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A CASE OF EXTREME SIMPLICITY OF THE CORE MATRIX IN
THREE-MODE PRINCIPAL COMPONENTS ANALYSIS
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In three-mode Principal Components Analysis, the P × Q × R core matrix G can be trans-
formed to simple structure before it is interpreted. It is well-known that, when P = QR, G can be
transformed to the identity matrix, which implies that all elements become equal to values specified
a priori. In the present paper it is shown that, when P = QR - 1, G can be transformed to have
nearly all elements equal to values specified a priori. A closed-form solution for this transformation
is offered. Theoretical and practical implications of this simple structure transformation of G are
discussed.
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Let X be a three-way data array of order I × J × K. In three-mode PCA (Kroonen-
berg & de Leeuw, 1980; Tucker, 1966) X is decomposed as X = ~ + E, where ~ is the
structural (explained) part of X, and E is the residual part. Let the K frontal slabs 1 . ....
X/( of X, each of order I × J, be juxtaposed in the I × JK supermatrix Xf = [Xll ... IX/(].
Then the structural part of X can be written as

~: = AG/(C’ ® B’), (i)

where A, B, and C are column-wise orthonormal component matrices of order I × P, J ×
Q, and K × R, respectively, and Gf is a P × QR matrix containing the R frontal P × Q
slabs of the core array G. The model in (1) is called the Tucker-3 model.

To see the rotational indeterminacy inherent to (1), let S, T and U be nonsingular
matrices of order P × P, Q × Q and R × R, respectively. Then it is obvious that (1) can
be written equivalently as

~/= (AS’-~)S’G/(U ® T)(U-~C’ ® T-~B’), (2)

which shows that Gf can be transformed to S’Gf(U®T) provided that A, B and C are
postmultiplied by the inverse of S’, T’ and U’, respectively.

Tucker (1966) already noticed that one may exploit the rotational indeterminacy 
rotate the component matrices (A, B and C) or the core to simple structure. Rotation 
component matrices to simple structure (e.g., by varimax) is relatively straightforward.
Rotation of the core to simple structure is more involved, partly because the generalization
of simple structure criteria is not straightforward. Some procedures (e.g., Cohen, 1974;
Kiers, 1992; Kroonenberg, 1983; MacCallum, 1976) avoid this problem, by approximating
an a priori specified pattern of zeros in the core, for example, diagonal frontal slabs or the
super-diagonal form as appearing in CANDECOMP/PARAFAC. Others are based on
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specially designed three-way simple structure criteria, and seek a simple core exploratorily
through orthogonal or oblique methods of rotation (e.g., Kruskal (1988); Kiers (1997,
1998b); also see Kiers, 1998a, for a review). To the extent that the latter type of rotation
produces a sparse core, the Tucker-3 model is greatly simplified because only a few
combinations of components from A, B and C need to be taken into account.

In the context of simplifying the core array, the question arises to what extent sim-
plicity can be obtained. Specifically, it is important to ascertain how many elements of the
core matrix can be set to zero by nonsingular transformations. A trivial example is the case
where P = QR. In that case, G/is a square matrix, and premultiplying G/by S’ = Gf--1

produces a core array with p2 _ p zero elements. However, experiments with analytic core
rotation methods have demonstrated that similarly simple core arrays also can be obtained
in certain non-trivial cases, where P < QR. In particular, when P = QR - 1, Gf can
generally be transformed to have a vast majority of elements zero. The present paper is
meant to clarify this case, and offers a closed form solution for non-singular transforma-
tions S, T and U such that only a few nonzero elements in S’G/(U®T) remain, for any given
Gf of order P × Q × R with P = QR - 1.

Simple Cores When P = QR - 1

To show how simple core arrays can be found when P = QR - 1, we shall first treat
the special case P = 5, Q = 3, R = 2 in full detail. A closed-form solution will be
presented, illustrated (Table 1), and proven. The general solution for simplicity when P 
QR - 1 will be deferred till the next section.

The case {P = 5, Q = 3, R = 2} starts from a 5 × 6 core matrix Gf, consisting of two
frontal 5 × 3 slabs G1 and G2. It is essential (for reasons that will become clear in due
course) to require that Gf has previously been orthonormalized rowwise. This can be done,
for any G~ of full row rank, by premultiplying G7 by any orthonormalizer, such as
(G~GT’)-l:2, which represents an oblique transformation. When the core array has been
obtained from the standard TUCKALS3 algorithm (Kroonenberg & de Leeuw, 1980), it 
orthogonal in every direction, whence the orthonormalization simplifies to unit-length
rescaling. At any rate, let it be given that

G/G} = I5.

It will now be explained how to find nonsingular, and, in fact,
and U, such that S’Gf(U®T) is simple, of the form

S’G/(U ® T) =

(3)
orthonormal matrices S, T

0 1 0 [ 0 0 i)
0 01100
0 0 0 I 1 0
0 0010 0

-~2 0 0 I 0 31

(4)

for certain scalars 31 and 32. To find the S, T, and U, the following procedure is to be
followed, after making sure that (3) holds:

1. Compute the vector y’ which completes Gf to a square orthonormal matrix, when it is
appended to Gf as a sixth row.

2. Rearrange the elements of y in a 3 × 2 matrix Y such that y = Vec (Y). So when

[Yl Y4]Y’= [Yl Y2 Y3 Y4 Y5 Y6], then Y= Y2 Ys.
Y3 Y6



TAKASHI MURAKAMI ET AL. 257

TABLE 1

An Exemplary 5-3-2 Array

.58 .43 .44

-.25 -.04 -.23

-.48 .13 .33

.58 -.56 -.08

.16 .45 -.79

y’= ( .ii

.38 .04 .37’

.II .78 .51

.63 .17 -.47

.19 .37 -.41

.34 -.i0 -.17

.53 .13 -.54 .46 -.43)

-.54 -.56 .00 -65

.53 .46 U = T = .70 .71 -.06

.13 -.43 .95 -.30 -.43 .49 .76 62=.52

H = G~(U®T)=

-.40 .63 .01 -.10 .65-.07

/
.32 .74 .25 .12 -.52 -.09

.03 .20 -.58 .22 -.05 .76

.11 .11 -.56 -.75 -.18 -.25

-.01 .02 -.54 .60 .01 -.59

S’G~(U®T) 

0 1

0 0

0 0

0 0

-.52 0

0 0

1 0

0 1

0 0

0 0

0 0

0 0

0 0

0 1

.85 0

.63 .01 -.10 -.07-.76

.74 .25 .12 -.09 .61

.20 -.58 .22 .76 .06

.11 -.56 -.75 -.25 .21

.02 -.54 .60 -.59 -.01

3. Compute the singular value decomposition (SVD) Y = TDU’, with T an orthonormal
3 × 3 matrix, U an orthonormal 2 × 2 matrix, and D a 3 × 2 matrix of singular

values, of the form D = .

4. Compute the matrix tt = G/(U®T). Take the columns 2, 3, 4 and 6 of H, and the unit
length version of the fifth column of It as the five columns of $.

5. Using the $, T and U as prescribed here produces the solution of the form (4). A fully
worked out example of these computations is given in Table 1.

It remains to prove that the solution given above does indeed transform any rowwise
orthonormal 5 × 3 × 2 array Gf to the simple form with 24 zeros, as displayed in (4):
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Proof. Define H = Gf(U®T) and z’ = y’(U®T). Using the svd Y = TDU’, and noting
that y = Vec (Y), we have Vec (Y) = y = (u~r) Vec (D). 

z = (U ® T)’y:(U ® T)’(U ® T) Vec (D) = Vec (O) 

because (U®T) is orthonormal. Incidentally, it can also be seen that z’z = 1, whence ~2 
~22 -- L

It is readily verified that

[ yG,f][U ® T] = IzH,]. (6)

Because the two matrices in the left-hand side are orthonormal, so is their product, and
hence the 5 × 6 matrix H satisfies

H’H = 16 - zz’. (7)

Next, we note thatz’ = [~1 0 0 0 ~2 0],so

(8)

’ It follows that the columns h2, h3, h4 and h6 of H form an orthonormal set, and that
the fifth column of H is orthogonal to this set. Therefore, upon constructing S =
[h2 h3 h4 h6 (hs/llhsII)], s is orthonormal and S’H displays, up to a permutation, pre-
cisely the zeros and ones as we have in I-I’H, when the first row is deleted. As for the two
nonzero entries of the fifth row of S’H, it is readily seen that h;hl/llh511 -- -t~l~2/t~l

and h;hs/llhsl[ ---- ~1. []

A remarkable feature of the solution is the orthonormality of S, T and U. Admittedly,
however, the orthonormality of S would be lost if Gf were not rowwise orthonormal. If the
initial orthonormalization of Gf is subsumed under the solution, we have an oblique
transformation S, and orthogonal rotations T and U to produce the simple core matrix.

The General Case Where P = QR - 1

In the 5 × 3 × 2 case treated above, 24 of the 30 core elements were transformed to zero.
In general, when P = QR - 1, and the modes are defined such that Q -> R (as can be done
without loss of generality), we can transform the array to have only R(Q + R - 2) nonzero
elements, which implies that we have QR(QR - 1) - R(Q + R - 2) zeros. This can be
obtained by the following generalized algorithm:

Let Gf be a rowwise orthonormal P × Q × R array with P = QR - 1.

1. Compute the vector y’ which completes Gf to a square orthonormal matrix, when it is
appended to Gf as QR-th row.

2. Rearrange the elements of y in a Q × R matrix Y such that y = Vec (Y). So when 
: [Yll... lyh], then Y = [Yl]--.

3. Compute the SVD Y = TDU’, with T an orthonormal Q × Q matrix, u an orthonormal
R × R matrix, and D a Q × R matrix containing the R singular values of Y, and zeros.
Define the index set IND as the set of R row indices of Vec (D) corresponding to the
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TABLE 2

Properties of the Simplified Core Matrix in a Number of Cases

P Q R Total Unity Unspecified Zero % of zeros

Orthogonal Method

3 2 2 12 2 2 8 66.7

5 3 2 30 4 2 24 80.0

7 4 2 56 6 2 48 85.7

8 3 3 72 6 5 61 84.7

9 5 2 90 8 2 80 88.9

11 4 3 132 9 5 118 89.4

15 4 4 240 12 9 219 91.3

Oblique Method

8 3 3 72 8 2 62 86.1

11 4 3 132 11 2 119 90.2

15 4 4 240 15 3 222 92.5

singular values in Vec (D). So IND = { 1, Q + 2, 2Q + 3 .... }. Define the comple-
mentary set as INDc, corresponding to the QR - R zero elements of Vec (D).

4. Compute the matrix tt = Gf(U®T). Put those columns of H indexed by INDc in a P ×
(QR - R) matrix Sl. Compute any P × (R - 1) matrix S2 such that S, defined 
[S11S2], is an orthonormal P × P matrix.

Using the S, T and U of the above generalized algorithm produces a simple array
S’Gf(U®T). It can be seen as a rowwise and columnwise permuted diagonal supermatrix
with the identity matrix of order QR - R in the upper left hand corner, and a nonzero
submatrix W of order (R - 1) × R in the lower right hand corner, yielding a total of QR -

R + R (R - 1) nonzero elements. We can (for R > 2) premulti~ly $’ by a rotation matrix
that puts W in a quasi-upper triangular form, which means that i(R - 2)(R - 1) elements
of W can be rotated to zero. When this rotation is subsumed under S, we end up with
orthonormal matrices S, T and U that yield QR - R + R(R - 1) - 21-(R - 2)(R - 
½R(R - 1) + QR - 1 nonzero elements in S’Gf(U~Tr). What this amounts to in various
specific cases can be found in Table 2 under "Orthogonal Method". Typically, over 80%
of the core elements can be transformed to zero.

A formal proof for the generalized algorithm will not be given here, but is available
from the authors upon request (The key to the proof is the observation that (5), (6) 
(7) hold generally). A few technical comments, however, are in order. First of all, 
submatrix W that arises in the simplified core array is directly related to the singular values
of ¥: When these are arranged in a vector v, it can be shown that [W’lv] is an orthonormal
R × R matrix. The rotational freedom in W results directly from the indeterminacy of S2.
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There is also an indeterminacy in T, in that the last (Q - R) columns of T are determined
up to an orthogonal rotation.

Finally, there is a way of further simplifying the core matrix by quasi-diagonalizing W.
This can be done by postmultiplying S by a P × P matrix that is constructed as Ip, with an
(R - 1) × (R - 1) diagonal block replaced by the inverse of W*, where W* is an arbitrary
(R - 1) x (R - 1)submatrix of W. The number of nonzero elements will then be further
reduced to QR - R + R(R - 1) - (R - 1) 2 + (R - 1) R(Q + 1)- 2 . Examples
of what this amounts to are given in Table 2, under "Oblique Method".

Discussion

It is well-known (Tucker, 1966, p. 288) that there is no point in having P larger than
QR in fitting the Tucker-3 model: When the model is fit in QR + Q + R components for
the A, B, and C mode, respectively, and P > QR, the same fit will be obtained when QR
instead of P components are determined for the A mode. In this sense, having P = QR
components is the largest admissible case for Tucker-3 when Q and R are considered fixed.
Transforming the core to the identity matrix trivially produces simplicity, with 100 ×
(QR - 1)/QR per cent of elements zero. The present paper has dealt with the "second
largest case", where P = QR - 1. Again, a vast majority of core elements can be trans-
formed to zero, as can be seen from Table 2. The percentages of elements that become
zero are smaller than in the case P = QR, yet still quite high. Unfortunately, attempts to
find the same type of simplicity with P = QR - 2, P = QR - 3, ... have failed. The
approach we have adopted crucially relies on the possibility of constructing a Q × R matrix
Y, the columns of which can be stacked in a row-vector that completes Gf to a square
orthonormal matrix. For values of P other than QR - 1, no such Y exists.

The transformation to simplicity of the core has various implications. It is well-known,
also see (2), that three-mode PCA is grossly overparameterized. This paper shows how the
overparameterization may manifest itself in the simplicity of the core. Specifically, in
three-mode PCA with P = QR - 1, simplicity of the core should not be mistaken for a
property of the data: The ensuing simplified version of the three-mode component solu-
tion, leaving only a few combinations of the components to be considered, is merely an
artifact. In practice, solutions obtained by simplicity rotation techniques will be preferred,
especially if they also take into account the simplicity of the component matrices. The
artificially obtained simplicity as described here can be used as a baseline to compare such
solutions with: If a solution is found in which the core is not nearly as simple as it can be
made artificially, this suggests searching for simpler solutions, unless that would have
detrimental effects to the interpretation of the component matrices.

Secondly, the explicit baselines of simplicity that we have established can be used to
test the efficiency of any iterative method of transforming a core to simplicity. In particular,
the method by Kiers (1998b) can now be tested in non-trivial cases (the trivial ones
referring to the case P = QR). Because the global minimum for Kiers’ method is known
in such cases, it can be ascertained how sensitive his method is to local minima.

Conceivably, the simplicity result of the present paper may also have implications
beyond the realm of three-way PCA. The transformations to simplicity can be applied to
any three-way array rather than just a core array in three-mode component analysis. Since
the transformations are non-singular, they preserve the three-way rank as defined by
Kruskal (see Kruskal, 1989, for a review). The number of nonzero elements in a three-way
array cannot be less than its three-way rank. Accordingly, simplicity of an array may
facilitate the evaluation of its three-way rank.
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