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Abstract

At the roots of science lies observation and data collection from the world as is and from which conclusions can be in-
duced after classification. This is far from the present theory-driven, deductive, normative stage of science which depends
heavily on modelling discrete functional factors in laboratory experiments and suppresses the aspect of interaction. In spite
of its successes, science today has great difficulty in adapting to the changes which technology has created to cope with
registering and evaluating real data from the world, such as in food production chains. This paper demonstrates that it is
possible and profitable with the help of new technology to reintroduce an explorative, inductive strategy to investigate the
chemistry of a complex food process as is with a minimum of a priori assumptions. The food process investigated is a sugar

Ž .plant and the tools necessary in this strategy include a multivariate screening method fluorescence spectroscopy , an arsenal
Ž . Ž .of chemometric models PCA, PLS, principal variables , including multiway models PARAFAC, Tucker , and a computer.

Not only can chemical criteria and process parameters throughout the process be validly predicted by the screening method,
but process irregularities as well as chemical species can also be detected and validated by multiway chemometric tech-
niques. Inspired by examples from the food area, the paper further discusses the nature of the exploration method in the
selection of tools and data. The aim is to study complex processes as a whole in order to model interaction of the underlying
latent functional factors which may later be defined more precisely by deductive methods. These methods in combination
with an appropriate multivariate screening method allow for unique identification of objects—a significant prerequisite for a
viable, exploratory, inductive data strategy which is needed as a fundamental complement to prevalent normative research in
order to obtain a science on the interdisciplinary level. q 1998 Elsevier Science B.V. All rights reserved.
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0 . . . mathematics is bound to become an increasingly
experimental science with less of a claim to absolute
truth0

w xGregory Chaitin 1

) Corresponding author.

1. The need for a new multivariate approach in
interdisciplinary evaluation

The food and health area receives special atten-
tion from the public in the present accelerated change
driven by technology. Chemistry and chemical data
play decisive roles here. Classical basic research
based on laboratory experimentation has made ap-
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parent a wide range of natural and manmade chemi-
cal species which appear as functional and antifunc-
tional factors in food science and nutrition. Food sci-
ence is thus, today, in the very centre of the scien-
tific cyclone, drawing on a wealth of disciplines from

w xchemistry and physics 2,3 , mathematics and statis-
w xtics 4 , to biology, genetics, medicine, microbiology

w x5 , agriculture, technology and environmental sci-
ence, and even further to the cognitive sciences like

w xsensory 6 and consumer analysis and psychology as
well as to other social disciplines like economy. Such
an elaborate web of contacts increases the need for
the establishment of basic principles for intercontex-
tual multivariate data communication which are nec-
essary tools to create a real science on the interdisci-
plinary level. Chemometrics might help here.

The present rapid change is supported but not pri-
marily driven by science. Instead, inventors mainly
outside the universities develop technology to ad-
vance to the forefront with a much more flexible op-
erational strategy than science. The technologists are
focusing on finding a surprising technological fix that
is visible and attractive to the consumer and which
thus can secure a market. Science often comes long
afterwards and explains why technology works and
what side effects it has by studying interferences to
present hypotheses.

During the Second World War, the organisation of
technological product development and the support-
ing science became much more effective, as vividly
described in the classic OECD report by Erich Jantsch

w xin 1967 7 . The aim of the development outlined by
Jantsch is essentially to ‘invent the future’ by tech-
nological forecasting, which Jantsch describes as a
management discipline systematically exploiting
goal-oriented science in order to realize technology
or, in other words, to achieve technological transfer
with a high degree of probability.

Exploratory technological forecasting starts by
pragmatically evaluating the present knowledge base
and is directed towards the future, while normative
technological forecasting first defines a future goal or
model by evaluating needs, wishes and possibilities
and works backwards toward the present in order to
realize it. In classical science, these two outlooks are
related to inductive and deductive problem-solving,

w xrespectively 8 . When technology and science were
young, they worked in an inductive, exploratory way,

for example to describe, classify and utilize the
chemical compounds which were isolated by distilla-
tion, precipitation and crystallization and analyzed by
their colour, smell, taste, solubility and reactivity. The
patterns of relationships which could be induced from
the information from these early studies inspired a
theoretical model thinking in formulating general hy-
potheses from which new, specific and detailed prin-
ciples and new, confirmative experiments could be

w xdeduced 9 . Thus, in food science and related indus-
try, data evaluation today is primarily performed by

w xclassical statistical 10 and hard engineering meth-
w xods 11 based on distributional assumptions and so-

lution of complex differential equations, which were
necessary before the advent of the computer. These
methods are, however, only relevant for a part of real
life where the sufficient causal understanding is al-
ready available and underlying assumptions fit, such
as in representative sampling techniques, and on the
molecular level when, e.g., modelling heat-transfer in
food processes.

Before the advent of the computer, the necessary
strategy to cope with issues in the multivariate com-
plex world was through problem reduction. The dif-
ferent functional factors in the laboratory were iso-
lated one by one at the expense of control of covari-
ance and overview. Data are still evaluated by a
mathematical language based on axioms which are
more tuned to the logic of the mathematical machin-
ery than to that of chemistry and the world outside the
laboratory. Therefore, the present crisis in today’s
science is rooted in a lack of an accepted strategy in
interdisciplinary science, despite the political quest
for such a cooperation. We maintain that in the sci-
ence of the future new strategies and data, analytical
algorithms and procedures will play a fundamental
role in creating a dialogue on equal terms between the
normative, deductive and the exploratory, inductive
principles. We will now focus on an example of how
the computer, a specific screening method and a range
of chemometric tools mostly funded on vector alge-
bra adapted from mathematical methods of social

w xscience 12 may be used by the human brain to up-
grade the exploratory, inductive research method

w xwhich is greatly neglected today. Hempel 8 ex-
plains the current attitude: ‘‘Scientific knowledge is
not obtained by the method of induction based on
earlier collection of data but rather by ‘The hypothe-
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sis method’: that is, to invent alternative hypotheses
deduced from earlier known knowledge as prelimi-
nary answers of the problem under study and there-
after testing these hypotheses empirically’’.

2. Exploring the beet sugar manufacturing pro-
cess by spectrofluorometry and chemometrics—
an example of a highly exploratory, inductive re-
search strategy

We will begin by presenting the sequence of
chemometric results of the exploratory investigation
expressed as a graphic interface which is easily cog-
nitively accessible for any person. In Appendices
A–C, we will comment in more detail on how we use
the chemometric machinery involved, with emphasis
on the new multiway techniques.

w xSugar or sucrose 13 is the most abundant disac-
charide in nature and has been a world leading com-
modity for centuries mainly due to its sweet taste
properties. Originally, it was extracted from sugar
canes but today more than half of the world produc-
tion comes from sugar beets. Sugar is probably the
most chemically pure food component produced with
a typical purity of 99.999%. Colour and purity play a
great role when evaluating sugar quality.

In 1992, we heard from a sugar production expert
that UV-lamps and filters were used in Denmark dur-
ing the war for visual classification of sugar accord-
ing to purity. There was a typical blue fluorescence
for less pure sugars. With our background in fluores-

w xcence analysis in foods 14 , but without any in-de-
pth knowledge of sugar production, we contacted and
established a dialogue with the Danish company
Danisco Sugar. We started by analyzing samples
which we knew nothing about in our Perkin Elmer
LS50B spectrofluorometer. After presenting the re-
sults to the sugar technologists, we obtained succes-
sively more information about process conditions and
about chemical analyses of the products for interpre-
tation which we included in our chemometric mod-
els. The measurement conditions are described or re-
ferred to in the text of the figures and tables.

In Fig. 1A, we see the complex fluorescence spec-
tra, each with 1023 data points from 34 different
sugar samples from the year 1993. In order to get an

overview of this complex information, we performed
a data reduction by principal component analysis
Ž . Ž .PCA to reduce the data to a few three principal

Ž .components PCs .
Ž .The PCA score plot in Fig. 1B PCa1 vs. PCa3

reveals 3 clusters which the sugar technologists iden-
tified as average weekly samples from the sugar

Ž .campaign production period from week 1 to 14 for
3 sugar factories called A, B and C. The different raw
material and processing conditions of the different
factories in 1993 obviously had a unique fluores-
cence signature.

We then obtained 10 kinds of univariate chemical
analyses for each of the 34 samples which are pre-
sented as spectra after scaling in Fig. 1C. We per-
formed a separate PCA score analysis of the chemi-

Ž .cal data which also revealed 3 clusters Fig. 1D cor-
responding to 3 factories and similar to the spec-

Ž .trofluorometric investigation Fig. 1B . When com-
bining loadings and scores for the chemical analyses

Ž .in a bi-plot Fig. 1E , we could see that ash, colour
and amino–N analyses are situated in the same area
as samples from factory C which indicates that these
have especially high values. Because the independent

Ž .classification based on fluorescence data Fig. 1B
indicates that factory C is especially high in fluores-
cence, we induced the hypothesis that fluorescence
might be directly or indirectly related to some of the
chemical analyses. In order to test this, we per-

Ž .formed a partial least squares PLS regression anal-
ysis on the 34 samples correlating whole fluores-
cence spectra with ash. The result reveals a signifi-
cant correlation coefficient of y0.92, which indi-
cates that fluorescence analysis could be a candidate
as a screening method for quality in sugar produc-
tion.

This indication is further verified in a PLS study
w x15 with 81 whole fluorescence spectra from 6 dif-
ferent factories showing especially high correlations

Ž .with amino–N, ash and colour Table 1 . Five wave-
lengths were selected by the principal variables

Ž .method see Appendix C which altogether gave rea-
sonable prediction models with amino–N, colour and
ash, indicating that an ‘on-line’ screening method
could be devised based on a simple filter instrument.

When a PCA was performed on fluorescence in-
formation of mean weekly sugar samples during the
campaign for one factory, a horseshoe-formed time
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Ž .Fig. 1. A Uncorrected fluorescence emission spectra of 34 sugar samples. The spectra are recorded from a solution of sugar in water at
excitation wavelengths 230 nm, 240 nm, 290 nm and 340 nm. The emission ranges sampled with 1 nm intervals are 275–560 nm, 275–560

Ž . w x Ž .nm, 311–560 nm, and 361–560 nm, respectively in total 1023 data points . See Ref. 15 for further details. B A score plot from a PCA
Ž . Ž .on the spectra; three clusters are seen corresponding to samples from three different factories A, B, and C . C Chemical data on the same

Ž . Ž .34 samples scaled to a maximum value of 1 . D Score plot from a PCA on the chemical data; again three clusters are seen corresponding
Ž .to samples from three different factories. E Bi-plot based on chemical data.
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Ž .Fig. 1 continued .
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Ž .Fig. 1 continued .

Ž .trend could be envisaged for some factories Fig. 2A ,
Ž .but not for others Fig. 2B which where rather

chaotic. These two extreme PCA score plots selected
from six factories with data from 1993 were de-
scribed by the sugar engineers as their best and worst
functioning factories. The trend in the PCA analysis
of spectra in Fig. 2A tentatively represents changes in
beet raw material chemistry due to growing condi-
tions, age, climate and storage and the resulting ad-
justments in process technology.

A similar PCA score plot of sugar fluorescence
information from the campaign start of the best func-
tioning sugar factory in 1994 is displayed in Fig. 2C.
A total of 106 sugar samples were taken during the
first three days of the sugar campaign. The PCA score
plot representing these sugar spectra starts at the bot-
tom with samples 3, 2, 5, 6, 4, 9, 8, 7, moving up-
wards to the right, then straight to the left and ending
up in an area of balance from score y50 to score
q50 of PC2. At the same time, the number of signif-
icant principal components diminishes from 4–5 to
1–2, indicating normal operating conditions. How-
ever, in the area of relative balance we can still en-

Ž .visage in a local PCA Fig. 2D a segregation in two
sample clusters 40–74 and 75–106, indicating a fun-
damental change in the process conditions after sam-

ple 74. This change could be identified in the factory
records as a process breakdown. Sample 88 is an un-
explained outlier. We conclude that it would be
worthwhile to investigate whether the fluorescence
information could be used to assist the process engi-
neer in indicating the balance of the process in the
form of PCA graphics.

We now move upwards in the process chain from
sugar to analyze thick juice—an important unpure
intermediate product in sugar production. In an ear-

w xlier preliminary study on thick juice 15 , we ob-
tained results similar to those as with sugar with re-
gard to fluorescence analysis, however less clear cut,
in the classification of factories and correlation to
chemical analyses. We then employed a more ad-
vanced analysis than two-way PCA, namely 4-way

w xTucker 16,17 , which is explained in more detail in
Appendix A. Undiluted thick juice does not display
fluorescence due to concentration quenching. It is
possible to ‘develop’ fluorescence information by di-
lution. By simultaneously using fluorescence land-

Ž .scapes for partially quenched 1:15 Fig. 3A and un-
Ž .quenched dilutions 1:150 Fig. 3B we obtain four

external parameters with 47 samples, two levels of
dilution, 20 excitation wavelengths and 311 emission
wavelengths constituting a 4-way data array of order
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Table 1
aŽ . Ž .A Full spectrum prediction errors for sugar samples dissolved in water

bMean Range a PC’s RMSEP r

Ž .Amino–N ppm 2.631 0.28–4.91 1 0.314 0.96
Colour 21.8 11–44 5 2.4 0.94
Ash % 0.0110 0.004–0.017 3 0.0012 0.91

Ž .SO ppm 4.16 0.8–8.2 3 1.08 0.852
Ž .Invert ppm 36.8 0–92 3 17.6 0.74

Turbidity 0.498 0.19–1.30 4 0.204 0.72

cd( )B Prediction results for colour, ash, and amino – N based on fiÕe excitation– emission waÕelengths pairs selected by the principal Õariables algorithm
bMean Range a PC’s RMSEP r

Amino–N 2.631 0.28–4.91 1 0.280 0.96
Colour 20.9 11–34 5 2.6 0.90
Ash% 0.011 0.004–0.017 3 0.0013 0.91

a w xAll models are PLS1 models 15 .
bRoot mean square error of prediction.
c Ž . Ž .The excitation nm remission nm wavelengths used for prediction were 230r361, 230r310, 230r333, 230r454 and 340r419.
dSee Appendix C.
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Ž . Ž . Ž .Fig. 2. A and B Score plots from a PCA of fluorescence spectra recorded on weekly collected samples from two factories. Factory D A
Ž . Ž .was known to be the best functioning factory, while factory F B was known to be the worst functioning factory. C Score plot from a

Ž .PCA of fluorescence spectra recorded on 106 sugar samples from the first three days of operation in a given sugar factory. D Score plot of
a PCA on the last 87 samples. The numbering is chronological.
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Ž .Fig. 2 continued .

Ž .47=2=20=311 . The plot of the PC scores 2 and
3 is displayed in Fig. 3C showing a clear-cut classifi-

Ž .cation into 5 factories a, b, d, e and f and with a
clear tendency of timing within each cluster from be-
low to above, ranging from the early to the late sam-
ples. This classification is much more clear-cut than

that obtained from the PCA score plots in the thick
juice material from different factories investigated by

w xNørgaard 15 where factories were overlapping and
where the time aspect of the samples could not be
modelled in the same plot. This underlines the ad-
vantages of respecting and exploiting the structure of
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the data and selecting chemometric algorithms ac-
cordingly, which are further discussed in Appendices
A–C.

We will now proceed further upstream in the sugar
process to beet production in agriculture. The price
paid to the farmer for the beets is regulated by the

Ž . Ž .Fig. 3. A and B Fluorescence landscapes of one thick juice sample in two concentrations. Note how the fluorescence signal in the UV
Ž . Ž . Ž .region is quenched in the 1:15 dilution A and becomes dominant in the lower concentration B . C A Tucker score plot showing the

pattern of principal components two and three of the sample mode from 4-way PCA. Two principles are illustrated by this plot: samples
Ž .from the same factories a, b, d, e, and f are clustered nicely together and simultaneously the shift of the samples according to week number

Ž .e.g., d1 to d10 reveals that temporal information is present in the fluorescence landscapes.
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Ž .Fig. 3 continued .

sugar and amino–nitrogen content of the beet juice,
the latter indicative of potentially colour-forming
molecules which could intervene with purification of
white sugar by crystallization.

Fig. 4A displays fluorescence information from 24
sugar beet mash samples taken from the receiving
station of a sugar factory. As seen in Fig. 4B, there
is an excellent correlation between whole fluores-
cence spectra and amino–N in these samples. In or-
der to preliminarily investigate the variation in fluo-
rescence between sugar beets from different farms,
three 15-kg sugar beet samples were taken from nine
farms. Fig. 4D shows the PCA clustering analysis of
the corresponding fluorescence spectra of the beet
juices from Fig. 4C. There is a clear clustering effect
of the fluorescence information related to farm site
which not only depends on amino–N, but which also
indicates differences in the complex underlying

chemistry due to beet variety, sowing time, soil, fer-
tilizer and weather which has to be understood by
further systematic trials with laboratory verification
and by correlation to technological quality. The fluo-
rescence method could thus be a candidate for a
screening analysis for beet quality to be used by the
plant breeding companies and farmers to optimize the
plant growing conditions and the beet varieties.

We will now investigate the evaluation possibili-
ties of another multi-way generalization of PCA,

w x Žnamely PARAFAC 18,19 the mechanism of which is
.discussed in more detail in Appendix B , to study 268

sugar samples, each averaging 8 h of processing
Ž .equal to one shift by fluorescence from a three-
month campaign in 1995 from a well-controlled sugar
factory. Contrary to the unconstrained Tucker model,

Žthe three-way PARAFAC model 268 samples, 571
Ž .emission wavelengths Fig. 5A and 7 excitation
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Ž . ŽFig. 4. A Fluorescence raw emission spectra of 24 sugar mash samples. Excitation 230 nm, 240 nm, and 340 nm emission ranges 275–560
. Ž .nm . B Predicted versus measured plot of amino–N values. Based on a three-factor PLS-model with fluorescence spectra as independent

Ž .variables and amino–N as the dependent variable. C Raw fluorescence spectra recorded on sugar beet mash samples from nine different
Ž .farms three sample from each farm, i.e., in total 27 samples . The excitationremission wavelengths are the same as those displayed in Fig.

Ž .1. D A score plot showing that the beets from the same farm no. 4, 7, 9, 10, 12, 15, and 19, in the fluorescent fingerprint seen in the mash
samples.
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Ž .Fig. 4 continued .

.wavelengths may allow direct recovery of some of
the pure spectra from the underlying chemical sub-
stances.

In this study, four loadings called pseudospectra
could be resolved, two of which were identified by
comparing emission and excitation pseudospectra

Ž .with the true spectra of tyrosine Fig. 5B and trypto-
Ž .phane Fig. 5C, see also discussion in Appendix B .

Fig. 5D shows the four emission pseudospectra and

their correlations to the process parameters colour and
ash. In this preliminary study, it is observed that the
four component candidates have different patterns of
correlation, pointing at the possibility that they may
be used as indicator substances, e.g., for colour or ash
alone or in combination. Compound 4 is obviously
the best indicator for colour.

In Fig. 5E, the scores for the four pseudospectra
during the campaign are shown. The components
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show a high degree of covariation, especially in the
beginning of the campaign, revealing a tendency to-
ward higher peaks during weekends. The variation

levels off during the season when outdoor tempera-
ture is decreasing. Around shift 200, on about the
15th of November, compound 4 scores steadily rise,

Ž .Fig. 5. A Raw fluorescence emission spectra of 268 sugar samples sampled as a mean spanning eight h equal to one shift during a three-
Ž . Žmonth campaign 1995 . The samples were measured at excitation wavelengths 230, 240, 255, 290, 305, 325, and 340 nm emission ranges

. Ž . Ž .were all 275–560 nm . B Pseudo-emission and excitation spectra for compound 2 compared with pure tyrosine dashed . To the left the
Ž .emission parameters are shown and to the right the excitation parameters are shown. C Pseudo-emission and excitation spectra for com-

Ž .pound 3 compared with pure tryptophane dashed . To the left the emission parameters are shown and to the right the excitation parameters
Ž . Ž . Ž .are shown. D PARAFAC emission loadings 1–4 and their correlations to ash and colour. E Concentrations scores of the four pseudocom-

ponents.
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Ž .Fig. 5 continued .

while scores for the other three components are more
constant.

Factory records as well as interviews with the
process engineers revealed that beets are stored longer
during weekends which may produce heat due to mi-
crobiological activity which is reflected in higher
fluorescence scores for all four components as well as
an increase in colour. The change in the level of
compound 4 and the increased colour development
could be explained by frozen beets due to the com-
ing winter and the resulting process adjustments.
Compound 4 could thus be an indicator for colour as
well as for frozen beets. These observations has to be

verified and generalized in more detailed studies with
other factories and other production years.

The variation of the fluorescence pseudocompo-
nents during the production campaign clearly indi-
cates temperature effects covariant with colour of
sugar. We may therefore induce a hypothesis from
real life data that temperature in the receiving beet
stores may have a major impact on the precursors of
sugar colour which should be checked by monitoring
temperature in the store.

We have demonstrated that with a minimum of
prior knowledge of sugar technology and chemistry
we are able to establish a constructive, exploratory
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Ž .Fig. 5 continued .

dialogue with the sugar technologists throughout the
whole production chain using the tools of a fluores-
cence screening analysis, chemometric software and
the computer. Together we have been able to identify
a range of process events which the fluorescence
analysis had picked up. At the same time we have
shown that the fluorescence screening method has the
potential for providing a holistic fingerprint of the
state of chemistry in the process in the form of 4 flu-
orophores which correlates with a range of important
quality parameters throughout the beet sugar manu-
facturing process and which may be used as indica-
tor substances which is further demonstrated in Ap-
pendix B.

3. What chemometrics and food science can learn
from each other

In his outline on the roots of mathematics in hu-
w xman culture, Barrow 4 emphasizes the inherent

weakness of the human brain in multivariate analysis
and the fundamental role of written symbols and ba-
sic assumptions axioms—the fundamental on which
the mathematical machinery is built. It should be ac-
knowledged that ‘axioms’ are also a fundamental part
of human cognition—a method to keep a working
platform of consistency in bookkeeping in a complex

universe. This is often practised without thinking too
much, for example by the chemist in the laboratory
as well as by the food consumer in daily life. How-
ever, when trying to exploit mathematics in real life,
such as in food production, it becomes as crucial to
define ‘the axioms’ of chemistry and food produc-
tion as those of the mathematical models which are
used to describe and predict events in data from food
processes.

Food production is dependent on the demand of
markets in thousands of complex production chains
regulated by the monetary principle and governmen-
tal and international regulations. The functional unit

w xis ‘man as selector’ 20 in different roles as con-
sumer, distributor, manufacturer, as well as raw ma-
terial and secondary material supplier.

This exploratory selection process with the indi-
vidual consumer in the centre may be elucidated by a

Ž . w xmodel for learning—‘the selection cycle’ Fig. 6 20
related to the concept of the perceptual cycle in psy-

w x Ž .chology 21 p. 37 —comprising different steps
starting with a primary selection hypothesis inspired

Ž .from the global area 0 proceeding with an inven-
Ž .toryrscreening analysis I and selection of material

Ž . Ž .and methods II , followed by testingrevaluating III
Ž .which results in a secondary IV selection hypothe-

sis are valid for the local area.
After an introductory round the individual selector

proceeds in increasingly more focused and limited
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w xFig. 6. The selection cycle 20 .

Ž . Ž Ž .rounds Fig. 6a–c e.g., omitting point 0 b or even
Ž ..0 and 1 c in the selection cycle. Thus, in each cy-

cle, the dynamically adapted secondary selection hy-
Ž . Ž .pothesis IV is validated experimentally III in nu-

merous revolutions. It is a common phenomenon that
in the progress of time the secondary hypothesis
Ž .IV:n and its derived propositions from the local area
have often overshadowed the more global primary
selection hypothesis derived from. e.g., society. It
now lives its own life in the context of society in the
mind of the selector in spite of its local limitations.
In this way serious bias could be introduced uninten-
tionally.

The food experience of the consumer tells that the
selection cycle contains both global and local as well
as visible and hidden domains. When buying food in
the store, the selector starts with a primary selection

Ž .hypothesis 0 implying acquisition of defined foods
with expectations regarding culinary quality, health
and economy in a long-range perspective. Hershe
then evaluates foods in the local area with regard to

Ž . Ž .visible screening characteristics I like colour,
Ž .packaging and price. After selection II the individ-

ual ‘develops’ hidden qualities such as smell, taste
Ž .and tenderness by cooking the food at home III .

This may generate a reaction in the form of a new
Ž .purchase policy IV which will then be checked in

later cycles. The exploratory behaviour of the con-
sumer creates information about foods in the local
area which again may reinforce or weaken a specific
behaviour of selection.

w xThe global aspect of food selection 20 includes
the part of the accumulated feedback on the physiol-

ogy of the consumer which is caused by hisrhers own
food selection and consumption. It also contains the

w xhidden feedback effects 20 of nature which Darwin
called ‘natural selection’, now also including the in-
direct influence of the selection force on the food
production environment of the activity of a large
population of human selectors exploiting resources
and the resulting effects on their food quality and
health.

Returning to our example on exploratory analysis
by fluorescence screening, we find that indeliberately
we worked exploratively according to the selection
cycle model: we attempted an analysis in the ‘global
area’—the beet sugar production chain—by using
chemometrics.

Without extensive knowledge of sugar manufac-
turing we used the fluorescence screening method to
pose a question to the process as follows: ‘‘Is fluo-
rescence analysis chemically and technologically rel-
evant as a screening method for control and predic-
tion of parameters of industrial interest?’’ This is the

Ž .primary hypothesis 0 in the selection cycle. After
Ž .analyzing 1:1 sets of sugar products with fluores-

Ž .cence spectroscopy, we could select II:1 and evalu-
Ž .ate III:1 sugar samples belonging to defined facto-

ries and processes as well as identify time effects due
to date of delivery throughout the season. We could

Ž .also identify process balance in a start-up test III:1
by analyzing the sugar product as well as indicating
a minor breakdown in the balance point.

From these results, we could induce a preliminary
Ž .secondary selection hypothesis IV:I that a sugar

sample could be looked upon as ‘a datalogger’ which
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integrates information from the production chain up-
stream that could be read by a fluorescence spectro-
photometer and evaluated by PCA.

In our second selection cycle, we proceed on our
data selection adventure in the local area—the labo-
ratory—by comparing the classification of tradi-

Ž .tional sugar analyses I:2 with fluorescence analyses
in two separate PCAs. Due to the fact that samples
with high fluorescence have high ash, colour and

Ž .amino–nitrogen values, we selected II:2 the PLS
algorithm which gave good correlation in an evalua-

Ž .tion III:2 between fluorescence spectroscopy at 5
specific wavelengths and sugar quality, indicating di-
rect or indirect relationships. This fact was used to
formulate a new and more specific secondary selec-

Ž .tion hypothesis IV:2 that fluorescence could be used
as a preliminary screening method for direct analysis
of purity in sugar. In a third selection cycle this hy-
pothesis was expanded to the whole production chain.
In a fourth selection cycle, we enlarged our third sec-
ondary hypothesis by suggesting that behind the flu-
orescence spectra lies information from discrete
chemical compounds which may be used as ‘indica-
tor substances’. These substances reflect chemical
composition of sugar and intermediate products as
well as process parameters. To solve this problem we
selected multiway exploratory algorithms such as
Tucker and PARAFAC. From a complete material of 8
h average sugar samples from an entire sugar cam-
paign PARAFAC displayed 4 different pseudospectra
Ž .loadings corresponding to 4 discrete compounds
Ž .fluorophores , two of which could be preliminarily
identified. The four pseudospectra were shown to be
able to model process observations, such as frozen
beets and quality criteria like ash and colour, as well
as other important process parameters as discussed in
Appendix B.

Finally, in the fifth turn in the selection cycle we
aim at more precisely identifying the underlying
chemical compounds by high pressure liquid chro-
matography in the local area, the research laboratory,
which is outside the scope of this paper. Thus, we do
not forget to check the results from the exploratory
screening with our chemical interpretation of the
problem.

In the longer perspective, we aim to feed back the
integrated experience of the multivariate fluores-
cence perspective from the five selection cycles into

Ž .the primary area 0 , the beet sugar industry, in the
form of an established ‘global’ control method cov-
ering the production chain from beet production to
sugar.

In our sugar process example, with our sensitive
spectrofluorometric method we are not measuring
sugar, which is non-fluorescent, but rather a selec-
tion of impurities such as fluorescent amino acids,
phenols and their reaction products with reducing
sugars: the high molecular coloured melanoidines and
melanines. The sugar processing engineer tries hard
to avoid the formation of colour by adjusting pH with
CaO and adding reducing agents in the form of SO .2

In traditional chemical analysis, one starts by
defining the hundreds of chemical substances in-
volved in a process, as was done for the sugar indus-

w xtry by Madsen et al. 22 in order to understand color
formation. If the target hypothesis is to find easily
identifiable indicator substances by which to model
quality and process characteristics, we suggest that
our exploratory, inductive method by introducing a
multivariate screening method in the global area of
the sugar factory would be more economical than a
normative, deductive strategy based only on a priori
chemical knowledge, chromatography and classical
statistics as studied in the local area—the research
laboratory.

We can thus conclude that the strategy of ex-
ploratory chemometric analysis in the example is
closer to the behaviour of ‘man as selector’ perform-
ing in the food production chain than to how statisti-
cians operate today. While statistics is mainly di-
rected toward probabilistic methods in modelling
noise, identifying the object as a void in the space of
noise, exploratory data analysis and chemometrics is

w xmore deterministic 23 . It instead tries to model the
contours of data objects by data experimentation in
the computer.

In our example, statistical validation is completed
with two other alternatives: calibrationrtest set vali-

Ž .dation data experimentation and interviews with the
processing engineers, including confirmation from
process data banks. It must be pointed out that ex-
ploratory data analysis, which contains an important
inductive, empirical element of validation through

w x w xenumeration 8 , does have a more humble profile 24
in a restricted context than classical mathematics and
statistics. It places less demand on finding the abso-
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Ž . Žlute generalized truth see citation by Chaitin in the
.introduction , but instead aims at finding an adequate

and more precise local truth of equal or higher im-
portance which is time- and context-dependent. It is

w xbasically a provisional detective work 25 , trying to
explore the partly unknown territory of the world
outside the laboratory where hard hypotheses are
likely to neglect covariance and synergy and there-
fore are insufficient and inefficient. An endeavour of
reversed logics might be fruitless in a classical situa-
tion relying on univariate analyses where each object
has just a few characteristics, a multivariate analyti-
cal situation with many informative data points at-
tached to each object increases the uniqueness of the
description. In classification it allows safe detection
of outliers, thus greatly increasing the validity of the
results.

From our platform of data technology in chemo-
metrics, we can clearly see how it was necessary be-
fore the computer to develop a very special form of

w xdeep, rigorous and general thinking 26 aimed at
identifying the laws of nature. The goal is to obtain
consensus in the form of a global rational opinion as
a ‘science map of reality’ through organized, inter-

w xsubjective communication 26 . Such an inflexible
outlook is rather strange for model creation in the
normal human mind which is characterized by prag-
matism and cognitive flexibility, although with a
short memory.

In fact, as the physicist and historian Thomas
w xKuhn points out 27 : ‘‘The investigations of classi-

cal science have few quantitative points of contact
with nature, because investigations of those contact
points usually demand such laborious instrumenta-
tion and approximation and because nature itself
needs to be forced to yield the appropriate result, the
route from theory of law to measurement can almost
never be travelled backward. Numbers gathered
without some knowledge of the regularities to be ex-
pected almost never speak for themselves. Almost
certainly they remain just numbers’’.

ŽWe have here applied our global with regard to
.fluorescence screening method and exploratory data

analysis and gone from measurements of sugar sam-
ples to a theory of selected indicator substances for
process control. Is it not this fairly straight forward
travel from the measurement of phenomena from real
life to construction of a theory which Kuhn calls

‘backwards’, which we have just humbly attempted
and to a large extent succeeded in?

Obviously, new multivariate screening methods
and data evaluation methods based on induction us-

w x w xing the computer, which Kuhn 27 and Hempel 8
Žwere unaware of and still the vast majority of scien-

.tists are today , open up new possibilities for con-
necting data from the world as it is with science—if
one can obtain a common platform for ‘the axioms’
and contexts of mathematics and those of the world
under study. This issue is further exemplified in Ap-
pendices A–C.

We may thus conclude that there is a major con-
ceptual distance between the aspiration of science of
global understanding of natural phenomena in its
generalized sense and global evaluation of measure-
ments as is from the real world for prediction and
control. This discrepancy has to be further under-
stood and bridged by a new strategy combining
screening methods, mathematics and information
technology. We can thus look upon the flow of infor-
mation in our sugar process example as a dialogue
between two connected selection cycles—one global
Ž . Ž .sugar production and one local the laboratory .

Attempts by leading physicists to introduce a new
paradigm change in science, such as in the now clas-

w x Ž .sic book by Prigogine and Stenger 9 since 1979
‘Order out of chaos—Man’s new dialogue with sci-
ence’ are only slowly being acknowledged. They see
the world as an open self-organizing system which
develops while consuming energy. The world is het-
erogeneous. It contains simple as well as complex,
reversible as well as irreversible and probabilistic
Ž .e.g., due to thermal movement of molecules and

Ž .deterministic e.g., due to DNA in organisms in-
cluding chaotic moments. This new outlook on the
world, combined with exploratory data analysis, is
much more relevant for describing the dynamic situ-
ation in food science than classical hard modelled
science with its mathematics and statistics which,
however, is still relevant in special cases. One should
thus be cautious in introducing a priori biased statis-
tical evaluation techniques in such a world without
defining context in an inventory in the start of the se-
lection cycle.

As food technologists we, of course, gratefully
acknowledge the laws of nature as defined by sci-
ence in our food technology research. But our pri-
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mary task is not to produce the eternal and general.
We do not aim to make a factory which produces the
same product from the same raw materials by the
same technology forever. Instead, we are interested in
controlling the timely, transient and specific traits of
the production, so that the company may withstand
competition for another year. The generally acknowl-
edged mathematical language which should be used
in the future to model such data should be more
compatible with this context and to the new science

w xof Prigogine and Stenger 9 . Today it is not.
We now see the great opportunity to directly study

order out of chaos in Prigogine’s and Stengers’ sense
by applying multivariate screening methods in real

Ž .life e.g., in a sugar factory as evaluated by the
computer and exploratory data analysis. It is there-
fore of great wonder to us that most scientists, in-
cluding Prigogine, investigating self-organizing sys-
tems are still apparently working with hard mod-
elling, deductive methods alone and have not yet
found their way to supplement with the new multi-
variate methods. Science is indeed conservative. It
has not yet discovered all the new kinds of freedom
which the computer may introduce. It is possible
within the limits of the screening analysis and the
mathematical algorithm with the exploratory method
to discover unknown phenomena directly. It is only
possible for classic science to obtain new knowledge
outside its traditional deductive system of hypotheses
indirectly through unexpected interference, e.g., in
discovering environmental problems.

The classical, positivistic science presumptions
w x9,26,27 of the world are still dominant in the pre-
sent normative-deductive culture and severely re-
strict chemometrics. They focus on deduction from a
priori hypotheses based on fully transparent factors
which can be seen directly or revealed after experi-
mentation. As long as the present consensus in statis-
tical hard modelling and validation rules, the more
flexible, soft exploratory data models which intro-
duce latent factors and empirical validation, such as
PLS regression, will not be accepted as a science.
This is due to the incomplete transparency of these
algorithms which for the mathematicians are unde-
cidable by lack of mathematical proofs, in spite of
their better robustness and ability to adjust to a
changing context by experimental validation reflect-
ing human behaviour in the selection cycle.

In fact, the operation of the PLSR algorithm makes
a dialogue possible between screening data from the
world as it is and laboratory data. This is expressed
in finding common latent factors in a cyclic adapta-
tion process which embodies a dialogue between the
global and local principle, between the real world and
sciences, just as in the selection cycle discussed pre-
viously.

It is obvious that chemometrics can contribute to
food science with new more flexible data programs
which display the exploratory results in cognitively
accessible graphical data interfaces. Food science and
chemistry on the other hand stimulates the chemome-
trician to take new contexts into consideration in the
development of models suitable for real world data
which is exemplified in the Appendices A–C.

In practical life, respect for the ‘axioms’ of the
world in the form of contexts is more important than
transparency. In science it seems to be the reverse.
Transparency is preferred based on the axioms of the
mathematical machinery, far from the contexts of the
world which was supposed to be studied. Because of
its lack of complete transparency we could thus for
the moment look upon chemometrics more as a tech-
nology than as a scientific discipline—a very vital
technology which already has proven its potential in

w xchemistry and in other related technologies 23,28
—an invention the results of which science should
explore and incorporate in its basic principles.

As early as 1941, Emil Post, one of the co-dis-
w x Ž .coverers with Turing 4 p. 292 of non-computable

w xoperations, wrote 29 the following comment regard-
ing the divide between meaning and formalism in
mathematics: ‘‘mathematical thinking is, and must
be, essentially creative. It is to the writer’s continu-
ing amazement that ten years after Godel’s remark-¨
able achievement current views on the nature of
mathematics are thereby affected only to the point of
seeing the need of many formal systems, instead of a
universal one. Rather has it seemed to us inevitable
that these developments will result in a reversal of the
entire axiomatic trend of the late nineteenth and early
twentieth centuries with a return to meaning and truth.
Postulation thinking will then remain as but one phase
of mathematical thinking’’.

It should thus be possible to assemble a mathe-
matical algorithm to describe and predict complex
conditions in the real world inspired by finding order
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in observational measurements of nature by consult-
ing the computer. Such an endeavour must respect the
mechanisms how humans best senses complex infor-
mation.

While we wait for the breakthrough of the new in-
w xterdisciplinary science 9 where exploratory, induc-

tive chemometrics is an integrated part as an estab-
lished option, we could with the support of the rela-
tively recently discovered computer contribute to the
basic mathematical language of the new science by
balancing the normative and exploratory principles in
a dialogue, as described in our example. In this work
food technology is an excellent Trojan horse in the
conservative scientific city of Troy, harbouring re-
search teams prepared to fight for the revolutionary
new science and its new mathematics while awaiting
the right moment and better times.
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Appendix A. Selecting and adjusting chemometric
models to represent different contexts of the world

Chemometrics has arisen as a hybrid with contri-
butions from various sciences like econometrics,
psychometrics, classical statistics and physics. The
mixed background is reflected in the way the chemo-

metrician actually conducts the data analysis. Central
aspects in data analysis are the selection of data as
well as the selection of suitable models, combined
with adaptation of the models to a given problem.
Classification, for example through PCA, is a funda-
mental first step in an exploratory data investigation

Ž .of a given data set e.g., fluorescence spectra , em-
ploying data reduction into latent variables in this way
revealing resemblances and outliers.

In the framework used throughout this paper we
see the alternation between the selection of models
and the selection of data which again influences the
selection of material for analysis and the technologi-
cal focus of the project. The data analyst might fol-
low different chemical roads depending on the goal
of the investigation. However, the exploratory ap-
proach starting with an inventory with a data classifi-
cation from a multivariate screening method is to be
preferred in the beginning of an investigation in or-
der to minimize bias. After revealing the data struc-
ture, both surprising and expected elements can be
identified from which more specific correlation mod-
els may be created using a range of new chemomet-
ric methods. These include the new multi-way meth-
ods employed in our example with sugar process flu-
orescence analyses.

There are various models for analysing multi-way
w xdata sets, see Kroonenberg A1 . In Figs. 7 and 8 we

shall focus on the N-way principal component analy-
Ž .sis N-way PCA which is a generalization of the 3-

w xway Tucker3 model A2 to N-way data arrays as well
w xas the PARAFAC model A3 . The authors would like

to draw the reader’s attention to the fact that the gen-
Žeralization of bilinear PLSR to multilinear PLSR N-

. w xPLS was given by Bro A4 .

A.1. Tucker model

As with conventional two-way PCA, the model
uses a projection technique whereby the systematic
variation in data is reduced to a few representative

Žfactors. Due to some mathematical features i.e., fac-
.tors are non-unique and can be rotated of the model

and its solutions, the term N-way PCA is often used
to describe the Tucker 3 model. Fig. 7 provides a ba-
sis for presenting the N-way PCA. The 3-way PCA

Ž .model of a 3-way data array X of order r , r , r is1 2 3

depicted in the figure. The array is decomposed into
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Fig. 7. Tucker.

a significant systematic part and a non-significant
residual depicted by E. The systematic part is de-
scribed by orthogonal factors which are stored

Ž . Ž .columnwise in matrices A r , w , B r , w and C1 1 2 2
Ž .r , w . The mathematical representation is as fol-3 3

lows
F G H

x s a b c g qe 1Ž .Ý Ý Ýi jk i f j g k h f g h i jk
fs1 gs1 hs1

The number of factors in each of the three ways,
i.e., w , w and w , must be determined by the ana-1 2 3

lyst from a priori knowledge about X or by evaluat-
ing models with different combinations of w , w and1 2

w , choosing the order that gives the most accurate3

model of X. The correct number of factors is found
as a compromise between having a good fit and as

Žfew factors as possible. The array G of order w , w ,1 2
.w , referred to as the core array, allows the factors3

to interact in the model of X. Upon calculation of the
model, the factors in the three component matrices A,
B, and C and the core G must be interpreted. Since
the factors are orthogonal, hence linearly indepen-
dent, the squared core elements are proportional to the
variation explained by the combination of factors in
question. Thus, if g is the largest squared ele-i , j ,k

ment in G, the combination of factor i in the first
mode, factor j in the second mode and factor k in the
third mode explains most of the variation in X and the

analyst should give these factors special attention
when interpreting the model.

Factors from N-way PCA suffer from rotational
ambiguity, i.e., the N-way PCA of X has an infinity
of factors and cores, where one solution can be ro-
tated into another having the exact same fit. Return-
ing to the exploratory power of the squared elements
of the core, one can perform selectiÕe transforma-
tions of a solution to give a core where only a few

w xsquared entries are significant A5 . Having only a
limited number of significant core entries allows the
analyst to focus on a few combinations of more sig-
nificantrgeneral factors. Hence, we use an unsuper-
vised algorithm to select a solution from this infinity
of solutions to yield a model for interpretation which
is simple as possible.

(A.2. Data an in-depth treatment of this data set was
[ ])giÕen in Andersson et al. A6

Fluorescence intensity landscapes, or excitation-
emission matrices, were measured on 47 thick juice
samples from the 1994 sugar campaign. Five facto-
ries contributed thick juice samples. Two typical
landscapes from one sample are shown in Fig. 3A–B
in the main text. Note that the peaks in the ultraviolet

. .area do not decrease from A to B with dilution. This
is caused by concentration quenching, or inner-ab-

Ž . Ž .Fig. 8. A Factors in the first way representing variation in the thick juice samples. B Factors in the second way describing concentration
Ž . Ž . Ž . Ž .effects. C Factors explaining the excitation profiles. D Factors explaining the emission profiles. E Rotated sample factors. F Rotated

Ž . Ž .concentration profiles. G Rotated excitation factors. H Rotated emission factors.
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w xsorption effect A7 . Each sample has been diluted
volumetrically 1:15 and 1:150 with pH 9.00 NH Cl4

in double ion exchanged and Si-free water. Both of
these dilutions were measured using 20 excitation

Ž .wavelengths 250–440 nm, 10-nm intervals and 311
Ž .emission wavelengths 250–560 nm, 1-nm intervals .

At the excitation and emission sites 10 nm slit widths
were used. The instrument was the Perkin Elmer
LS50B spectrofluorometer. As indicated by Fig. 3
Ž .main text , the combination of a narrow emission slit
width and generally low turbidity allows for neglect-
ing the Rayleigh scattering. Since each intensity
measurement in the collected data depends on four

Ž .external parameters, the sample number 47 samples ,
Žthe concentration two levels of dilution, 1:15 and

.1:150 , the emission wavelength and the excitation
wavelength, the measured intensities constitute a 4-

Ž .way data table of order 47, 2, 311, 20 . We will ap-
ply a 4-way PCA model for analysis of these data.
The 4-way PCA used in this application can be con-
ceived as an extension of the decomposition illus-
trated in Fig. 7 with a necessary introduction of an

Žadditional set of factors, D, and by extending X r ,1
. Ž . Ž .r , r , r , G w , w , w , w and E r , r , r , r2 3 4 1 2 3 4 1 2 3 4

to be 4-way structures.
In order to find the optimal numbers of factors for

the 4-way PCA model, several models of different
orders were investigated. Table 2 shows the relative

Ž .increase in explained sum-of-squares SS as the or-
der of the models increase. The total number of pa-
rameters is shown in the far right column of Table 2.
The findings shown in Table 2 suggest that a model

Ž .of order 3, 2, 3, 3 should be chosen. For the factors
to be representative a good fit to X is paramount,
hence 96.25% of SS explained seems appropriate in

Table 2
The explained sum-of-squares of the data as a function of the
number of factors in the 4-way PCA model of sugar fluorescence
measurements from the material in Fig. 3A–C

Ž .Model order Expl. SS % Par.

Ž .1,1,1,1 74.13 384
Ž .2,1,2,2 82.88 772
Ž .2,2,2,2 92.08 782
Ž .3,2,3,3 96.25 1201
Ž .3,3,3,3 96.24 1230
Ž .4,2,4,4 97.85 1656

comparison with the models of higher orders. The
number of parameters should be kept as low as pos-
sible in accordance with the principle of parsimony.
Parsimonious models reduce the risk for fitting non-

Ž .systematic trends i.e., noise . Note that the model
does not improve in fit when using more than two
factors in the second mode. This is in concordance
with the number of observations in the second mode:
one cannot derive three or more orthogonal solutions
in a mode that is only spanned by two variables.
When moving from analysis of two-way data to
multi-way data, we expect increased stability to-
wards outliers. This is due to the increase in selectiv-
ity. Measuring many independent characteristics of
samples will offer more scales on which to evaluate
the goodness or suitability of the sample for mod-
elling by the model in question. This is the so-called
second-order advantage. The N-way PCA and the
two-way PCA have the non-uniqueness in common,
since factors from these two classes of models may
be rotated by orthogonal transformations without af-
fecting the fit.

The sample-to-sample variation among the 47
samples is condensed in the factors in the first way.
The three factors in the first way are depicted in Fig.
8. The factor denoted 1 describes a significant change
of level in the samples. Factors marked 2 and 3 also
reveal systematic behaviour. The factors describing
the concentration levels are shown in Fig. 8. Fig. 8
reveals the behaviour of the intensities as a function
of the excitation wavelength. However, it should be
remembered that the factors are orthogonal. This
makes interpretation with regard to chemical proper-
ties difficult. Fig. 8 shows the principal components
describing the variation in the fourth way which re-

Žlates to the emission wavelength. In the 54 s3P2P
.3P3 element large core array the five most signifi-

cant squared entries and their factor combinations are
10 Ž . 9 Ž . 92.04 P10 1,1,1,1 , 2.27 P10 1,1,3,1 , 1.20 P10

Ž . 8 Ž . 8 Ž .1,1,1,3 , 9.92P10 1,2,1,3 and 5.46P10 1,1,2,2 .
From these values we see that no clear-cut factor
combinations can be used for further data explo-
ration. If the factors are properly rotated and the core
correspondingly counter-rotated, a more simple
structure of the core may be selected.

Thus, to improve the interpretability of the core
array, the solution was rotated to yield maximum

w xvariance-of-squares of the core A5 . After transfor-



( )L. Munck et al.rChemometrics and Intelligent Laboratory Systems 44 1998 31–60 55

mation, the variance-of-squares of the core array
changed from 4.11P1020 to 5.46P1020, i.e. an in-
crease of 32%. The variance-of-squares of the opti-

10 Ž .mised core elements were 2.36P10 1,1,1,1 , 1.73
9 Ž . 8 Ž . 8P 10 1,1,2,2 , 9.50 P 10 1,2,1,3 , 1.49 P 10

Ž . 8 Ž .1,2,2,3 and 1.03 P 10 1,2,1,2 . Note how the
largest elements of the rotated core have absorbed
variation described by the minor ones. Upon rotation
the factors were as plotted in Fig. 8E–H. The varia-
tion expressed by the factors in Fig. 8 can be plotted

Ž .in a more convenient way as in Fig. 3C main text
where factor 2 and factor 3 are plotted against each

Ž .other corresponding to a PCA score plot . The con-
clusions drawn from this plot are presented in the
main text.

Appendix B. parafac

B.1. Model

Consider a fluorescence data set with typical ele-
ments, x , where x is the intensity of the ithi jk i jk

sample excited by light at the jth excitation wave-
length and measured at the kX th emission wave-
length. Theoretically, such data can be approximated
as

F

x s a b c qe 2Ž .Ýi jk i f j f k f i jk
fs1

where a is the concentration of the f th analyte ini f

the ith sample, b is the relative emission emitted atj f

wavelength j of analyte f , and c is the relativek f

amount of light absorbed at the excitation wave-
length k of analyte f. This relation holds for diluted

Ž .solutions, and if b is approximately independentj f
w xof c A8 .k f

The fluorescence model is equivalent to the
Ž .PARAFAC parallel factor analysis model initially pro-

w xposed by R.A. Harshman A9 and Carroll and Chang
w x w xA10 . Leurgans and Ross A11 , Leurgans et al.
w x w x w xA12 , Ross and Leurgans A13 , and Nørgaard A14
describe in detail the rationale for using PARAFAC

models for modelling fluorescence data. The PARAFAC

model is very closely related to ordinary two-way
PCA, as exemplified graphically in Fig. 9.

Fig. 9. A two-component PARAFAC model of the three-way array X
Ž .residuals omitted for brevity . The vector and matrix products to
the right of the equal sign are equivalent to ordinary outer prod-
ucts, i.e. the first component represented by a1, b1, and c1 gives a
rank-one part of the model of the same size as X, each element be-
ing a triple product a b c .i1 j1 k1

Where two-way PCA gives one score and one
loading matrix, one gets one score matrix and two
loading matrices in a PARAFAC model of a three-way
data set; one for each variable mode in the data.
Therefore, a PCA model is a bilinear model, while
PARAFAC is a trilinear model. The PARAFAC model is

w xunique A3,A15 . This means that if the model is ap-
propriate for the data one need not impose orthogo-
nality or other mathematical constraints to identify the
model. Furthermore, instead of abstract latent vari-
ables, the true underlying phenomena are found. In
this case it means that it is possible to estimate the
underlying emission and excitation spectra and con-
centration profiles simply by decomposing the fluo-
rescence data by a PARAFAC model.

B.2. Data

Sugar was sampled every 8 h during a campaign
Ž .approximately three months at a sugar plant in
Scandinavia, providing a total of 268 samples three
of which were discarded in this study. Each sugar

Žsample was dissolved in un-buffered water 2.25
.gr15 mL and the solution was measured spectroflu-

Ž .orometrically Perkin Elmer LS50B . For every sam-
ple the emission spectra from 275–560 nm was mea-

Ž .sured in 0.5 nm intervals 571 wavelengths at seven
Žexcitation wavelengths 230, 240, 255, 290, 305, 325,

.340 nm . Laboratory determinations of the quality of
the produced sugar were also available. These qual-
ity measures are ash content and colour. In addition,
several automatically sampled process variables were
available, including temperature, flow, and pH deter-
minations at different points in the process. Typically
these variables are very noisy and sampled at quite
different rates.
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A four-component PARAFAC model of the fluores-
cence data is appropriate in this case. However, for
an unconstrained model a large portion of the load-
ings have negative areas at lower wavelengths. The
reason for this is that 60% of the data are missing in
this area, due to Rayleigh scattering. Therefore, the
model is based on only one to four excitations below
360 nm. This causes some of the estimated emission
loadings to be uncertain.

As the parameters of the PARAFAC model reflect
concentrations and emission and excitation spectra,
non-negativity seems a valid constraint to use in or-
der to remedy this problem. One may infer that non-
negativity should not be necessary, since the model
should be identifiable even without using non-nega-
tivity. The adequacy of the unconstrained model,
however, only holds to the extent that the PARAFAC

model is correct for the data. There is a portion of the
data that is missing due to Rayleigh scatter. Also,
very likely a portion of the data that has not been set
to missing values may be influenced by Rayleigh
scatter to a slight degree, and therefore the data do not
necessarily behave according to a trilinear systematic
variation plus random noise. Furthermore, het-
eroscedasticity, quenching and other deviations from
the model can cause the estimated parameters to de-
viate from strict non-negativity.

Very similar results are obtained by an uncon-
strained and a non-negativity constrained model. In
the sample and excitation modes the loadings of the

Ž .two models are highly correlated rs0.99 . Further,

the problems arising in the unconstrained model can
be explained by the amount of missing values and
model mis-specification.A four-component non-
negativity constrained PARAFAC model results in the
emission loading vectors displayed in Fig. 10a. The
spectra seem mainly reasonable, but for one spec-
trum, the bump slightly above 300 nm seems to be

Ž .more of a numerical artefact than real Fig. 10b . This
is plausible because many variables are missing in
this area. One important aspect indicates that the
spectrum should really be unimodal namely, that the

Žmost likely fluorophores in sugar amino acids, sim-
.ple phenols, and derivatives have unimodal emis-

w xsion spectra due to the Kasha rule A7,A8 .
The above reasoning led to specifying a new

model where all emission spectra were estimated un-
der unimodality constraints and remaining parame-
ters under non-negativity constraints. The estimated

Ž .model was stable Fig. 10c and the estimated excita-
tion spectra and relative concentrations did not vary
considerably from that of the non-negativity con-
strained model. This strongly confirms the assump-
tion that the cause of the artefact is mainly due to the
amount of missing data in the specific region. It
means that the unimodality is probably a valid con-
straint, and it also implies that unimodality is mainly
necessary for improving the visual appearance of the
emission loadings, hence enabling better identifica-
tion of the underlying analytes.

Ž .Fig. 5B,C main text show selected estimated
emission spectra, which fit well with the emission

Ž .Fig. 10. Estimated emission spectra from fluorescence data. a Four spectra estimated using non-negativity. The ’suspicious’ spectrum, 1, is
Ž . Ž .marked with a thicker line. b Suspicious spectrum estimated from four different subsets using non-negativity. c Estimated spectra from

different subsets using unimodality.
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spectra of pure tyrosine and tryptophane respec-
tively, two substances of known technological impor-
tance. The excitation spectra of tyrosine and trypto-
phane crudely agreed with those of the pure chemi-
cals due to the limited number of seven excitation
wavelengths employed with a gap between 255 nm
and 290 nm. The spectra of tyrosine and tryptophane
were acquired under quite dissimilar circumstances
ŽpH 9, whereas the solutions used here was un-

.buffered in experiments unrelated to this study. Still,
the striking similarity with regard to the emission
spectra confirms that the PARAFAC model is capturing
chemical information. In order to verify with more
confidence the identity of the underlying analytes we
have confirmed the fluorescence signatures of the
pseudospectra in column chromatography fractions of
thick juice.

B.3. Using PARAFAC scores for modelling quality

Ž .The scores A of the model of the fluorescence
data are estimates of concentrations. Initially, the
correlation between the PARAFAC scores and the pro-

cess variables was investigated. For some process
variables there were almost no correlations, but for a
large number excellent correlations were obtained.
Examples of can be seen in Fig. 11.

A calibration model was made for predicting ash
and colour from PARAFAC scores, The models for pre-
dicting ash content and colour of the sugar were ex-
cellent. The predicted values and the reference val-
ues are shown in Fig. 12. Note that, disregarding the
fact that no cross- or test set validation has been per-
formed, the prediction models are only based on four
regression coefficients each, hence quite impressive.
The above model substantiates, that it is possible to
use fluorescence for on-line or at-line monitoring of
sugar quality. This is important, as these parameters
are currently only determined every 8 h and with a
certain lag, as the laboratory analysis takes time.

The models described in this application based on
fluorescence data are quite extraordinary. They give
a direct connection between the raw material, pro-

Žcess parameters and the final sugar quality as de-
fined by laboratory measurements defining the inter-

.nal as well as the external consumer quality . As such,

Fig. 11. Predictions of two important process variables. Unbroken lines are reference values. Notice the smoothing effect of the predictions
based on fluorescence analysis of 8 h mean sugar samples representing one shift. The fitted values obtained using multiple linear regression
Ž . Ž .MLR are shown. MLR was chosen, because the condition of the independent variables 265=4 is excellent, hence no problems arising
from collinearity are expected.
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Fig. 12. Predictions of colour and ash from PARAFAC scores. Thick lines are reference values and thin lines the predicted values.

the conceptual idea behind the results reach far be-
yond the specific data treated here.

( )Appendix C. Principal variables PV

The PV model is based on exactly the same prin-
ciples as is PCA and PLS. In PCA the first loading
vector is the eigenvector corresponding to the largest

Ž X .2eigenvalue of X X , while in PLS we look for the
weight vector which is the eigenvector correspond-

Ž X .2 w xing to the largest eigenvalue of X Y A16 . In PV
we investigate exactly the same matrix products, but
since we are interested in finding manifest variables
and not latent factors we seek the largest diagonal el-

Ž X .2 Ž .ements of the matrices X X in the ‘PCA’-case or
Ž X .2 Ž .X Y in the regression case corresponding to first
principal variables. In PCA and PLS X is orthogo-
nalised with the information described by the first la-
tent factor. This also holds in the PV algorithm, where
the X matrix is orthogonalised with the manifest
variable: X sXyzPk, where z is the columnnew

corresponding to the first principal variable and k is
the loading.

Next the variables selected by the PV-algorithm
are used in an ordinary multiple linear regression
Ž .MLR with y as the dependent variable in order to
develop a predictive model based only on the se-
lected variables. We see here the synergistic combi-

Ž .nation of classical statistics MLR and new chemo-
Ž .metric methods principal variables . See the main

Ž .text for applications Table 1 .
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