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This paper describes the application of a trilinear parallel factor analysis (PARAFAC) to study systematic error

during the multi-element determination of a range of analytes in acid digests of solid samples (tea leaves) by

ICP-AES and ICP-MS. The three variables studied were the ‘‘number of digestions’’, in order to assess the

systematic error associated with the sample pre-treatment, and the ‘‘number of replicates’’ and ‘‘calibration’’, to

provide information on the systematic error associated with the analytical determination itself. The elements

under study were Co, Cr, Cu, Ni, Pb, Rb and Ti by ICP-MS, and Ba, Ca, Fe, Mg, Mn, Sr and Zn by both

ICP-MS and ICP-AES. For some elements flame atomic absorption spectrometry was used for comparative

purposes. A Chinese tea certified reference material containing many of the metals above was used in the study.

The results obtained were compared to results from ANOVA. It was found that the systematic error, expressed

as the sum of squares after PARAFAC, was quite different from the results obtained using ANOVA due to the

very different way in which the models are built. The PARAFAC approach is shown to be straightforward to

implement and robust.

Introduction

There are many chemical systems that provide multi-way data.
A fluorescence emission spectrum measured at several excita-
tion wavelengths for several samples, or the spectrum obtained
at different wavelengths following the chromatographic
separation of several samples are examples of three-way
analysis found in the literature.1 In such cases, the application
of a two-way chemometrics tool such as principal component
analysis (PCA) is limited, and often realistic conclusions cannot
be drawn. However, parallel factor analysis (PARAFAC) is a
multi-way decomposition method that can be used to solve
systems characterised by multi-way data. This chemometrics
tool is considered to be a generalisation of PCA to higher order
arrays, although there are important differences from PCA
such as the lack of rotation freedom in PARAFAC and the
simultaneous estimation of components or factors.1

Despite PARAFAC being a relatively new chemometric
technique, a number of applications have already been
reported. To date, most correspond to the decomposition
process in excitation–emission fluorescence spectroscopy2–10 in
order to determine hydrocarbons,4,5 polycyclic aromatic
hydrocarbons,6,8,10 metabolites of acetylsalicylic acid7 or
carbamate pesticides.10 The classification of fruit (apple)2

and the monitoring of quality parameters during sugar
production9 have also been reported. The application of
PARAFAC to analytical techniques such as high-performance
liquid chromatography (HPLC), coupled with different
detectors such as fluorescence spectrometry6,11 and ultravio-
let–visible spectrometry12,13 have also received attention, and
Smilde et al.14 have used PARAFAC for the calibration of new
stationary phases in HPLC. Other applications such as the

decomposition of three-way kinetic-spectrophotometry spec-
tra15 or the estimation of rate constants using on-line short
wavelength-near infrared data (SW-NIR) or ultraviolet–visible
spectra16,17 have been developed.

The use of PARAFAC for analysis of variance is rare;
however, there is an advantage in using PARAFAC for
ANOVA because of the way interacting terms are modelled. In
a standard ANOVA an interaction between three variables (A,
B and C) would be estimated as abcijk, while in a trilinear
model, the effect would be estimated as aibjck or as a sum of
such expressions if more PARAFAC components are esti-
mated, i.e., the interaction between variables is not only
estimated as a whole, but is modelled as a multiplicative effect
of the different factors. If the multiplicative model is
appropriate, the applied restriction (aibjck instead of merely
Eijk) will give a more straightforward model, and thus the
interpretation of results from PARAFAC is easier than those
from ANOVA.18

In any analysis there are at least two variables that must be
taken into account to obtain precise and accurate data, the
‘‘number of replicates’’ and the ‘‘calibration’’. If a solid
material is being analysed, a sample decomposition pre-
treatment (a wet acid digestion, a fusion or a dry ashing) is
normally required, and a third variable (the number of times
that the sample pre-treatment is carried out on the same
sample) must also be considered. Therefore, in order to
minimise the error in the multi-element analysis of sample acid
digests, three variables can be considered: the ‘‘number of
replicates’’, the ‘‘calibration’’ and the ‘‘number of acid
digestions’’. In this study, the concentration of metals in an
environmental matrix (tea) was determined whilst varying the
number of acid digestions prepared, the number of replicates of
each acid digest and the use of two different calibration graphs.
The data obtained for each metal can then be arranged in a
three-way array. The application of chemometric techniques
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such as PCA can be used to assess the systematic error in an
analytical process.19 However, the three-way characteristics of
the data set makes the interpretation difficult using a 2-way
chemometrics tool, especially when the loadings from the PCA
are being interpreted, and the third dimension of the problem
(i.e., the ‘‘calibration’’) masks the effects of the other two
variables, i.e. ‘‘number of replicates’’ and ‘‘number of
digestions’’.

The aim of this work was to study the systematic errors in the
determination of a range of elements (Ba, Ca, Co, Cr, Cs, Cu,
Fe, Mg, Mn, Ni, Pb, Rb, Sr, Ti and Zn) in tea leaves by ICP-
AES and ICP-MS. In order to aid the clarity of the text, the
terminology used by Bro20 has been adapted as summarised in
Table 1.

Experimental

An ICP-AES Liberty 200 instrument (Varian, Cheshire, UK)
and an ICP-MS PlasmaQuad PQ2z instrument (Fisons
Instruments, Winsford, Cheshire, UK) were used in the study.

A flame atomic absorption spectrometer SpectrAA 50
(Varian), equipped with a N2O–acetylene flame, was used for

Ca determinations. A similar instrument (SpectrAA 300/400,
Varian), equipped with an air–acetylene flame, was used for
Cu, Fe, Mg, Mn and Zn determinations. Hollow cathode lamps
(Varian) operating at the recommended current were used.

A hotplate (SH3, Stuart Scientific, UK) was used for total
digestion of the tea reference material.

The chemometrics package UNSCRAMBLER, 1998
(CAMO ASA, Trondheim, Norway) was used to obtain
ANOVA results in the experimental design work.

Matlab software (Mathworks, Inc., Version 5.1) and the N-
way toolbox for Matlab were employed to perform the
PARAFAC analysis.21

Reagents

The chemicals used were of ultrapure grade, and ultrapure
water of resistance 18 MO cm21 was obtained from a Milli-Q
purification system (Millipore Co., Bedford, MA, USA).
AnalaR nitric acid 70.0% was obtained from Merck (Poole,
Dorset, UK). Stock standard solutions (1.000 or 10.000 g l21)
were also supplied by Merck. Cobalt stock standard solution
was purchased from Aldrich (Gillingham, Dorset, UK).
Chinese tea reference material GBW 08505 was obtained
from the Bureau of Analysed Samples (Middlesbrough, UK).

Acid digestion procedure

The Chinese tea reference material was digested according to a
method published elsewhere.22 Sample (0.2500 g) was weighed
into a clean beaker and nitric acid (10 ml) added. The beaker
was covered with a watch-glass and the sample boiled gently on
a hot plate for 3 h. After cooling to room temperature, the acid
digests were transferred quantitatively to 50 ml volumetric
flasks. Indium (as an internal standard for ICP-MS measure-
ments) was added to each digest to give a concentration of
100 mg l21 after dilution to 50 ml. The acid digests were kept in
polyethylene vials at room temperature prior to analysis.

ICP-AES/MS and FAAS measurements

The elements Ba, Co, Cr, Cs, Cu, Fe, Mg, Mn, Ni, Pb, Rb, Sr,
Ti and Zn were measured by ICP-MS without dilution, using
the operating parameters and the isotope masses shown in
Table 2. In addition Ba, Ca, Fe, Mg, Mn, Sr and Zn were also
measured by ICP-AES without dilution, using the operating
conditions and emission wavelength lines given in Table 3. The
optimum conditions used for ICP-MS/AES have been
described elsewhere.22 Finally, for comparative purposes, a
number of elements (Ca, Cu, Fe, Mg, Mn, Zn) were also
measured by FAAS, using an acetylene–air flame for all
elements, except Ca, for which a N2O–acetylene flame was
used. In order to avoid the necessity of sample dilution for the
Ca and Mg FAAS measurements, the less sensitive resonance
lines (239.9 and 202.6 nm, for Ca and Mg, respectively) were
employed. The operating parameters and details of the atomic
absorption resonance lines used for the FAAS measurements
are given in Table 4.

Results and discussion

Table 5 lists the elements with certified (Ba, Ca, Cu, Fe, Mg,
Mn, Ni, Pb, Rb, Sr and Zn) or informative (Co, Cr and Ti)
concentrations (together with the uncertainty) in the GBW
08505 tea reference material used in the study.

Data

Data sets for each element and technique, similar to those
shown in Table 6 for the determination of 54Fe by ICP-MS,
were obtained to investigate the influence of the three variables
(‘‘number of digestions’’, ‘‘number of replicates’’ and ‘‘calibra-

Table 1 Glossary of terms from Bro (ref. 20)

Component or
factor

New variables obtained after the
decomposition method

Modes or ways The mode is the basic entity building an array:
a matrix has two modes or ways (the row mode
and the column mode), a three-way or three-
mode array has three modes or ways

Order The order of an array is the number of modes,
hence a matrix is a second-order array, and a
three-way array a third-order array

Dimension The term dimension will be used to denote the
number of levels in a mode

Rank Rank is the minimum number of PARAFAC
components necessary to describe an array.
For a two-way array this definition reduces to
the number of principal components necessary
to fit the matrix

Table 2 Operating parameters for ICP-MS

Forward power/W 1350
Gas flows/l min21

Nebulizer 0.85
Auxiliary 1.0
Coolant 15.0

Nebulizer type Ebdon, high solids
Data acquisition for quantitative analysis Peak jump
Internal standard In, 100 mg l21

Isotope masses monitored
24Mg, 48Ti, 52Cr, 54Fe, 55Mn, 59Co, 60Ni, 65Cu, 66Zn, 85Rb, 88Sr,
138Ba, and 206Pb

Table 3 Operating conditions for ICP-AES

Forward power/W 1000
Gas flows/l min21 Coolant 15.0

Auxiliary 1.5
Nebulizer type Cross flow
Nebulizer pressure/kPa 150
Pump speed/rev min21 20
PMT voltage/V 650
Stabilisation time/s 10
Detection wavelengths/nm Ba 455.403

Ca 393.366
Cu 324.754
Fe 259.940
Mg 279.533
Mn 257.610
Sr 407.771
Zn 213.856
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tion’’) on the accuracy of the methods. The variable called
‘‘number of digestions’’ refers to the number of acid digestions
performed in parallel (one to four). The variable called
‘‘number of replicates’’ is the number of instrumental
determinations carried out with each acid digestion (two to
five). Finally, the variable ‘‘calibration’’ refers to two aqueous
calibration graphs, prepared independently and covering an
adequate range of concentrations. The procedure for calibra-
tion when using the three techniques (ICP-MS, ICP-AES and
FAAS) was based on a weighted least squares approach
(weighted regression). These data sets have three modes,
representing the three different variables under study as in
Figure 1(a).

The different levels (dimensions) of each variable are shown
in Table 7 corresponding to a full factorial design (FFD)
41641621 (with 41641621~46462~32 samples). In this
three-way PARAFAC model, the three different ways
represent the number of digestions (dimension 4), number of
replicates (dimension 4) and calibration (dimension 2), so, the
ijk element of the three-way array contains the mean element
concentration for the ith number of digestions, the jth number

of replicates and using the kth calibration graph, as shown in
Figure 1(a).

Data sets for all elements and techniques similar to those for
54Fe determination by ICP-MS are available on the RSC web
site (Table S1{).

PARAFAC

The use of PARAFAC splits the raw data into a number of
components. Each component is formed by three vectors; one
score vector (for instance, for the number of replicates) and a
loading vector in each variable direction (number of digestions
and calibration in this case). The decomposition is such that the
raw data is the sum of the products of scores and loadings for
each component, e.g.,

xijk~
XF

f ~1

aif bjf ckf zE (1)

where xijk is the raw data, and a, b and c, the scores and
loadings for F components. E is the error of the model. For
F~2, eqn. (1) can be represented graphically as in Fig. 1(b).

In this study, the components higher than 1 (second, third,
… nth component) are those that offer the useful information
(components that show the differences between the objects),
and the first component can be considered as an estimation of
the raw data. As can be seen in Tables 8 and 9, the first
component produces a value very similar to that of the raw
data, and the remaining information provided by the following
PARAFAC components could be associated with the devia-
tions or error of the measurements.

Selection of the number of components. The first step in the
construction of a PARAFAC model is the selection of the
optimum number of components. This number can be chosen
to minimise the sum squared prediction error (SSPE),
mathematically expressed as

SS~
XF

f ~1

aif bjf ckf

 !
{xijk

" #2

(2)

where xijk is the ijkth element of the data set, and aif, bjf and ckf

are the scores and loadings for the fth component.
An alternative approach, called the core consistency

diagnostic,20 can also be used for determining the correct
number of components for multi-way models. This approach
has been demonstrated to be extremely powerful for determin-
ing the optimum number of PARAFAC components.20 Both
approaches, SSPE and core consistency, were applied three
times for each data set (each element and technique) for one,
two, and three components. The replication (the determination
of each parameter three times for each number of components)
is necessary because the core consistency algorithm can offer
very different results when the solution for a certain number of
components is inappropriate. Some examples of SSPE and core
consistency plots are given in Fig. 2, and a complete set of plots

Table 4 Operating parameter for FAAS

Wavelength/
nm

Slit
width/
nm

Lamp
current/
mA

Air flow
rate/l min21

C2H2 flow
rate/
l min21

Ca 239.9 0.2 10 10.00a 6.35
Cu 324.8 0.7 10 13.50 2.00
Fe 248.3 0.2 6 13.50 2.00
Mg 202.6 0.7 10 13.50 2.00
Mn 279.5 0.2 6 13.50 2.00
Zn 213.9 0.2 10 13.50 2.00
aN2O flow rate.

Table 5 Certified or informative concentrations in a Chinese tea
certified reference material (GBW 08505) for the elements investigated
and the techniques employed during this study

Element Certified concentration/mg g21 Technique

Ba 15.7¡1.9 ICP-AES, ICP-MS
Caa 0.284¡0.021 ICP-AES, FAAS
Cob 0.2 ICP-MS
Crb 0.8 ICP-MS
Cu 16.2¡1.9 ICP-MS, FAAS
Fe 373¡23 ICP-AES, ICP-MS, FAAS
Mga 0.224¡0.019 ICP-AES, ICP-MS, FAAS
Mn 766¡28 ICP-AES, ICP-MS, FAAS
Ni 7.61¡0.48 ICP-MS
Pb 1.06¡0.10 ICP-MS
Rb 36.9¡1.3 ICP-MS
Sr 10.8¡1.8 ICP-AES, ICP-MS
Tib 36 ICP-MS
Zn 38.7¡3.9 ICP-AES, ICP-MS, FAAS
aConcentration expressed in %(m/m). bInformative concentration.

Table 6 Fe mean concentrations (mg g21)in the Chinese tea reference material GBW 08505 obtained by ICP-MS

54Fe (ICP-MS) certified concentration of 373¡23 mg g21

One digestion Two digestion Three digestion Four digestion

Calibration I Two replicates 386 403 399 392
Calibration I Three replicates 379 387 385 380
Calibration I Four replicates 365 373 374 367
Calibration I Five replciates 361 367 372 364
Calibration II Two replicates 406 389 389 385
Calibration II Three replicates 392 384 378 375
Calibration II Four replicates 380 376 371 366
Calibration II Five replicates 377 366 363 360
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is available on the RSC web site under the title of Fig. S1{. The
number of components must be chosen in order to obtain the
lowest SSPE and also the highest value for the core consistency.
PARAFAC models with higher than three-component solu-
tions were not considered because more interpretable models
are usually obtained with fewer components.20 As a rule we can
consider that if the core consistency is lower than 50.0% the
number of components for that solution is not adequate. It can
be seen in Fig. 2, (and in Fig. S1{), that the SSPE is decreased
when the number of components in the model is high, which
can lead to the choice of a larger number of components.
However, although the SSPE is low for higher numbers of
components, the core consistency gives the correct number of
components. This can be visualised in Fig. 2 for Cu and ICP-
MS, where it can be seen that the SSPE is equal to zero for a

number of components higher than 2 but the core consistency
falls below 50.0% for the three and four-component solutions,
and a two-component model must be chosen.

From the results above, two-component or three-component
solutions were found to be adequate for modelling most of the
different data sets. For instance, a two-component model was
obtained for 24Mg, 48Ti, 52Cr, 54Fe, 59Co, 65Cu, 66Zn, 85Rb and
88Sr determination by ICP-MS, and also for Ca using ICP-AES
and Mg and Zn using FAAS. A three-component solution was
found for 55Mn, 60Ni and 138Ba and 206Pb using ICP-MS, and
Ba and Fe using ICP-AES and FAAS, respectively.

After the core consistency determinations, it was found that
some of the data sets may need to be fitted using a one-
component model. Examples include Fe (Fig. 2), Mg, Mn, Sr
and Zn by ICP-AES, and Cu and Mn by FAAS. For these
cases, the determination of the systematic error is not possible
using the PARAFAC approach because the first component of
the model does not give differences between the objects (data).
In such cases it can be concluded that the differences between
the measurements carried out using different calibrations, or by
using a different number of replicates and digestions, are not
significant. After a detailed study of the elements and
techniques for which one-component solutions were found to
be optimum, it can be seen that this data set is related to
elements at a high concentration in the reference material and

Fig. 1 Graphical representation of the three-way array of metal
concentrations (a), and a two-component PARAFAC model of the
data array X (b).

Table 7 Experimental field definition of the variables

Variables Levels

Number of replicates (R) 2, 3, 4, 5
Number of digestions (D) 1, 2, 3, 4

Calibration (C) I, II

Table 8 Example of PARAFAC decomposition into raw datazerror for a two-component model:85Rb and ICP-MS

Original data—

One digestion Two digestions Three digestions Four digestions

Calibration I Two replicates 39.75 38.88 37.70 37.84
Calibration I Three replicates 39.67 38.80 38.22 38.22
Calibration I Four replicates 40.28 39.16 38.63 38.46
Calibration I Five replicates 40.69 39.32 38.58 38.29
Calibration II Two replicates 34.60 34.60 35.49 36.12
Calibration II Three replicates 35.66 34.98 35.74 35.86
Calibration II Four replicates 33.07 33.94 35.10 35.43
Calibration II Five replicates 34.22 34.96 35.71 35.77

First component (raw data)—

One digestion Two digestions Three digestions Four digestions

Calibration I Two replicates 39.30 38.53 37.76 37.76
Calibration I Three replicates 39.42 38.65 37.88 37.88
Calibration I Four replicates 39.73 38.95 38.17 38.17
Calibration I Five replicates 39.89 39.11 38.33 38.33
Calibration II Two replicates 38.21 37.46 36.71 36.71
Calibration II Three replicates 38.33 37.58 36.82 36.82
Calibration II Four replicates 38.62 37.87 37.11 37.11
Calibration II Five replicates 38.78 38.02 37.26 37.26

Second component (error)—

One digestion Two digestions Three digestions Four digestions

Calibration I Two replicates 0.37 0.26 0.13 0.11
Calibration I Three replicates 0.30 0.21 0.11 0.09
Calibration I Four replicates 0.56 0.40 0.21 0.16
Calibration I Five replciates 0.45 0.32 0.17 0.13
Calibration II Two replicates 0.37 -2.58 -1.34 -1.05
Calibration II Three replicates 0.30 -2.12 -1.10 -0.86
Calibration II Four replicates 0.56 -3.94 -2.04 -1.61
Calibration II Five replicates 0.45 -3.19 -1.65 -1.30
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measured by ICP-AES or FAAS. The precision offered by
these techniques has been found to be better than that given by
ICP-MS, as demonstrated in another publication using
principal component analysis and experimental designs.23 In
addition, for the elements and techniques referred to above, the
extension of systematic error found for the three sources of
error (calibration, number of replicates and number of
digestions) was very small.23 Therefore, PARAFAC also
detects that the systematic error is small in these cases, and
one-component PARAFAC models are proposed.

In the same way, a three-component model was found to be
optimum for some cases (Ba, Mn and Ni determination by
ICP-MS, Ba by ICP-AES and Fe by FAAS), which are the
determinations which offer the worst precision.

Scores and loadings vectors from PARAFAC. Some exam-
ples of the score and loading vectors of one-, two- and three-
components are given in Fig. 3, for Cu (FAAS), 48Ti (ICP-MS)
and Ba (ICP-AES), respectively. A complete set of loading
vector plots is available on the RSC web site as Fig. S2{. It can
be seen that two Y-axes are given in some plots. This happens

when more than one component is obtained and when the
element concentration in the reference material is high. Since
we have assumed that the first component estimates the raw
data and the second and third components the systematic error,
if the element concentration is high, the first solution must be
represented using a higher Y scale than for the second and third
components (systematic errors are small). Therefore in such
cases, the left Y-axis will represent the first component and the
right Y-axis the second and third components.

We conclude that the first PARAFAC factor accounts for
the mean data. This can be seen in the plots in Fig. 3 and also in
Fig. S2{, where the loading vectors for the first component
offer constant values independent of the number of replicates,
digestions and calibration. This means that the first component
does not give information about the differences between the
data. These differences, i.e., the systematic error, could be
assessed using the loadings of the second PARAFAC
component, or in the case of a three-component model, from
the loading of the second and third PARAFAC factors. Thus,
the multiplication of the loadings from PARAFAC factors
higher than one can be used to evaluate the systematic error in

Table 9 Example of PARAFAC decomposition into raw datazerror for a three-component model:138Ba and ICP-MS

Original data—

One digestion Two digestions Three digestions Four digestions

Calibration I Two replicates 16.54 15.80 15.41 15.47
Calibration I Three replicates 16.44 15.66 15.18 15.34
Calibration I Four replicates 16.17 15.33 14.89 15.03
Calibration I Five replciates 15.95 15.03 14.69 14.83
Calibration II Two replicates 17.05 17.10 16.94 16.52
Calibration II Three replicates 16.84 17.00 16.81 16.61
Calibration II Four replicates 16.64 16.49 16.47 16.16
Calibration II Five replicates 16.64 16.23 16.30 16.08

First component (raw data)—

One digestion Two digestions Three digestions Four digestions

Calibration I Two replicates 16.73 15.77 15.77 15.77
Calibration I Three replicates 16.62 15.66 15.66 15.66
Calibration I Four replicates 16.21 15.28 15.28 15.28
Calibration I Five replciates 15.92 15.00 15.00 15.00
Calibration II Two replicates 17.96 16.93 16.93 16.93
Calibration II Three replicates 17.84 16.81 16.81 16.81
Calibration II Four replicates 17.40 16.40 16.40 16.40
Calibration II Five replicates 17.09 16.10 16.10 16.10

Second component (error)—

One digestion Two digestions Three digestions Four digestions

Calibration I Two replicates 20.46 0.08 20.20 20.30
Calibration I Three replicates 20.46 0.08 20.19 20.30
Calibration I Four replicates 20.36 0.06 20.15 20.23
Calibration I Five replicates 20.24 0.04 20.10 20.16
Calibration II Two replicates 21.09 0.18 20.46 20.71
Calibration II Three replicates 21.08 0.18 20.46 20.70
Calibration II Four replicates 20.85 0.14 20.36 20.55
Calibration II Five replicates 20.57 0.10 20.24 20.38

Third component (error)—

One digestion Two digestions Three digestions Four digestions

Calibration I Two replicates 0.12 0.03 20.22 20.12
Calibration I Three replicates 0.18 0.04 20.32 20.18
Calibration I Four replicates 0.17 0.04 20.31 20.17
Calibration I Five replciates 0.15 0.03 20.27 20.15
Calibration II Two replicates 20.12 20.02 0.21 0.12
Calibration II Three replicates 20.17 20.04 0.31 0.17
Calibration II Four replicates 20.16 20.03 0.30 0.16
Calibration II Five replicates 20.14 20.03 0.26 0.14
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the system. In Fig. 3 and also in Fig. S2{ it can be seen that the
loading vectors for the second and third component offer very
different values for all numbers of replicates and digestions,
and for the calibration.

After analysis of the loading vectors, it can be concluded that
the ‘‘number of replicates’’ is a less significant variable for ICP-
AES and FAAS determinations because the loading vectors
remain more or less constant for all replicates tested. However,
this variable is very significant for some ICP-MS measure-
ments, such as for 59Co and 52Cr, 60Ni, 206Pb, 85Rb, and 48Ti
(Fig. S2{ and Fig. 4). The ‘‘number of digestions’’ and
‘‘calibration’’ variables appear to be very significant for all
elements and techniques. The values of the loading vectors for
the ‘‘number of digestions’’ tend to zero when the number of
acid digestions is higher, indicating that the error can be
minimised by increasing the number of digestions. This can be
observed in Fig. 3 for Ba (ICP-AES), and for other cases in
Fig. S2{. Similar results to those shown above have been

obtained using the ANOVA output from experimental
designs23 and these indicate that PARAFAC may be applied
satisfactorily instead of ANOVA to study the three-way data
set.

The loadings in the space formed by the first and second
components (two-component solution) or by the second and
third components (three-component solution) are given in
Fig. 5, and also in the file Fig. S3{ on the RSC web site. The
interpretation of these plots is as follows: for the two-
component models [65Cu (ICP-MS) in Fig. 5] all the loadings
have a very similar value for the abscissa (Factor 1), and in
general, it can be seen that the loadings are closer to (0,0) when
the number of replicates and also the number of digestions are
increased. For a three-component solution [shown in Fig. 5 for
60Ni (ICP-MS) and 206Pb (ICP-MS)] it can also be seen that the
loadings offer a low value for the factor 2 and 3 (closer to (0,0))
for a high number of digestions (about 3 and 4 digestions). An
increase in the number of replicates produces a similar effect to

Fig. 2 Sum of square predicted error (left) and core consistency (right) plots for Ca (ICP-AES), 65Cu (ICP-MS), Fe (ICP-AES) and 60Ni (ICP-MS).
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Fig. 3 Loading vectors from one-component (Cu, FAAS), two-component (48Ti, ICP-MS) and three-component (Ba, ICP-AES) PARAFAC
models: first PARAFAC component refers to left Y-axis; second and third PARAFAC components refer to right Y-axis.

Fig. 4 Number of replicate loading vectors from two-component (59Co, ICP-MS) and three-component (60Ni, ICP-MS) PARAFAC models: first
PARAFAC component refers to left Y-axis; second and third PARAFAC components refer to right Y-axis.
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that given by the number of digestions; however, it is less
important for ICP-AES and FAAS determinations than for
ICP-MS determination (Fig. S3{ ).

Error estimation from PARAFAC

Two examples from PARAFAC decomposition involving both
two- and three-component solutions are shown in Tables 8 and
9, respectively. The figures under the heading first component,
second components, etc., are the results of the multiplication of
loadings according to eqn. 1. It can be seen that the first
component gives a data matrix very similar to the original data
(also shown in the tables). The second component (for a two-
component solution), or the sum of the second and third
components for a three-component model, are the differences
between the original data and the modelled data given by
PARAFAC decomposition. So, the sum of all these terms gives
the raw data (original data) and the second component (two-
component solution) or the sum of the second and third
components (three-component solution) can be assumed to be
the error for this measurement. Using this assumption, the sum
of squares of second, or second and third, components can be
calculated, and these sums for each case are given in Table 10.

Results from analysis of variance (ANOVA)

Analysis of variance (ANOVA) was performed using the full
factorial design shown in Table 11, which facilitates all

interactions and the three variables used in the PARAFAC
model. The proposed ANOVA model is given below,

Metal concentration,

M½ �ijk~RizDjzCkzRdijzRcikzDCjk

ANOVA tables for the elements and techniques investigated
are given in ref. 23. Results from ANOVA were difficult to
interpret since some two order interactions were found to be
significant, e.g., R/C (‘‘number of replicates’’/‘‘calibration’’)
and D/C (‘‘number of digestions’’/‘‘calibration’’). For instance,
the two-order interaction ‘‘number of digestions’’ and ‘‘cali-
bration’’ (D/C) is significant, a scenario that occurs for all cases
studied except for the determination of Mg by FAAS.23 This
means that both variables (‘‘number of digestions’’ and
‘‘calibration’’) are significant. Therefore, to reduce the
uncertainty, both the number of digestions and calibrations
must be increased. This result may be expected for the variable
‘‘number of digestions’’, but not for the variable ‘‘calibration’’
(more than one aqueous calibration is necessary to reduce
systematic errors). In addition, the significance of the two-
order interaction D/C means that the uncertainty attributed to
the variable ‘‘calibration’’ can be minimised by increasing the
number of acid digestions. Similarly, the uncertainty attributed
to the variable ‘‘number of digestions’’ can be reduced by using
two different aqueous calibrations instead of increasing the
number of digestions. Therefore, even for simple systems with

Fig. 5 Projections of loadings in the space formed by the first and second components (two-component solution) for 65Cu (ICP-MS) and by the
second and third components (three-components solution) for 60Ni (ICP-MS) and 206Pb (ICP-MS).
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three variables, the interpretation of ANOVA results is
difficult, and clearly for systems involving a large number of
variables the interpretation is yet more complex.

In contrast to ANOVA, the proposed PARAFAC model is
as follows:

Metal concentration, M½ �ijk~RDCijk

Thus PARAFAC offers a more straightforward model as the
two-order interactions, three-order interactions and so on, are
not taken into account to describe the system. As can be seen,
the three-order interaction, RDCijk, was not significant for
ANOVA models, but this did form the basis for the
PARAFAC model, and so the two methods point to quite
different solutions.

The sum of squares obtained after ANOVA are given
together with those obtained by PARAFAC in Table 10 to
indicate the differences obtained using the two approaches.
According to Bro and Heimdal18 this difference may be
expected because PARAFAC and ANOVA provide very
different models of the data. ANOVA suggests six effects
while PARAFAC suggests one. Furthermore, PARAFAC
offers a straightforward generalisation of the effects related to
other levels of the variables, and not just the ones explicitly
used in the experiment.

The results of the sum of squares in Table 10 indicate that
ICP-MS affords the worst precision when compared with ICP-
AES and FAAS. This is in agreement with results reported
elsewhere following the study of systematic errors using
alternative chemometric techniques.23

Conclusions

PARAFAC has been used successfully to decompose a three-
way data set formed from multi-element determinations in
order to assess the systematic error of such measurements. The
scores and loadings for the first PARAFAC component are an
estimation of the raw data (without error) and the scores and
loadings for the second and third PARAFAC components
provide an estimation of the systematic error of the measure-
ment.

PARAFAC also gives an easy to interpret and robust model
of the data because two-order interactions are not used to build

the model. Such two-order interactions are used in the
ANOVA model and prove difficult to interpret when used
on multi-variable systems. Even for the study of a very simple
system (only three variables), PARAFAC may provide an
attractive alternative procedure to assess the sum of squares
and the uncertainty (normally obtained from a standard
ANOVA). In addition, because of the multi-way nature of
PARAFAC, the visualisation of scores and loadings for
systems with more than two variables is easier than when
using a two-way technique such as PCA.

In this study the systematic error was found to be more
important in ICP-MS determinations than for ICP-AES or
FAAS. In fact, a one-component PARAFAC model was found
for several data sets related to ICP-AES and FAAS
determinations, indicating a small systematic error and good
precision for these two techniques. The variables ‘‘number of
digestions’’ and ‘‘calibration’’ were found to be the most
significant and they contribute more to the uncertainty of the
measurements for both ICP-AES and ICP-MS techniques.
Finally, the findings of this study are in agreement with those
obtained using ANOVA and an experimental design
approach,23 although the results obtained are easier to
interpret.
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