while the b’s are fixed. A PCA run with model (3) would treat 
the electrodes as variables and time X subjects as observations. A similar 
approach was indeed proposed by Skrandies and Lehmann (1982) and was 
also used in the analysis of spontaneous EEG (Gasser, Mocks, & Bather, 
1983). Giving topography a more prominent role in the decomposition of 
ERP’s is also in the spirit of the various brain-mapping approaches presently 
mushrooming up (see e.g., Duffy, 1986). 

Incorporating the sample via (2) or (3), certainly improves reliability as 
compared to, for example, running a PCA for each subject separately. Both 
ways, however, do little to improve the indetermination of the components 
found; the difficulties remain unchanged as they are a principal property of 
any unconstrained two-mode decomposition. 

In my view, both above approaches for pooling the information of a sample 
are not convincing. More generally, any attempt to treat the three-mode data 
x(t, I, i) by some two-mode decomposition is bound to emphasize some 
aspect while dismissing another. It seems much more suggestive to put 
time-course on a par with topography, and to use both as defining properties 
of subprocesses, which would be more sound with the traditional notion of a 
component yet making it accessable to modelling: 

A component in a given epoch is defined by two properties; a fixed time 
course and a topographic pattern independent of time. 
Speaking of a ‘component’ in this sense, means to speak of two things at 

the same time; a time-course and a set of topographical coefficients (cf., 
Gratton, Coles, & Donchin, 1983 and this meeting for a similar view). 

It is a key question how the model refers to a sample of subjects. As had 
been said before, all notions of a component connote a reproducible phenome- 
non which shows up in a similar manner way for most subjects. In terms of 
modelling, this aspect represents a kind of structural homogeneity assumption 
across subjects. The following statement emerges from this assumption: 

In each subject the same basic components contribute. Subjects differ by 
having a specific compound of the components. 
In customary PCA, for example, homogeneity constraints enter by using 

common component functions for all subjects. A component in the present 
view comprises time-course and topography, and therefore the homogeneity 
across subjects applies to both features. In other words, taking the two above 
points together leads to decomposing ERPs through a set of component 
functions ck( t) with pertaining electrode coefficient, bk( I) both common to all 
subjects, and furthermore a set of scores a,(i), say, telling the weight of the 
k-th component in the i-th subject. Written down formally: 

x(t, f, i> = 5 ck(r)bk(l)ak(i) (4) 
k=l 
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Model (4) is also sound with a generator view to components, if it is 
supplemented by the point that all subjects in an experiment possess common 
generators. Subject-specific weights of each generator serve to account for 
interindividual variations in head shape and size, as well as in electrical 
properties and in functional aspects. Actual generator models (cf., Scherg & 
von Cramon 1985, 1986) need “unifying” assumptions about interindividual 
variations when using a “prototype head model” for all subjects. 

Model (4) combines some positive features of the different measurement 
approaches: 

l It is sound with the traditional notion of components by giving equal 
weight to behavior in time and in space (topography) and to interindividual 
stability. 

l It maintains the advantages of PCA and generator approaches over raw 
peak measurements by using a complete time course for modelling the time 
behavior of subprocesses. 

0 It shares with PCA and generator approaches the basic decomposition 
model (1). 

l It goes further than PCA by using a specific way to incorporate interin- 
dividual variation. 

The notion of components as delineated above refers to structural proper- 
ties only. Still, these properties suffice to explicitely fix the objective as follows 
from a crucial mathematical result about model (4), to be discussed in the next 
section. 

4. Properties of the new model 

At first sight, model (4) may look more complicated than the one of PCA; 
instead of two ingredients (loadings and scores), there are three of them now. 
But as a matter of fact, model (4) is simpler in that it drastically reduces the 
number of parameters (unknowns) in the model. To give an example, suppose 
there are T = 50 time-points, L = 5 electrodes and N = 20 subjects; in total 
5000 data points. Running a PCA on that with two components, say, would 
deliver 2.50 values for component functions plus 2.5 .20 scores, thus a total 
of 300 numbers which is quite some reduction compared to 5000. However, 
through model (4) again with two components, there are 2 ’ 50 numbers of 
component functions plus 2. 5 topographic coefficients plus 2.20 subject 
scores, giving a total of 150 numbers only. 

It is a general mathematical fact that reducing the number of unknowns 
while keeping the number of equations is making the remaining parameters 
more tied or determined. This general insight might help to make plausible, 
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why the drastic reduction of unknowns as provided by model (4) leads to 
fixing the remaining parameters, meaning that these are uniquely defined: 

For a fixed number of components K, the sum appearing on the right hand side of 

(4) allows one and only one decomposition in terms of the a’s, b’s, and 6s. 

The assumptions needed for this to hold are rather weak (in parenthesis a 
more mathematical formulation is given): 

l The K component functions differ in their pattern, and the same holds for 
the K vectors of subjects scores (the matrices (ck(t)) and (a,(i)) have full 
rank K). 

l The topographical distributions pertaining to any two of the components 
are not the same (any two of the L-vectors b,(l) are not collinear). 

These assumptions are less restrictive than in PCA. The second one is 
particularly weak: There may be more components than electrodes without 
affecting uniqueness; a quite practical asset regarding the set-up of many 
experiments. 

The unique identification of component functions, topographic coefficients, 
and of subjects scores has the favourable immediate consequence that there is 
no longer a problem of choosing a rotation, since it is not allowed to apply a 
rotation to the results; the rotated solution could not reproduce the data. 
Further, note that there is nothing prescribed about orthogonality or the like. 
This means on the other hand, that subject scores of two components can 
correlate with each other and that these correlations are determined as well. As 
the component functions it means that there may occur almost any overlap in 
time, without affecting the unique decomposition. Further, topographical 
coefficients could well possess all the same sign and no subtraction of means 
or other preprocessing is necessary to approach some requirement. Here, 
obvious limitations are correlations equal to one in the subject scores, and that 
component functions or topographical coefficients are identical. 

A three-mode model like (4) has been considered before in other frame- 
works. Here I wish to thank P.C.M. Molenaar, who as a referee brought to my 
attention the work of Harshman (1970, cited following Harshman & Lundy, 
1984a) and Carroll and Chang (1970) and further related papers of which I 
was unaware when developing model (4) and considering its mathematical 
properties. The above mentioned articles introduced the same type of model 
under the names PARAFAC (parallel factors analysis) and CANDECOMP 
(canonical decomposition), respectively. Kruskal (1976, 1977) studied the 
uniqueness properties and proved that a set of still weaker conditions than 
those given here guarantee a unique decomposition. The present conditions, 
however, keep their significance as they allow a simple mathematical proof 
(cf., Miicks, 1988) and, more important as they can be shown to ensure that 
estimates on the basis of model (4) behave “nicely” in a statistical sense 
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(Pham & Mocks, in preparation). It should be noted that (4) differs from the 
better known model of three-mode factor analysis (Tucker, 1966) dealing as 
well with three-mode data. Tucker’s model shares non-uniqueness with the 
customary two-mode models, PCA and factor analysis. A review of the above 
mentioned work and of further literature was given by Harshman and Lundy 
(1984a). 

The important properties of model (4) follow from its mathematical struc- 
ture and strongly add to its significance. For many readers being habituated to 
the notorious indeterminacy of PCA and factor analysis, all these properties 
might sound too good to be true. This is not the place to present a mathemati- 
cal proof, but it might be worthwhile trying to make uniqueness a little more 
plausible (see as well Harshman & Lundy, 1984a). Yet, while model (4) leads 
in fact to a simpler approach than PCA in terms of data reduction and 
interpretations, the converse is true for its mathematical treatment. It is quite a 
difficult problem to make these arguments intuitive, and one should not hope 
for much clarity or even mathematical precision from the following explana- 
tion. 

It has been said above that the basic decomposition (model (1)) needs 
additional constraints to remove its indetermination. To this end, PCA em- 
ploys further (artificial) restrictions in order to achieve operational uniqueness, 
and generator approaches use other specific requirements. Model (4) yields 
uniqueness by the particular way subjects are included in the model: Each 
subject’s data arise from the same basic components (in the new sense, 
comprising functions and their topographic coefficients). Now suppose, Dr. X, 
a follower of this model, is running a PCA for each subject separately 
rendering each time component functions (PCA-loadings) and topographic 
coefficients (PCA-scores). Since each subject possess a specific compound of 
the components, each run renders differing component functions and/or 
differing topographical coefficients, subject by subject. But by hypothesis, 
these all cannot coincide with the true underlying components, since those 
ought to be the same for all subjects. Therefore Dr. X tries to find a set of 
transformations, such that, after having transformed each subject’s result, 
there are identical component functions and topographical coefficients. Em- 
phasis is put on the word “and”, since the goals were rather straightforwardly 
achievable addressing just one of both - but (4) requires a same structure for 
all subjects making Dr. X’s task much harder. How many different sets of such 
subject-transformations can in principle be found by Dr. X? The above 
assertion says just one, meaning uniqueness of the common solution. 

Note that uniqueness not only needs homogeneity across subjects, but also 
requires that subjects differ - that there is interindividual variation. This 
dialectic aspect of the unique decomposition is made intuitive by noting, that 
in an extremely homogeneous sample, where subjects are as like as two peas, 
considering just one pea suffices, and hence the indeterminacy of the one-sub- 
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ject case returns. Conversely, if there is not enough common structure, 
parameters can be adjusted at will. 

5. Is the model too restrictive? Illustrations 

In order to illustrate the issues from a less abstract side, fig. 1 gives 
synthetic data of five pseudo subjects observed at two pseudo electrodes. On 

MERNS 

SUBJl 

SIJBJS 

I 

ELECTRODE 1 ELECTRODE 2 

TM3 mm 

Fig. 1. Synthetic data of five pseudo subjects at two pseudo electrodes. Upper bold traces are 

grand-means. 
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top of the figure the grand means are displayed. Starting as a conventional 
analysis would start, there are two components visible, first a negative one 
(negative is up, say) followed by a broader positive one. Both components 
seem more pronounced for the second electrode, at which the second deflec- 
tion peaks a little later. Apparently there is some latency variation across 
subjects, in particular for the second deflection. Quite some interindividual 
variation is visible, the potential of subject 1 at electrode 1 could well contain 
an artifact. At electrode 2, the potentials of subjects 1 and 4 look quite 

Fig. 2. Left hand side: Protopyes for generating the data of fig. 1, at the same time result of fitting 
the topographic components model (TCM) in the noiseless case (upper panel) and with additive 
white noise (lower panel). Right hand side: Result of PCA plus Varimax for the synthetic data in 
the noiseless case (upper panel) and with noise (lower panel). Components one to three: solid, 
dashed, and dash-dot. 
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Table 1 

Coefficients for generating the synthetic data set 

Component 1 Component 2 Component 3 

Topographic Electrode 1 3.4 10.0 13.7 

coefficients (b’s) Electrode 2 13.7 10.0 3.4 

Subject Subject 1 14.3 2.7 8.0 

scores (a ‘s) Subject 2 5.1 10.2 12.4 

Subject 3 11.6 4.8 4.6 

Subject 4 0.2 9.2 13.5 

Subject 5 8.2 16.7 0.0 

distinct.. . . The list of observations could be continued, peaks and latencies 
could be determined, and so forth. 

However, all the data of fig. 1 were generated by using three component 
functions (prototypes) without noise. These are displayed in fig. 2 (left upper 
panel). This example demonstrates that model (4) is well capable of explaining 
a variety of waveshape pattern that may be found in real data. It should be 
stressed that this is not an extreme case, rather the variety within the reach of 
the model will substantially increase for more components and electrodes as it 
is usually the case. 

The individual waveforms were generated synthetically based on model (4) 
and no latency differences were introduced. All three prototypes were con- 
structed using the function i(1 + cos x) from -v to tm. Prototypes were 
numbered according to their peak latency (total interval 60 points). Prototype 
1 was defined on 30 points with peak amplitude 1.0, the third one on all 60 
points with peak amplitude 0.5. Prototype 2 with onset at point 11, reached its 
deepest point within 10 points and for the remaining interval slowly returned 
to zero. 

Table 1 gives the topographical coefficients and subject scores of the three 
prototypes, as chosen for this example. The waveshapes of fig. 1 were then 
build according to model (4). To be explicit, the data of pseudo subject 1 at 
electrode 1 was generated by 

Prototype 1 . 3.4.14.3 + Prototype 2.10.0. 2.7 + Prototype 3 . 13.7 . 8.0, 

and at electrode 2 by 

Prototype 1 . 13.7 . 14.3 + Prototype 2 . 10.0.2.7 + Prototype 3 .3.4. 8.0. 

It might appear surprising that quite some variation of shapes can come out, 
thought there are for each subject identical component functions and topo- 
graphic patterns. However, weighted sums of just a few functions with time 
overlap, will quickly exceed our intuition despite its simple construction. These 
points should caution against strongly relying on our apperception when 
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analysing ERPs. Approaches focussing on what is “seen” in order to stay 
“close” to the data might be far off of what really is taking place. 

In discussions I heard two main concerns about model (4). The first was 
phenomenologically oriented asking whether the large interindividual variation 
of waveshapes mostly encountered in real data is digestible for the model. 
That may be answered by the example and by the above remarks, and by 
noting that, of course, a remaining individual specificity can be subsumed in a 
noise term. The second concern raises the issue of large anatomical variation 
in cortex shape which in particular could affect the assumption of homoge- 
neous topography, at least for some modalities and experiments. It seems, 
however, that the subject-specific compound can cope with quite some of this 
variation still well approximating the homogeneity requirement. To really 
confound something, the topographical distribution produced by a same 
generator of an anatomical oddball subject has to be drastically deviant, for 
example, at least including reversal of signs. This appears not to be a common 
case and I have never met anyone who hesitated to present grand means per 
electrode because of possible anatomical variations. This objection, of course, 
would not apply to (4) alone but to other measurement approaches as well. 
Generator approaches using a unified head model would obviously face a 
similar problem. Similarly, traditional peak measurements need to assume that 
in some sense a same peak was determined for all subjects, when performing 
statistical analysis with the measures. It appears that any measurement ap- 
proach needs structural homogeneity assumptions in the end, which just 
happen to be less explicitely stated than in (4). Generally speaking, any 
modelling and measuring of a phenomenon employs idealizations which 
cannot and perhaps must not be exactly met in each single case. Idealizations 
rather open up possibilities to properly account for main features. In my view, 
the topographic components model (4) constitutes such a set of well-founded 
and reasonable idealizations. 

The flexibility of model (4) can be illustrated by imagining an extreme 
situation: Suppose there are two subgroups in a sample each having two true 
underlying components, but quite different ones, that is, a heterogeneous case. 
Then model (4) still applies by taking four components and by putting to zero 
the subject scores of the respective set of components. However, it cannot be 
excluded that model (4) constitutes a poor approximation to the structure of a 
particular data set. This will be reflected by a poor fit to the raw data despite 
using many components. More experience with real data will hopefully pro- 
vide more indicators of such a situation and show how frequent they occur in 
practice. 

The uniqueness property of the model for the data displayed in fig. 1 
implies that ten waveshapes of pseudo subjects l-5 determine uniquely (a) the 
three prototypes of fig. 2 (left upper panel) and (b) all coefficients compiled in 
table 1. That is to say, no other set of prototypes and coefficients can be found 
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that would exactly generate these ten curves when using model (4). ’ An 
algorithm for extracting components according to model (4) and furthermore 
conventional PCA plus Varimax rotation were applied to this test data set 
(actually using 30 instead of 5 pseudo subjects). Since the prototypes were 
exactly identified by the model (4) approach no extra plot is provided for this 
result; the PCA outcome is displayed in the right upper panel. The lower part 
shows the results with some white noise added to the data. 

It is seen that the topographical component model is still validly approxi- 
mating the underlying true structure, while PCA in both cases chooses its 
decomposition as fixed by its formal mathematical constraints (see Mocks & 
Verleger, 1986; Wood & McCarthy, 1984, for further simulation results with 
PCA), leading here, for example, to wrong peak latencies of the PCA compo- 
nents as compared to the input prototypes. Unfortunately, I have no access to 
a generator fitting algorithm, and a comparison with these approaches was not 
run. 

6. Experimental conditions 

So far very little has been said about the role of experimental conditions in 
model (4). In customary PCA experimental conditions 2 are incorporated as a 
further mode of the observations treated equivalently to different electrodes 
(see Mocks & Verleger, 1985, for another approach within PCA). From the 
topographic components model (4) it seems a suggestive and easy way to 
combine experimental conditions with the subject mode meaning that the 
index i used before for subjects is to be understood to comprise subjects x 

experimental conditions. Doing so implies that experimental factors would act 
by changing the subject-specific compound of the common component contri- 
butions. This, of course, entails the situation that experimental factor evoke a 
deflection (as e.g., the rare stimulus does in an oddball paradigm) in that zero 
or almost zero weights for a component in one condition emerges, but high 
ones in the other. Then subject scores could afterwards be investigated as to 
the statistical significance of experimental changes. 

Another possibility is to consider experimental factors as a further indepen- 
dent mode of the data, that is to say, the four-mode data x(t, I, i, m) where 

This is to be understood up to the possibility of resealing. For example, if all topographic 
coefficients were multiplier by 17, say, one achieves the same curves by first dividing the subject 
scores by 17 and so forth. 
Here the focus is on “within subject” experimental factors, those realized between groups 
naturally just add to the subject mode. 
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m stands for experimental conditions, would be subjected to a four-mode 
decomposition as follows 

x(t, 1, i, m) = c c,(f)b,(l)a,(i)e,(m) 
k=l 

(5) 

where ek(m) gives the weight of the k th component in the experimental 
condition m. Being independent of subjects, the weights ek(m) tell the 
tendency of a component to be present in an experimental condition. Looking 
at these weights, the component functions and their topographical coefficients 
provide a concise, still valid way to abstract the data. The subject scores a,(i) 

here do not depend on the experimental conditions, and their individual 
pattern of scores across components could be conceived as a “finger-print” of 
that particular subject, in that it reflects a property of the subject but not of 
the experimental conditions, time, or electrodes. 

Passing from two-mode to three-mode decompositions gained the unique- 
ness property, in a similar way a four-mode treatment offers further mathe- 
matical advantages over the three-mode case. The assumptions necessary to 
guarantee uniqueness can be still more relaxed, and a further marked data 
reduction (reduction in unknowns) is achieved. 

7. Conclusion aud outlook 

The general statement can be made that a closer look at the models of ERP 
decomposition is quite worthwhile and could lead to substantial methodologi- 
cal progress. The topographic component model presented here appears to be 
in accord with the traditional way of conceiving ERP data, with statistical 
aspects of the PCA approach, and with biophysical considerations. The 
advantages captured are striking, in particular the uniqueness of the decom- 
position. 

The proposed model can be extended towards a four-mode analysis when 
there are “within subject” experimental factors. It is also possible to generalize 
it by including individual latency parameters of the component functions, 
along the lines of Mocks (1986). The approach to individual latencies therein 
applies to PCA, but can be employed here with much more promise due to the 
uniqueness property. 

The favourable properties of the new model have their costs in terms of 
complicated mathematical treatment and quite involved problems on the 
algorithmic side. The algorithmic approach for a direct fit of the model used in 
PARAFAC and CANDECOMP is indeed an obvious one and, independently, 
I tried this idea first. At first glance this algorithm should have nice properties; 
it was found to converge very slow - to an extent which almost prohibits its 
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application in ERP data. On top of this, the algorithm has an unpleasant 
tendency to produce degenerate solutions (my own experiences are quite in 
line with those reported by Harshman 8z Lundy, 1984b). This non-robust 
behavior made it necessary to develop other approaches, and the results of this 
paper were obtained with such an alternative algorithm. It turned out to be far 
quicker and more stable than the convential approach (to be communicated 
elsewhere). However, still further improved algorithms are strongly desirable 
in order to make model (4) broadly applicable in ERP analysis. 

Apart from algorithmic issues, important mathematical questions remain 
concerning statistical properties of the estimated coefficients and component 
functions. Fortunately, some of these questions have already been settled (in 
cooperation with Pham Dinh Tuan, Grenoble) showing that it will be possible 
to have access to a broad scope of statistical tools when applying this 
topographic components model, to list some, significance testing with topo- 
graphical coefficients, for example, concerning hemispheric differences, confi- 
dence bands of component functions and other useful devices. 

References 

Callaway, E. Halliday, R., & Heming, RI. (1983). A comparison of methods for measuring 
event-related potentials. Electroencephalography and Clinical Neurophysiology, 55, 221-232. 

Carrol J.D., & Chang, J.J. (1970). Analysis of individual differences in multidimensional scaling 
via an N-way generalization of ‘Eckart-Young’ decomposition. Psychometrika, 35, 283-319. 

Chapman, R.M., McCrary, J.W., Bragdon, H.R., & Chapman, J.A. (1979). Latent components of 
event-related potentials functionally related to information processing. In J. .Desmedt (Ed.), 
Cognitive components in cerebral event-related potentials and selective attention. Progress in 
clinical neurophysiology 6(pp. 80-105). Basel: Karger. 

Donchin, E., & Heffley, E.F. (1978). Multivariate analysis of event-related potential data: a 
tutorial review. In D. Otto, Multidisciplinary perspectives in event-related brain potential 

research (pp. 555-572). Washington, DC: U.S. Government Printing Office. 
Donchin, E., Ritter, W., & McCallum, W.C. (1978). The endogeneous components of the ERP. In 

E. Callaway, P. Tueting, L S.H. Koslow (I%.), Event-related brain potentials in man (pp. 
349-411). New York: Academic Press. 

Duffy, F.H. (1986). Mapping of brain electrical actiuity. Stoneham, MA: Butterworths. 
Gasser, T., Mocks, J., & Bather, P. (1983). Topographic factor analysis of the EEG with 

applications to development and to mental retardation. Electroencephalography and Clinical 
Neurophysiology, 55, 445-463. 

Glaser, E.M. & Ruchkin, D.S. (1976). Principles of neurobiological signal analysis. New York: 
Academic Press. 

Gratton, G., Coles, G.h., & Donchin, E. (1983). Filtering for spatial distribution: A new approach 
(vector filter). Psychophysiology, 20, 443. 

Harshman, R.A. (1970). Foundations of the PARAFAC procedure: Models and conditions for an 
“explanatory” multi-modal factor analysis. UCLA Working Papers in Phonetics (University 
microfilms 10,085), 16, l-84. 

Harshman, R.A., & Lundy, M.E. (1984a). The PARAFAC model for three-way factor analysis 
and multidimensional scaling. In H.G. Law, C.W. Snyder, J.A. Hattie, & R.P. McDonald 
(Eds), Research methodr for multimode data analysis (pp 123-215). New York: Praeger. 



J. Micks / Decomposing ERPs 215 

Harshman, R.A., & Lundy, M.E. (1984b). Data preprocessing and the extended PARAFAC 
model. In H.G. Law, C.W. Snyder, J.A. Hattie, & R.P. McDonald (Eds), Research methoa!s for 
multimode data analysis (pp. 216-281). New York: Praeger. 

Kruskal, J.B. (1976). More factors than subjects, tests and treatments: An indeterminacy theorem 
for canonical decomposition and individual difference scaling. Psychometrika, 41, 281-293. 

Kruskal, J.B. (1977). Three-way arrays: Rank and uniqueness of t&near decompositions with 
applications to arithmetic complexity and statistics. Linear Algebra and its Applications, 18, 
95-138. 

Lutzenberger, W., Elbert, T., & Rockstroh, B. (1987). A brief tutorial on the implications of 
volume conduction for the interpretation of the EEG. Journal of Psychophysiology, I, 81-89. 

Lutzenberger, W., Elbert, T., Rockstroh, B., & Birbaumer,, N. (1981). Principal component 
analysis of slow brain potentials during six second anticipation intervals. Biological Psy- 
chology, 13, 271-279. 

McCallum, W.C., Curry, S.H., Cooper, R., Pocok, P.V., & Papakostopoulos, D. (1983). Brain 
event-related potentials as indicators of early selective processes in auditory target localization. 
Psychophysiology, 20, 1-17. 

McCarthy, G., & Wood, C.C. (1985). Scalp distribution of event-related potentials: An ambiguity 
associated with analysis of variance models, Electroencephalography and Clinical Neurophysi- 
ology, 62, 203-208. 

Mocks, J. (1986). The influence of latency variations in principal component analysis of event-re- 
lated potentials. Psychophysiology, 23, 480-484. 

Mocks, J. (1988). Topographical components model for event-related potentials and some bio- 
physical considerations. IEEE Transactions on Biomedical Engineering, 35, 482-484. 

Mocks, J., & Verleger, R. (1985). Nuisance sources of variance in principal component analysis of 
event-related potentials. Psychophysiology, 22, 674-688. 

Mocks, J., & Verleger, R. (1986). Principal component analysis of event-related potentials: A note 
on misallocation of variance. Electroencephalography and Clinical Neurophysiologv, 65, 393-398. 

N1Ltlnen, R., & Picton, T. (1987). The Nl wave of the human electric and magnetic response to 
sound: A review and an analysis of the component structure. Psychophysiology, 24, 375-425. 

Nunez, P.L. (1981). Electric fields of the brain. New York: Oxford University Press. 
Pham, D.T. & Mocks, J. (in preparation). Least-square estimation in trilinear decomposition 

models. 
Rockstroh, B., Elbert, T., Birbaumer, N., & Lutzenberger, W. (1982). Slow brain potentials and 

behavior. Baltimore: Urban & Schwarzenberg. 
Riisler, F., & Manzey, D. (1981). Principal components and Varimax-rotated components in 

event-related potential research: Some remarks on their interpretation. Biological Psychology, 
13, 3-26. 

Scherg, M., & von Cramon, D. (1985). Two bilateral sources of the late AEP as identified by a 
spatio-temporal dipole model. Electroencephalography and Clinical Neurophysiology, 62, 32-44. 

Scherg, M., & von Cramon, D. (1986). Evoked dipole source potentials of the human auditory 
cortex. Eleciroencephalography and Clinical Neurophysiology, 65, 344-360. 

Skrandies, W., & Lehmann, D. (1982). Spatial principal components of multichannel maps evoked 
by visual half-field stimuli. Electroencephalography and Clinical Neurophysiology, 54, 662-667. 

Tucker, L.R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31, 
279-311. 

Verleger, R., & Mocks, J. (1987). Varimax may produce Slow-Wave like shapes by merging 
monotomic trends with other components. Eleciroencephalography and Clinical Neurophysi- 
ology, I, 265-270. 

Wastell, D.G., (1981). On the correlated nature of evoked brain activity: Biophysical and 
statistical considerations. Biological Psychology, 13, 51-69. 

Wood, C.C., & McCarthy, G. (1984). Principal component analysis of event-related potentials: 
Simulation studies demonstrate misallocation of variance across components. Electroen- 
cephalography and Clinical Neurophysiology, 59, 249-260. 


