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This article investigates how individual differences in semantic differential data can be
modeled and assessed using three-mode models.  Individual differences are important
because their existence may affect the generality of conclusions based on such data.  An
overview is given how individual differences arise and how they can be handled in the
analysis.  The results of the investigation will be illustrated with semantic differential data
on the characterization of Chopin’s Preludes by a group of Japanese university students.

Introduction

In 1957 Osgood (Osgood, Suci, & Tannenbaum, 1957) introduced the
idea that concepts could be universally evaluated by semantic descriptions,
like GOOD versus BAD, HARD versus SOFT and ACTIVE versus PASSIVE.  He
developed so-called semantic differential scales which were bipolar
seven-point scales with, for instance, GOOD at one end and BAD at the other.
Osgood’s basic contention was that all concepts could be characterized by
three basic (latent) variables, that is, Evaluation (E), Potency (P), and
Activity (A), of which the bipolar semantic differential scales function as
markers.  In the fifties and sixties, Osgood and many researchers across the
world conducted massive research with the semantic differential to establish
the universality of Osgood’s ideas, and they created parallel versions of the
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fundamental scales in many languages (see Snider & Osgood, 1969 for a
comprehensive overview of semantic differential research).

In this article the term “semantic differential” refers very generally to
ratings of several concepts on a set of bipolar adjective scales by a sample
of subjects, and the concepts and scales are not necessarily the standard
ones used in the original articles by Osgood and his coworkers.

Semantic differential data consist of ratings of subjects on a number of
bipolar scales for a set of concepts.  Such data can be arranged in a three-
dimensional block.  During the data collection, a subject k produces scores
x

ijk 
by evaluating concept i on bipolar scale j, and the scores for subject k can

be collected in a matrix X
k
 of I concepts by J scales.  The data of K subjects

thus form a three-way array X of size I × J × K.  The subjects are seen as
judges who express themselves about the relationships between the
concepts and scales, and we do not necessarily assume that they are a
random sample from a well-defined population.  In other words, we will not
explicitly concern ourselves with sampling issues.

Individual differences in such data are important because they may
contradict the generality of the method (e.g., Osgood, 1964).  Several articles
have looked at the question of the unidimensionality of subjects (e.g., Snyder
& Wiggins, 1970), but a detailed study into the main sources of individual
differences and their effects on the “semantic space”, the main product of
the method, has not yet been conducted.  One of the problems is that there
are many sources of individual differences and they can appear in various
guises in semantic differential data.

Even though the investigation into individual differences in semantic
differential data was one of the motivations to develop Three-mode factor
analysis (Tucker, 1964, 1966), not many results using this method have so far
been reported (for an overview of such studies see the annotated bibliography
by Kroonenberg, 1983a).  Parallel Factor Analysis (Harshman, 1970;
Harshman & Lundy, 1984a, 1984b; see also Carroll & Chang, 1970) is another
method for the analysis of three-mode data with similar objectives, but its use
to semantic-differential data has been even more limited (see, however,
Harshman & De Sarbo, 1984).  One of the reasons for the limited use of three-
mode methods for analyzing semantic differential data might be that their more
complicated structure makes them less straightforward to use.  For instance,
one must tackle questions such as how the data should be preprocessed, that
is centered and/or normalized, how many components1 should be retained for
the three modes, how the components can be represented in the most
advantageous manner, which transformations (rotations) should be applied to

1  In this article we will systematically refer to components rather than factors, because we
will not assume a specific error structure for the residuals.



T. Murakami and P. Kroonenberg

MULTIVARIATE BEHAVIORAL RESEARCH 249

components or to the core array if any, etcetera.  Such choices are also
influenced by the characteristics of individual differences, and the choices can
only be made if one has (conceptual) models of the individual differences in
terms of three-mode data.  On the other hand, not every type of individual
differences that a researcher conceptualizes in semantic differential data can
necessarily be treated in such a framework.

The discussion of individual differences will consist of four parts.  First,
we will characterize sources of individual differences which are related to
differences in component scores and component loadings.  Secondly, we will
discuss three-mode modeling of individual differences in semantic
differential data.  Thirdly, we will discuss some specific interpretational
devices for three-mode analysis which might be less familiar.  Finally, we will
treat in detail an example of the evaluation of Chopin Preludes by Japanese
students which will include a discussion of choice of number of components,
core transformations, and interpretation in general.

Individual Differences in Scores and Loadings

If all individual differences can be regarded as random variations around
a set of values common to all individuals, then their data can be modeled via
scores for concepts and loadings for scales derived from the concept by
scale table averaged over individuals.  Such an analysis makes sense if the
number of concepts is sufficiently large, and it has been the standard
procedure in most semantic differential studies.  However, the literature has
shown many results which are inconsistent with this model (see Heise, 1969;
and Pinson, 1983, for overviews of general outcomes of semantic differential
research).

One may distinguish three major classes of individual differences in
semantic differential data, differences in (a) the number of components, (b)
component scores, and (c) component loadings.  These classes seem to
correspond to the “three ways” of individual differences introduced by
Snyder and Wiggins (1970): (a) The basic underlying dimensions, E, P, A are
not general; (b) different semantic scales function differentially as markers
of E, P, A for different individuals; (c) individuals utilize the basic dimensions
differently in making scalar judgments across classes of concepts.
However, from their analyses it is far from clear how these types of
individual differences can be evaluated from real data.

If there are only a few individual differences in the scale loadings, we
may postulate a common loading matrix shared by all the subjects.  On the
other hand, if there are few individual differences in the concept scores we
may assume a common score array shared by all the subjects.  Models with
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common components for only one of the modes can be solved by ordinary
PCA given a proper normalization.

It is our contention that it is possible to evaluate the several kinds of
individual differences simultaneously with three-mode methods, such as
three-mode principal component analysis (Kroonenberg, 1983b; Kroonenberg
& De Leeuw, 1980; Tucker, 1966) and parallel factor analysis (Harshman,
1970; Harshman & Lundy, 1984a, 1984b).  The body of this article is devoted
to the presentation of the theoretical basis for this contention, and to
providing empirical evidence for the usefulness of this approach.

Individual Differences And Three-Mode Models

Because in general people who share the same language can communicate
with each other at a high level of understanding, it seems reasonable to assume
that the overall level of individual differences to be found in semantic
differential data is not overly large.  As a matter of fact, in most studies using
three-mode component analysis, the most important component of the subject
mode considerably dominates the remaining components (e.g., Levin, 1965;
Takeuchi, Kroonenberg, Taya, & Miyano, 1986; Wiggins & Fishbein, 1969).
One of the few clear exceptions is the reanalysis by Kroonenberg (1983b,
1985) of the multiple personality case described by Osgood and Luria (1954),
but this was a rather unusual case.  The dominance of the common usage of
the semantic differential scales explains why the ordinary method of analysis
using an averaged table works relatively well in many cases.

The implication of the overall consensus is that we have to take into
account the possibility that the existence of individual differences may be
primarily confined to specific scales and concepts rather than that they are
manifest throughout the entire data set.  It seems not unreasonable to think
that more subjective judgments like UNATTRACTIVE - ATTRACTIVE and
UNLIKEABLE - LIKABLE are more likely to be a source of individual differences
than more objective judgments like  SOFT - HARD.  Also the ratings of
ambiguous concepts might be a source of individual differences which
obviously cannot be modeled.

To investigate these kinds of sources, we will show how different three-
mode models represent different kinds of assumptions about individual
differences in concept scores and scale loadings.  The existence of different
models makes it possible to evaluate which individual differences are most
prominent, and how they can be described in a parsimonious way.
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Three-Mode Models

For models to be classified as three-mode models, they have to have
explicit parameters for all three modes.  Even though in the illustrative
example only the most complete three-mode model, the Tucker3 model, will
be used, we will first discuss a somewhat less restricted model  to illustrate
how individual differences can be modeled.

Tucker2 Model

Suppose that there exists a complete catalogue of components from
which each subject makes a selection to judge concepts with a given set of
scales.  We assume that this catalogue is not overly large in line with our
earlier assumptions about the common base of understanding between
people.  We also assume that the component models of almost all the subjects
are constructed by their choice of columns from the lists of concept scores
and scale loadings and by the linear combinations of these columns.

This situation can be expressed formally as follows.  Let A be a matrix
of concept scores consisting of columns in the list explained above, and B be
a matrix of scale loadings constructed similarly, then the data matrix of each
individual can be expressed as

(1) X
k
 = AH

k
B� + E

k

where H
k
 is the matrix representing the choice and the combinations of

columns of A and B.  For example, if data matrix of subject k is
approximately recovered by the sum of products of the 2nd column of A and
the 3rd column of B, and 3rd column of A and 1st column of B, then h

23k
 and

h
31k

 are unity and the remaining elements of H
k
 are zero.

Of course, this description is an oversimplification.  However, this idea
will be the basis of a three-mode component analytical model, which makes
it possible to describe a given data set parsimoniously, especially when
individual differences occur in a systematic way.  The model in Equation 1
is formally the same as the Tucker2 model (see Kroonenberg & de Leeuw,
1980).  The “2” in Tucker2 indicates that components are present for two of
the three ways of the data array.

In the usual formulation of the Tucker2 model, A is a I by P columnwise
orthonormal matrix, B is a J by Q columnwise orthonormal matrix (P not
necessarily equal to Q), and a P by Q matrix, H

k
, is called a frontal slice of

the extended core array H, which is a three-way array of order P × Q × K.
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Various kinds of individual differences can be modeled via special
structures in the extended core array.  When there are only individual
differences of degree but not in kind, and the standard three-dimensional EPA-
structure holds for all subjects, each H

k
 is approximately diagonal (Figure

1A).  The three columns of the scale matrix B will have salient values in the
rows corresponding to E, P, and A scales.  If two components, for example,
E and P, are fused into one component for several but not all subjects, their
H

k
 are no longer diagonal, and two off-diagonal elements, for example, h

12k

and h
21k

 will be large (Figure 1B).
In order to accommodate a peculiar usage of a scale, for example,

BEAUTIFUL, the number of columns of the scale matrix B is increased with a
separate component for BEAUTIFUL, and the corresponding element in the
evaluation (first) component is diminished.  Each frontal slice of the extended
core array is no longer square but has order three by four.  If a subject k uses
the scale BEAUTIFUL in the usual way as a scale of E, the element, h

14k
 is salient

as well as h
11k

 (Figure 1C).  If another subjects, say k�, uses BEAUTIFUL as a
P-scale, h

24k�
 rather than h

14k�
 will be salient.

In the case where subjects rate concepts on two entirely unrelated
dimensions, say students use the evaluation scales to rate their classmates
on either academic achievement or physical ability, the number of columns
of A, rather than B, will be increased.  The concept scores for evaluative

Figure 1
Effect of Individual Differences on the Core Slice of Subject k
(A) Pure EPA-structure; (B) Fusion of E and P; (C) Peculiar usage of BEAUTIFUL; (D)
Evaluation rated on Academic ability or Physical ability.
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ratings on academic achievement will appear in, say, the first column and the
concept scores for evaluative ratings on physical ability in the fourth column
(Figure 1D).  In the frontal slices for students who rate according to
academic achievement, h

11k
, h

22k
, and h

33k
 are salient, while those of students

who rate according to physical ability, h
41k

 rather than h
11k

 is salient.  When
several subjects rated concepts on the basic E-dimension in a completely
reversed order compared to other subjects, it is not necessary to increase the
number of columns.  Their value of h

11k
 is simply negative.

In the analysis of real data, there could be more complex combinations of
several types of individual differences, and patterns emerging in the extended
core array may be far more complicated.  However, the basic patterns just
described can be helpful in disentangling the more complex ones.

Tucker3 Model

Although the Tucker2 model may be the most comprehensive method for
the purpose of description of three-mode data, a more parsimonious model
in terms of parameters may be formulated.  The Tucker3 model (Tucker,
1966), in which also components are computed for the subjects, can be
conceived as a model in which the extended core array is modeled with
several more basic core slices, as

(2) X
k
 = AH

k
B + E

k
 = A(�

r
c

kr
G

r
)B� + E

k

which may be written in more compact form by the use of Kronecker product
as

(3) X = AG(C��B�) + E

where X is an I by JK matrix obtained by juxtaposition of the X
k
, G is a P by

QR core matrix constructed in a similar fashion, C is an K by R columnwise
orthonormal matrix consisting of subject scores, and E is a I by JK matrix of
residuals.  In sum notation this equation becomes

(4) ( )1 1 1

P Q R
ijk pqr ip jq kr ijkp q r

x g a b c e= = == +∑ ∑ ∑

which shows that the g
pqr

 function as weights for the combination of
components.  If a particular g

pqr
 = 0 then the pth, qth and rth combination of

components does not contribute towards the reconstruction or estimation of
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the data based on the model.  By properly normalizing the data and the
solution, the scale components can become loadings (variable-component
correlations; principal coordinates) and the subject and concept components
scores (normalized or standardized components); see below.

The Tucker3 model gives more parsimonious representation of three-
way data than the Tucker2 model because it uses fewer parameters, but it
seems less straightforward to evaluate some of the individual differences
from this model.  The cause may be the orthogonality of C, subject loading
matrix.  Because the centering is across concepts and not across subjects,
and because the common base of understanding among people mentioned
above, the first component has usually positive scores for all subjects.  The
orthogonality of C forces the other components to have negative signs for
about half the scores.  Although this may correspond well to the case where
about the half of subjects rates concepts reversely to the other half on the
specified dimension, it may not in the case where there are two or more
independent dimensions of the concepts of which a subject agrees with only
one of them.

PARAFAC/CANDECOMP Model

Both the Tucker2 and Tucker3 models have advantages in analyzing
semantic differential data over their competitor the PARAFAC/CANDECOMP

model

(5) X
k
 = AD

k
B� + E

k

where D
k
 is an S by S diagonal matrix of weights for subject k, A the I by S

concept scores matrix, and B, the J by S scales loading matrix.  As the PARAFAC/
CANDECOMP model assumes individual differences in all the dimensions, it may
have similar interpretations to the counterparts in the Tucker2 model, be it that
there are no orthonormality constraints.  However, the model will tend to
produce degenerate results for many semantic differential data due to the
limited individual differences in the subject mode.  Even if this is not the case,
highly correlated dimensions may occur which could be difficult to interpret.
A further drawback is that the number of components in all modes are
necessarily the same, while in the Tucker models, one may specify different
numbers of components in different modes.  Therefore, the latter models allow
for discrimination between dimensions with considerable individual
differences and those with little individual differences.  In addition in the
Tucker models, the core array can reveal the different patterns which arise
from the individual differences due to the concepts or due to the scores or both,
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as explained previously.  These characteristics seem to tip the advantage
towards the Tucker models even if they require somewhat more complicated
interpretations due to their core arrays.  However, with respect to the latter,
we will show that recently new procedures have been proposed to simplify
such interpretations.  A detailed theoretical and empirical model comparison
falls outside the scope of the present article.

Semantic Differential Data and Preprocessing

In this section, we will discuss the preprocessing, that is centering and
normalization of semantic differential data, and how this relates to individual
differences and three-mode analysis.

In standard principal component analysis for two-mode data, the raw
data are almost always analyzed as standard scores, that is the variables are
first centered and then normalized by the average square root of the sums
of squares, as the eigenvectors are those of the correlation matrix.  This
straightforward approach to centering and normalization which is done
automatically by standard computer packages without interaction with the
user, is not possible in three-mode data because there are many more ways
to center and to normalize and not all methods have a desirable effect on the
outcome of the analysis.

Harshman and Lundy (1984b) present extensive theoretical arguments
why certain types of centering and normalizations are “appropriate” and
some others are not.  Apart from technical arguments in favor and against
certain types of centering and normalization, there are also content-specific
arguments related to the type of individual differences to be modeled, Luckily
the substantive and theoretical arguments do generally not contradict each
other.  In this article we will concentrate on the content-specific arguments
and refer to Harshman and Lundy (1984b; see also Kiers & Van Mechelen,
2001, for a summary) for the technical arguments, but our recommendations
fall within the class of “appropriate” procedures for centering and
normalization defined by Harshman and Lundy.

Centering

In two-way data, the standard practice is to center each variable so that
the original scores are transformed into deviation scores per variable by
subtracting the variable mean

(6) z
ij
 = x

ij
 - jx

�
.
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Centering of three-way data also consists of subtracting means from the
original data, but due to the three-way nature, several different types of
centerings are possible.

Centering Bipolar Scales.  In semantic differential research, the choice
of centering primarily determined by the nature of the scales which are
bipolar and have opposite adjectives as end points.  Which particular
adjective is placed at which end of the scale is entirely arbitrary.  For
example for the seven-point BEAUTIFUL - UGLY scale, there is no particular
reason to code the response “very beautiful” as 7 and “very ugly” as 1 or the
other way around.  Because of this, one cannot center across scales because
in that case the direction of the scale matters.  The mean value for a concept
averaged across scales is dependent on the orientation of the scales, and as
the orientation is arbitrary the concept means cannot be uniquely determined,
so that centering using concept means is not meaningful.  A more formal way
to express this is that centering for semantic differential data can only be
based on a two-factorial ANOVA decomposition per scale, that is

(7) ( ) ( ) ( )j j j j j j j j j j
ik k i ik i kx x x x x x x x x x= + − + − + − − +

�� � �� � �� � � ��

where the scales index j is written as a superscript to indicate that all means
are conditional on j.  The first term in Equation 7 jx

��

 represents the mean
of scale j taken over all measurements of the scale, the second term
( j j

kx x−
� ��

) represents the deviations of subject k’s scale mean compared to
the overall scale mean, and the third term, ( j j

ix x−
� ��

), represents the
deviation of the mean rating of concept i across individuals compared to the
overall mean of scale j.  As the latter does not involve individual
differences, nothing is lost from the individual differences point if this term
is not included in an analysis.

Two centering options are open to the researcher, that is the three-mode
analysis is carried out on j j

ijk ikz x x= −
��

 or j j
ijk ik kz x x= −

�
.  The first option has

the disadvantage that this type of centering does not center the components
of the scales, while the second type does (as explained in detail by Harshman
& Lundy, 1984b).  The second option is therefore preferred and the three-
mode analysis will thus typically be applied to

(8) ( ) ( ).j j j j j j j j
ijk ik k i ik i kz x x x x x x x x= − = − + − − +

� � �� � � ��

In their application, Harshman and De Sarbo (1984, p. 606) used double
centering, including centering across scales but, as argued above, in general
this will not be advisable.
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The second term in Equation 8, ( )j j j j
ik i kx x x x− − +

� � ��
, indicates the subject

by concept interaction for each scale, and describes the relative differences
between the individuals in the concept usage for each scale.  If it is
sufficiently small, the equation is almost equal to Equation 6, and the results
will closely resemble the results of a two-mode analysis of the ratings
averaged over all individuals.  Therefore, it is the size of this term, which is
crucial for the meaningful application of three-mode analyses to semantic
differential data.

Normalization

There are three options for normalization in semantic differential data:
(a) equalizing the sum of squares of the scales for each subject k, that is
dividing by

2
jk ijki

s z= ∑ ;

(b) equalizing the sums of squares of scales across all measurements of the
scale j, that is dividing by

2
j ijkik

s z= ∑ ;

and (c) equalizing the sums of squares of the subjects, that is dividing each
subject’s data by the square root of its total sum of squares,

2
k ijkij

s z= ∑ .

After normalization, the data can have the following properties: (a)
Differences in scale usage of subjects are equalized, in the sense that
subjects who use the extremes of the scales and subjects who only score in
the middle of the scales have the same sum of squares.  Generally, the first
component of the subjects then correlates highly with the model’s goodness
of fit to the subjects’ data.  However, fit comparisons can always be carried
out in three-mode models, irrespective of the normalization, so that there is
no particular reason to normalize to achieve this end; (b) Given that the
proper centering has been carried out, the elements of the component matrix
of the scales, B, can be interpreted as correlations; (c) In cases where all
scores on a scale are equal, their variance is zero, and normalized scores are
undefined.

In the first option, the columns of each data matrix Z
k
 are normalized, that

is *
ijkz  = z

ijk
/s

jk
.  When this option is carried out all three properties of



T. Murakami and P. Kroonenberg

258 MULTIVARIATE BEHAVIORAL RESEARCH

normalization, mentioned above do or may occur.  This normalization is
especially sensitive to property (c) as subjects frequently use the same scale
value for each concept.  Moreover, the procedure is sensitive to outliers,
which occur when all concepts are rated (more or less) the same and a single
concept is rated very differently.  In addition for each subject,  standard
deviation units will have different sizes with respect to the original scale.
These properties makes the first option an unattractive choice.

The second option, normalization within scales, that is *
ijkz  = z

ijk
/s

j
, only

has the, desirable, property (b).  In addition, it has the property that
differences in sizes of variances between scales do not affect the results of
the analysis.  However, if a small variance in a scale only reflects the
unreliability of judgments, it may be harmful to enlarge it through this
normalization, as the procedure increases the random component in the
variation.  The advantage over the first option is that differences in variability
in scale usage by the subjects and their influence on the ratings remain in the
analysis, and property (c) cannot occur (variables without variance will be
eliminated from the outset)

In the third option, the sums of squares of the complete concept by scale
matrix produced by each subject, that is *

ijkz  = z
ijk

/s
k
 are equalized.  This is,

for instance, standard practice in individual differences multidimensional
scaling (Carroll & Chang, 1970) where subjects are also treated as judges.
This option only has property (a) and thus eliminates to a certain extent
response bias in extremity of scale usage.  An argument against this option
is that the variability of the scores of the subjects is related to their judgments
of the relationships between concepts and scales and therefore should be
analyzed together with the rest of the data.  Moreover, this normalization
does not have property (b).

Harshman & Lundy (1984b, pp. 247-248; see also Harshman & De
Sarbo, 1984, p. 606) introduce the fourth option of simultaneous
normalization within both subjects and scales, that is combining options 2 and
3.  This approach needs an iterative algorithm, however the process is
guaranteed to converge (see also ten Berge, 1989).  This option allows one
to benefit from the advantages of the separate normalizations, however, it
does not take away any of the objections against any of the options.  Given
that there has been very little experience with this procedure (see, however,
the application by Harshman & De Sarbo, 1984) and that one eliminates a
large amount of interesting variability from the data, it is difficult to
recommend the procedure at present.
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Recommendations

On the basis of the previous discussion, it is recommended that semantic
differential data should be centered across concepts for each scale-subject-
combination (jk), that is the jkx

�
 are removed from the raw data before

three-mode analysis, and that the so centered data are either not normalized
when differences in variability between scales is meaningful and interesting,
or are normalized with the square root of the scale sum of squares s

j
 when

these differences are not of interest.

Intepretational Devices

In this section, we will discuss briefly three devices which will assist in
selecting models and in interpreting the outcomes of three-mode component
analyses, in particular model-fit plots, joint biplots, and component and core
transformations.  Special attention is paid to these aspects because their use
in three-mode analysis is either relatively unknown or has only recently been
introduced.

Model Fit

Timmerman and Kiers (2000) suggested a model-selection procedure
analogous to Cattell’s scree plot for two-mode component analysis.  In
particular, they based the selection on choosing the model with the highest
proportion fitted sum of squares, V

S
, within the class of models with the

same sum of numbers of components (S = P + Q + R).  To compare classes
with different S, they computed dif

S
 = V

S
 – V

S - 1
.  Only those dif

S
 are

considered which are sequentially highest.  Timmerman and Kiers defined
a salience value: b

S
 = dif

S
 / dif

S*,
 where dif

S*
 has the next highest value

after dif
S
.  They proposed to select the model for which b

S
 has the highest

value, and they call this the DifFit-criterion.  Finally, the authors define
a lower bound for dif

S
 to be taken into account.  The dif

S
 should be greater

than the average proportion explained variability taken over all feasible
values of S[s

min
 = min(I, JK) + min(J, IK) + min(K, IJ) - 3] (In Timmerman

& Kiers, 2000, inadvertently, the word “max” is printed instead of “min”.)
Timmerman and Kiers’ procedure comes down to creating a three-mode
version of Cattell’s scree plot in which the residual sums of squares of each
model is plotted versus the sum of numbers of components S (Three-mode
scree plot).  An alternative to their approach is constructing a deviance plot
with the residual sum of squares of each model plotted versus degrees of
freedom df (Deviance plot).  In both plots, a convex hull can be drawn to
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connect favored models.  The general idea is that models clearly within the
hull are disfavored compared to the “hull models” who have similar or better
fit and equal df (or S), equal fit with more df (or smaller S), or a combination
of both.  The procedure described by Timmerman and Kiers is essentially a
way to define the convex hull in the Three-mode scree plot and to outline the
procedure of choosing a model on the convex hull.

Joint Biplots

After the components have been computed, the core array provides the
information about the relationships between these components.  It is very
instructive to investigate the component loadings of the concepts jointly with
those of the scales, by projecting them together in one space, as it then
becomes possible to evaluate the interaction between concepts and scales.
The plot of the space common to scales and concepts is now generally
referred to as a joint biplot.

Joint biplots can be constructed between one pair of component
matrices, say A and B, for each component r of the third (or reference)
mode, say C.  They are constructed such that the columns a

p
 of A, and the

columns b
q
, of B are close to each other in the joint biplot, where closeness

is measured as the sum of all P × Q squared distances d2(a
p
, b

q
) over all p

and q.
The plots are constructed as follows (Kroonenberg, 1983b, chap. 6.10).

For each component r of the reference mode C, the components A and B
are adjusted by dividing the core slice, G

r
, associated with that component

between them.  This is done using the singular value decomposition, and A
and B are further adjusted by the relative number of elements in the modes
to make the distances as comparable as possible.

(9) D
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When G
r
 is not square there are only l = min(P, Q) dimensions (or non-zero

singular values) available.  The procedure can be interpreted as rotating the
component matrices by an orthonormal matrix, followed by a stretching (or
shrinking) of the rotated components.  There will be as many joint biplots as
there are components for the C-mode, that is R.  The interpretation of these
plots is analogous to standard biplots with respect to the relations between
the elements of the A-mode and those of the B-mode.  However, an additional
complication is that these relationships have to be interpreted in relation to
the interpretation of the C-mode.  In the present example, the subjects all
have positive scores on the first subject component so that the pattern to be
described by the concepts, the scales, and the first core slice G

1
 is shared by

all subjects.  The second subject component shows a contrast between two
groups of subjects, so that the relationships described in the second joint
biplot using G

2
 is characteristic for the group with positive scores on the

second subject component, while the reverse is true for the group of subjects
with negative scores on the second subject components (for further details,
see the example).

Component and Core Transformations

Once a basic three-mode analysis has been carried out, transformations
or rotations may be applied to the components or the core array to enhance
interpretability.  If the components of a mode have been rotated then the core
array has to be counter-rotated in an appropriate way (and vice versa), to
allow for a coherent interpretation of the results.  Arguments for rotating
components follow directly from those for two-mode analysis and will not be
repeated here.  In three-mode analysis often orthonormal components are
rotated, which is equivalent to Harris and Kaiser’s (1964) independent
cluster rotation.  The rationale for rotating the core array stems from the
desire to create a very simple core such that instead of P × Q × R
combinations of components only a much smaller number have to be
interpreted.  Procedures to simplify core arrays have been described by
Kiers (1997, 1998) and Henrion and Andersson (1999).  Murakami, ten
Berge, and Kiers (1998) describe conditions under which an extremely
simple core array can be created via orthonormal rotations on the core array
(called an orthomax core rotation).  The latter rotational procedure was used
in the example.  It should be noted that very simple core arrays may lead to
uninterpretable results due to the creation of highly correlated components.
Component rotations used in connection with joint biplots are only really
useful when the rotations are applied to the reference mode C, because prior
rotations of A and B will be lost in the construction of the joint biplot.
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Software

All analyses presented in this article were carried out with
3WayPack, a suite of three-mode programs developed by the second
author.  Information about this package can be obtained from the website:
http://three-mode.leidenuniv.nl/.  On the same website in the Data Set
section the data analyzed in this article have been made available for re-
analysis.  A set of Matlab-routines for carrying out three-mode analysis
was developed by Rasmus Bro and Claus Andersson, and is available as
the N-way toolbox from their website: http://www.models.kvl.dk/
source/nwaytoolbox.  A copy of the MatLab program is necessary to
run the programs of the toolbox.  The site also contains an interactive
tutorial on using the package for three-mode principal component
analysis.

Example: Chopin Data

In the following, applied part of this article, we will demonstrate that in
real data there really exist several types of individual differences.  We will
show how a three-mode analysis of semantic differential data may be
conducted using, amongst others, several measures of fit to assess the
adequacy of solutions and core transformations procedure to facilitate
interpretation.

Music appreciation and the evaluation of the characteristics of musical
pieces have in the past been frequently researched with semantic differential
scales (see e.g., Nielzen & Cesarec, 1981; Swanwick, 1973).  Following this
line of research, the study used as an example of the analysis of individual
differences in semantic differentials deals with judgments by Japanese
students of Chopin’s Preludes.

Method

Subjects

Thirty-eight Japanese university students (21 males and 17 females)
participated in the experiment.  For students to be eligible for the study they
had to be familiar with classical music so that they could be expected to
provide appropriate judgments about the music.
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Concepts

The concepts were the 24 short piano solo pieces (or preludes) making
up Op.  28 composed by Frederic Chopin, played by Samson François on
Angel, AA-8047.  They were copied on a cassette tape, and edited for the
experiment.  To avoid the experiment to be too long, of some longer preludes
(No. 2, 4, 6, 8, 13, 15, 17, 21) only the first one minute and twenty seconds
were presented.

Scales2

Eighteen pairs of adjectives were selected from previous research on
semantic differential studies of music.  Also included were expressions often
used to describe Chopin’s music in the literature.  It was expected that the
students would judge rather objectively on all but two scales on the basis of
key (mainly, major or minor) and tempo of each prelude.  In contrast, it was
expected that they would express subjective evaluations on the scales,
UNATTRACTIVE - ATTRACTIVE and UNINTERESTING - INTERESTING.  The set of
scales employed here is not necessarily a typical one used in semantic
differential studies, where in general the scales can be divided into three
categories, Evaluation, Activity, and Potency (Osgood, Suci, &
Tannenbaum, 1957).  Before the final analysis, the codings of some scales
were reversed to induce as many positive correlations among them as
possible.

Procedure

The experiment was conducted individually for each subject in a sound-
proof room.  Before the beginning of the session, subjects were given the
opening part of the first movement of Mozart’s 13th Piano Sonata (K. 331)
in order to practice rating piano music.  All preludes were presented to the
subjects in the same order as they were arranged by the composer.  A
monaural speaker was used, and the subjects were asked to rate each
prelude on 20 scales immediately after the music stopped.  Since the total
duration of the music was about 26 minutes and most subjects finished their
ratings for each prelude in one minute, the total time of the experiment was
generally about one hour.

2 Bipolar scales are always referred to in such a way that the low-end marker will be
mentioned first and the high-end marker last.
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Analysis Methods

Individual Differences

In the theoretical section, several sources of individual differences were
discussed.  For the Chopin data, we eliminated response styles and modeled
the remaining individual differences with the Tucker3 model.  This implies
that we assumed that the subjects had a common scale space, a common
prelude space, but that they potentially differed in the way they judged the
relationships between the common scale and prelude spaces.  In addition, we
assumed that differences between subjects were sufficiently systematic that
they could be modeled as a linear combination of a limited number of subject
components, or types of subjects.  By allowing subjects to have zero weights
on the components, we accommodated the situation that they had less
components than other subjects.

Preprocessing

The multivariate two-factorial ANOVA design (Equation 7) was used to
base the centering on and the second option was applied for the
normalization, that is the three-mode analysis is based on the centered and
normalized data z

ijk
 with:

(11) ( )/ijk ijk jk jz x x s= −
�

where

( )2
.j ijk jkik

s x x= −∑ �

Number of Components

The numbers of components for each of the three modes were determined
empirically.  Via model comparison based on the relative fit of the model to the
data and via an inspection of the interpretability of the results, an adequate
model was selected.  This selection was based on several measures of fit such
as overall fit, fit per component of each mode and whether all scales were more
or less adequately part of the model.  For comparisons of the overall fit, both
Timmerman and Kiers’ (2000) DifFit measure was inspected via a three-mode
scree plot and the deviance-df ratio was considered via a deviance plot.  For
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the preferred solution, the residuals were inspected for both the levels of the
modes and for the individual data points.

Scaling of Parameter Matrices

To improve the interpretability of the solution we exploited both the
transformational and scaling freedom of the solution of the three-mode
model.  In particular, the solution was scaled such that both the concept and
subject components had unit lengths (i.e. A�A = I and C�C = I).  The core
slices corresponding to the scale components were normalized, that is

1

R
r r Qr =
′ =∑ G G I .

As a result, the sums of squares of elements of the scale components (B)
corresponded to the size of explained variances of the data by the model.  In
addition, this transformation makes the matrix B into the loading matrix of
variables, that is each element of B is the correlation between the observed
scores and the scores predicted by the model using all combinations of
concepts and subjects.

Rotation of Parameter Matrices

Initially, we rotated the matrix of loadings for scale-mode with Kaiser’s
(1958) varimax method, and counterrotated the core array accordingly.  The
remaining two modes were rotated via Kiers’ (1997) orthomax core rotation
procedure.  Even though this produced readily interpretable results, an even
simpler result could be obtained by using the orthomax core rotation
procedure in a different way.

By applying the orthomax core rotation for all three modes
simultaneously, a very simple core array could be obtained (see Table 7).
This astonishingly simple core was possible because the numbers of
components are such that PR – 1 = Q, and the core was normalized as
above (see Murakami et al., 1998).  Since the rotated loadings and scores
obtained by using the simultaneous core rotation procedure are very similar
to the first approach, we will report only the results with the extremely
simple core.

Joint Biplots

Apart from presenting the solution numerically, joint biplots for each of
the components of the subject mode were constructed so that for each
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‘subject type’ the joint relationships between scales and preludes could
directly be inspected rather than only via the components.

Results

First, we will present the two-factorial MANOVA table to get a general idea
of the extent of the individual differences in the data, followed by the selection
of an adequate Tucker3 model plus the results of the analysis of residuals, then
we will present the rotated components for each of modes, as well as the core
array.  Next, the joint biplots are presented for each subject component.

Size of Individual Differences

The first task in any analysis dealing with individual differences is to
establish whether such individual differences exist at all.  Towards this end,
the multivariate two-factorial analysis of variance with a single observation
per cell was carried out for the Chopin data (Table 1).

The conclusions from this multivariate two-factorial analysis of variance
were that the subjects’ differences were comparatively small (10% of the
total sum of squares), but the deviations of the preludes means from their
overall mean were rather different (41% of the total sum of squares).
Furthermore, the students effectively used the scales to distinguish between
the preludes as the Subjects × Preludes interaction sum of squares accounted
for 49% of the total sum of squares.  The associated interaction mean square

Table 1
Multivariate Two-Factorial Analysis of Variance of Chopin Data

Source SS % df MS F

Main effects

Subjects 2649 10 740 3.58 4.4
Preludes 11329 41 460 24.62 30.4

Two-way interaction

Subjects × Preludes 13768 49 17020 .81

Total Sum of Squares 27747 100
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is very much smaller, but it should be realized that such large interactions
generally contain systematic variability associated with only few degrees of
freedom while most of the degrees of freedom are associated with (random)
errors.

Table 2 shows the partitioning of the sum of squares of each scale
according to a two-factorial ANOVA on that scale, where the two-way
interaction term is at the same time the residual sum of squares due to the

Table 2
Partitioning of the Sum of Squares of Each Scale into its Constituent
Parts as defined by Equation 7

Nr. Scales Proportional Proportional Proportional Mean
SS(Preludes)

j
SS(Subject)

j
SS(Residuals)

j
Sum of Squares

j

2 FAST .69 .06 .26 2.34
5 HEAVY .61 .05 .34 2.44
4 SEVERE .52 .04 .44 1.57

14 RESTLESS .51 .08 .41 1.84
1 DARK .49 .05 .46 1.57

18 GLOOMY .46 .07 .47 1.41
9 VEHEMENT .45 .08 .47 1.68

17 NOISY .44 .09 .48 1.26
13 SAD .42 .07 .51 1.49
19 DRAMATIC .42 .08 .50 2.17
7 STRONG .41 .08 .51 1.31

12 LOUD .40 .11 .49 1.42

Overall .40 .10 .50 1.52

6 CLOUDY .36 .12 .52 1.48
11 HARD .33 .09 .58 1.33
8 COLD .27 .14 .59 1.04

10 LARGE .22 .11 .68 1.16
15 COARSE .21 .25 .55 1.23
16 THICK .20 .15 .65 1.09
20 ATTRACTIVE .10 .16 .75 1.38
3 INTERESTING .07 .19 .74 1.21

Note. Prop.SS(Preludes)
j 
+ Prop.SS(Subjects)

 j
 + Prop.SS(Residuals)

 j
 = 1.00



T. Murakami and P. Kroonenberg

268 MULTIVARIATE BEHAVIORAL RESEARCH

single observation per cell (see Equation 7).  The major factor contributing
to the variability of the scales is that of the preludes with differences due to
subjects only contributing around 10%.  Furthermore, it becomes evident that
in particular the evaluative scales UNINTERESTING - INTERESTING and
UNATTRACTIVE - ATTRACTIVE did not fit as well as the other scales.

Model Selection

Table 3 provides an overview of all models with less than or equal to
three components in any mode.  Applying the Timmerman and Kiers’ (2000)
DifFit criterion, indicated a model with 2 components for preludes, 2 for
scales and 1 component for subjects.  However, such a model only allowed
for individual differences in degree, that is the size of the coefficient for a

Table 3
Summary of Analyses: Overall Fitted and Residual Sum of Squares

Model Size Sum of SS(Res) = df Prop. Difference DifFit
P × Q × R Components Deviance SS(Fit) in Prop.Fit Ratio

1 × 1 × 1 3* 14.21 17380 .289 .289 2.44
1 × 2 × 2 5 13.96 17325 .302
2 × 1 × 2 5 13.82 17321 .309
1 × 3 × 3 7 13.82 17272 .309
3 × 1 × 3 7 13.47 17264 .327
2 × 2 × 1 5* 11.84 17339 .408 .119 10.11
2 × 2 × 2 6* 11.61 17300 .420 .012 1.01
3 × 3 × 1 7 11.55 17300 .422

2 × 3 × 2 7 11.47 17281 .426

2 × 2 × 3 7 11.47 17263 .426
3 × 2 × 2 7* 11.44 17277 .428 .009 -
2 × 3 × 3 8 11.28 17242 .436
3 × 3 × 2 8 11.28 17256 .436
3 × 2 × 3 8* 11.23 17238 .439 .011 -
3 × 3 × 3 9* 11.00 17214 .450 .012 -

Note. An asterisk in the second column indicates that this model is the best model in the
class of models with the same S ( = Sum of number of components).
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subject on the first subject component.  As we were especially interested in
more subtle individual differences and the first component largely reflected
the size of the variances of the subjects (r = 0.89), it was decided to go
beyond the simple model and search for an adequately fitting model with
more components which also included information on further individual
differences.

The deviance plot (Figure 2) indicated that both the 3 × 2 × 2 and 2 × 3 × 2
models were possible candidates on the basis of their deviance-df ratio and
the three-mode scree plot (Figure 3) showed that both models were close to
the convex hull of best models.  Inspection of the fit of the scales showed
that Interesting and Attractive, the only scales which measured a
personal opinion with respect to the music, did not fit in the 3 × 2 × 2-
solution (fit = 0.039 and 0.029, compared to 0.426 overall), while these scales
had some fit in the 2 × 3 × 2-solution (fit = 0.131 and 0.140 compared to 0.426
overall).  On this heuristic basis, the 2 (subjects) × 3 (scales) × 2 (preludes)
solution was chosen.

Figure 2
Deviance Plot Showing the Residual Sums of Squares versus the Degrees of Freedom
Model 2 × 3 × 2 is the model selected.
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To check the stability of the 2 × 3 × 2-solution a bootstrap analysis with
100 replications was carried out.  The mean fit of the solutions was 0.438
with a standard error of the mean of 0.013, while the original fit value was
.426 or a standardized value of -0.903 in the sampling distribution of the
mean, showing that there is good stability for the fit.  Inspecting a plot of the
scale space with all 100 bootstrap solutions included, showed that the third
scale component was well defined and the two scales expressing the
students’ personal opinions about the preludes were well separated from the
other scales and from each other as was evident from their confidence
ellipses.

Interpretation of the 2 × 3 × 2-Solution

The three-mode orthomax transformation of the core array was applied
as described above, and the component matrices were inversely transformed.
The preludes are presented as unit-length components (Table 6), and the

Figure 3
Three-Mode Scree Plot Showing the Residual Sums of Squares versus the Total Number
of Components
Model 2 × 3 × 2 is the model selected.
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scales (Table 5) are presented as an oblique pattern matrix.  Owing to many
zeroes in the core array and the rather simple structures of the scales and
preludes components, the interpretation was relatively clear, and
interactions of three modes could be fairly easily interpreted.  We will start
with the interpretations of the components for each mode.

Subject Mode

The component scores of the 38 subjects are shown in Table 4, along with
the variances of their responses and the proportions of their total sums of
squares which were not fitted by the model, SS(Res

k
)/SS(Total

k
).  All

individuals had positive scores on the first component, and the correlation
coefficient of the scores with the total sum of squares was 0.89, indicating
that the individual differences on the first component are associated with the
extent of their scale usage.  Subjects with large values (highest = 0.24) on
the first component differentiate clearly between preludes on the scales,
while subjects with small scores (lowest = 0.07) differentiate much less and
use the values around their averages on the scales.  However, the
differences between the subjects on the first component are not very large.
About half the scores on the second component are negative.  As will be
shown below, this component could be interpreted as denoting individual
differences in preference for certain types of music.

The third column of Table 4 shows the extent to which the model
succeeded in fitting the data of the individual students.  The largest
proportional residual fitted sum of squares was 0.77 indicating that only 23%
of the data of subject 27 were fitted by the model, while the model succeeded
in fitting 58% for the best fitting subject.  However, overall the model fitted
most subjects in a comparable manner.

Scale Mode

   The loadings for the scales is shown in Table 5.  The scales, CALM -
RESTLESS, GENTLE - SEVERE, QUIET - NOISY, LYRIC - DRAMATIC, TRANQUIL -
VEHEMENT, WEAK - STRONG, SLOW - FAST, and STILL - LOUD, had salient loadings
on the first component, while LIGHT - HEAVY, CHEERFUL - GLOOMY, BRIGHT - DARK,
SOFT - HARD, HAPPY - SAD, and CLEAR - CLOUDY, had salient loadings on the
second component.  The scale, SLOW - FAST, had high loadings on two
components.  The first component could be identified as the bipolar
dimension of ‘SOOTHING vs.  AGITATING’ while the second one as ‘CHEERFUL

versus MOURNFUL’.  These interpretations were strengthened by interpreting
them in combination with the dimensions of concept-mode (see below).  The
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Table 4
Subjects: Total Sums of Squares, Proportional Residual Sums of Squares
and Component Scores, which were Counter-Rotated with Inverse of
Rotation Matrix of Core Array (Sorted on Second Component)

Subject SS(Total) SS(Res)/ Component 1 Component 2
SS(Total) ‘Consensus’ ‘Contrast’

Range 0.16-1.06 0.42-0.77 0.07-0.24 -0.44-0.37
min-max

19 .839 .528 .209 -.441
27 .502 .766 .112 -.257
30 .595 .499 .190 -.235
10 .394 .444 .162 -.213
18 .235 .618 .101 -.190
12 .723 .542 .202 -.163
35 .558 .460 .193 -.152
11 .430 .447 .171 -.147
20 .344 .533 .140 -.131
3 .680 .480 .209 -.128
16 .357 .568 .138 -.062
24 .448 .631 .143 -.049
17 .602 .483 .196 -.047
6 .415 .582 .147 -.034
22 .337 .669 .118 -.033
2 .540 .607 .162 -.022
5 .510 .438 .188 -.020
23 .159 .765 .068 -.013
32 .954 .674 .196 -.008
28 .494 .497 .175 .012
4 .364 .643 .126 .030
29 .162 .679 .079 .037
34 .754 .633 .183 .041
37 .366 .717 .111 .064
31 .701 .424 .221 .073
26 1.059 .562 .235 .103
7 .654 .570 .182 .104
9 .352 .596 .128 .104
33 .358 .595 .129 .110
38 .872 .521 .222 .136
21 .375 .645 .121 .141
13 .390 .704 .111 .158
8 .476 .609 .144 .163
14 .365 .779 .088 .181
25 .489 .687 .127 .191
1 .577 .546 .169 .214
15 .590 .612 .149 .293
36 .979 .558 .208 .371
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two scales, UNINTERESTING-INTERESTING and UNATTRACTIVE - ATTRACTIVE had
the largest loadings on the third component.  This dimension was interpreted
as the expression of ‘DISLIKE versus LIKE’ by subjects, and it had also non-
negligible loadings for the scales THIN-THICK and CLEAR - CLOUDY.  As will be
detailed below, this dimension was related to certain specific preludes.

The last column of Table 5 shows the extent to which the model
succeeded in fitting the data of the various scales.  The two scales expressing

Table 5
Scale Components Counter-Rotated with Inverse of Rotation Matrix of
Core Array

Scale 1 2 3 SS(Res)/
‘SOOTHING - ‘CHEERFUL - ‘DISLIKE - SS(Data)
 AGITATING’  MOURNFUL’ LIKE’

CALM - RESTLESS 0.765 0.124 0.101 .390
GENTLE - SEVERE 0.680 0.369 0.072 .403
QUIET - NOISY 0.660 -0.288 0.053 .479
LYRIC - DRAMATIC 0.650 0.155 -0.026 .553
TRANQUIL - VEHEMENT 0.652 0.294 0.083 .482
WEAK - STRONG 0.625 0.184 0.104 .564
SLOW - FAST 0.606 -0.558 0.058 .319
STILL - LOUD 0.572 0.390 0.083 .513
LIGHT - HEAVY 0.141 0.790 -0.063 .353
CHEERFUL - GLOOMY 0.232 0.671 -0.073 .491
BRIGHT - DARK 0.234 0.669 -0.052 .497
SOFT - HARD -0.034 0.617 -0.059 .615
HAPPY - SAD 0.237 0.604 -0.052 .576
CLEAR - CLOUDY 0.346 0.545 -0.150 .561
WARM - COLD 0.411 0.383 0.020 .684
SMALL - LARGE 0.318 0.342 0.040 .780
DELICATE - COARSE 0.333 0.354 -0.087 .756
THIN - THICK 0.372 0.336 -0.146 .728
UNATTRACTIVE - ATTRACTIVE -0.063 -0.132 0.344 .860
UNINTERESTING - INTERESTING 0.073 -0.189 0.300 .869

Note. Values greater than 0.40 have been set in bold, except in the last component, where
the largest elements have been set in bold. Because the rotation was applied to the core
array, the simple structure in not optimal.
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appreciation of the music had the largest proportional residuals and did not
fit well.  Our assumption is that such appreciation is much less well defined
than the reaction of the students to the physical characteristics of the music
as expressed in the other scales and thus gives rise to a large amount of
random error.  As indicated above, from the bootstrap analyses, it became
clear that notwithstanding the low level of explanation, the position of the
scales with respect to other scales was clearly defined in the analysis.
Furthermore, our impression is that semantic differential scales such as SLOW

- FAST, which are very directly related to the music had better explained
variability than those which are somewhat further away from the common
way to describe music, such THIN - THICK.

Prelude Mode

The component scores for concepts (preludes) are shown in Table 6.
Examples of preludes with large positive values in the first component were
No. 16 (Presto con fuoco, bb minor), No. 18 (Allegro molto, f minor), and
No. 24 (Allegro appasionato, d minor), and they have fast tempos and
minor keys.  On the other hand, typical preludes with large negative scores
were No. 7 (Andantino, A major), and No. 15 (Sostenuto, Db major), with
slow tempos and major keys.  Preludes with high positive values on the
second component are No. 3 (Vivace, G major), No. 5 (Allegro molto, D
major), and No. 23 (Moderato, F major), who generally have fast tempos
and major keys while the ones with high negative values were No. 2 (Lento,
a minor), No. 6 (Lento assai, b minor), and No. 20 (Largo, c minor), with
slow tempos and minor keys.  Hence the first component corresponded the
dimension of ‘slow-major versus fast-minor’ while the second component
described the ‘slow-minor versus fast-major’ contrast.

From the last column of Table 6 it can be seen that the variabilities of
preludes 1, 8, 10, 17, and 21 were not very well represented by the model, and
at the same time that their variabilities are somewhat smaller than the other
preludes.  Small variability with low fit generally indicates that a concept, or
prelude in this case, received more or less average scores on most scales and
that there is not much system in the variability around these averages.

Core Array

As mentioned in the previous sectin, after transformation the core array
was extremely simple as PR - 1 = Q (Table 7).  There were only four non-
zero elements and they indicate which components are linked together and
with what weight.
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Table 6
Preludes 2 × 3 × 2-Solution Counter-Rotated with Inverse of Rotation
Matrix of Core Array

No. Key Tempo Component 1 Component 2 Variance SS(Res)/
‘fast + minor- ‘fast + major- SS(Total)
slow + major slow + minor’

16. bb minor Presto con fuoco 0.358 0.174 1.042 0.543
18. f minor Allegro molto 0.299 -0.119 0.953 0.412
24. d minor Allegro

     appasionato 0.261 -0.101 0.935 0.549
22. g minor Molto agitato 0.245 -0.135 0.836 0.471
14. eb minor Allegro 0.237 -0.044 0.735 0.613
12. g# minor Presto 0.232 -0.011 0.714 0.662
11. B major Vivace -0.208 0.174 0.829 0.480
13. F# major Lento -0.227 -0.053 0.682 0.716

7. A major Andantino -0.346 0.107 1.213 0.437
15. Db major Sostenuto -0.360 0.086 1.126 0.388

3. G major Vivace 0.103 0.368 0.953 0.482
23. F major Moderato -0.128 0.318 1.008 0.376

5. D major Allegro molto 0.006 0.286 0.777 0.548
19. Eb major Vivace -0.080 0.245 0.749 0.538

4. e minor Largo -0.170 -0.240 0.813 0.711
9. E major Largo -0.003 -0.276 0.868 0.632
6. b minor Lento assai -0.157 -0.318 0.828 0.553

20. c minor Largo -0.004 -0.319 0.913 0.524
2. a minor Lento -0.155 -0.356 0.972 0.528

10. c# minor Allegro molto 0.040 0.127 0.621 0.906
1. C major Agitato 0.153 0.109 0.693 0.860

21. Bb major Cantabile -0.163 0.040 0.559 0.746
8. f# minor Molto agitato 0.167 0.018 0.658 0.802

17. Ab major Allegretto -0.098 -0.044 0.522 0.933

Note. The component coefficients larger than 0.30 have been set in bold. Relative
residual proportions larger than 0.80, indicating a bad fit, are also bold.
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Using this simple core, the Model Equation 4 for the centered data
becomes

(12) ˆijkz  = 1.00*a
i1
c

k1
b

j1
 + 0.99*a

i2
c

k1
b

j2
 + 0.12*a

i1
c

k2
b

j2
 + 1.00*a

i2
c

k2
b

j3
.

This shows that the first subject component on which all subjects scored
positively and which had a high correlation with the individual differences in
size of the variance of their scores, is exclusively linked the first scale
component with the first prelude component and the second scale component
with the second prelude component.  In other words, the ‘slow-major versus
fast-minor’ contrast in the preludes was directly related to the ‘SOOTHING -
AGITATING’ contrast, and the ‘slow-minor versus fast-major’ contrast was
directly related to the ‘CHEERFUL VERSUS MOURNFUL’ contrast.  As all subjects
had positive weights, this interpretation of musical tempo and keys was shared
by all subjects, they only differed in the degree to which they expressed these
contrasts.  In particular, the relations between preludes and scales for this
subject component, are primarily determined by the Prelude by Scales
interaction term in Equation 7 and the individual differences on this components
are primarily quantitative, rather than qualitative.

Table 7
Three-mode Orthomax Transformed Normalized Core Array

Scale 1 Scale 2 Scale 3
SOOTHING - CHEERFUL - DISLIKE -
AGITATING MOURNFUL LIKE

First subject component: ‘Consensus’

Prelude 1: fast + minor - slow + major g
111 

= 1.00 0 0
Prelude 2: fast + major - slow + minor 0 g

221 
= 0.99 0

Second subject component ‘Contrast’

Prelude 1: fast + minor - slow + major 0 g
122 

= 0.12 0
Prelude 2: fast + major - slow + minor 0 0 g

223 
= 1.00

Note. g
pqr 

= the weight for the pth prelude component, the qth scale component and the rth

subject component.
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Some subjects had positive scores on the second subject component and
some had negative scores indicating genuine individual differences (see
Table 4).  The core array showed that these differences were dominated by
personal preferences for certain types of keys and tempos.  In particular, the
highest value in the second slice of the core array (g

223
 = 1.00) was

associated with the third scale component, which strongly featured the
scales UNATTRACTIVE - ATTRACTIVE and UNINTERESTING - INTERESTING and with
the ‘slow-minor versus fast-major’ contrast; some students preferring fast-
major pieces while others preferred slow-minor pieces.  The smaller value
(g

122
 = .12) indicated that students who tended to find fast-major preludes

UNINTERESTING, also tended to judge fast-minor preludes somewhat more
CHEERFUL and slow-major preludes somewhat more MOURNFUL than the
general opinion.

Joint Biplots

One of the problems of the above descriptions via combinations of
components, is that they are heavily dependent on the reification of the
components and that they become rather abstract.  By using joint biplots, a
less abstract overview could be achieved because there was no need to
explicitly define or name the components for the scale and the preludes.  The
relationships between the scales and preludes could be captured in two joint
biplots: One representing the judgments about the Prelude-Scale relationship
shared by all students (Figure 4), and another which depicted the individual
differences (Figure 6).

Figure 4 displays in much detail which preludes were given which
characteristics, for instance Nr. 16 (bb-Presto con fuoco) and Nr. 3 (G-
Vivace) were considered particularly FAST and NOISY, while Nr. 20 (c-Largo)
and Nr.  2 (a-Lento) were judged particularly hard, gloomy, heavy and dark.
Because the scales ATTRACTIVE and INTERESTING had very small arrows they
should not be interpreted in this plot.  Preludes opposite to the arrows drawn
were located at the other pole of the scale, for instance Nr. 7 (A-Andantino)
and Nr. 15 (Db-Sostenuto) were judged to be particularly CALM as they were
at the opposite end of the RESTLESS arrow.

To get some further insight in the nature of the relationships, we have
labeled the preludes with the sequence number in which Chopin arranged
them and coded them in three principal groups for which the relevant
preludes are connected (Figure 5).  Very clear in the plot is that the students
via their scoring of the semantic differentials, recreated Chopin’s alternating
arrangements of the preludes in major and minor keys.  They also reproduced
Chopin’s Circle of Fifths arrangement of the preludes, going from keys with
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few sharps, to those with few flats, to the most complex ones with either
many sharps or flats.  Because of the contents of the scales, the
corresponding preludes in major and minor keys are generally diametrically
located in the plot, indicating that the emotions described by the semantic
differential scales alternate between subsequent preludes.  The most notable
incorrect placement is Prelude 9 (E-Largo), which was judged to be GLOOMY

and HEAVY while it “should” have been judged CALM and LYRIC.  Also its
opposite prelude (Number 10) is located “incorrectly” because
notwithstanding its a minor key, it is located with the major keys.  The

Figure 4
Joint Biplot for the Consensus (= first) Subject Component
For subjects with large values on the first component the above configuration is large, for
subjects with small values, it is small.
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explanation for the deviant position of Prelude 9 is that it shifts from major
to minor in the fifth measure and does not really return to the major key.  The
anomaly for 10 is probably a lag effect of the different character of prelude
9, and also its key changes during the piece.  Finally, Prelude 20 (set in a key
and tempo typically used for funeral marches) “should” have been judged
more LOUD and VEHEMENT, rather than HEAVY and GLOOMY.  Apart from these
deviations, the clear structure built into preludes can be clearly discerned
from the judgments of the students using semantic differentials and even the
deviations can be explained from their changing keys during the pieces.

The structure of ‘cognition’ of the music in Figures 4 and 5 was
essentially common to all music listeners who were more or less familiar with
the western classical music.  The more succinct patterns described through
the core array are now presented in more detail and differences between the
judgments of the preludes could now be more easily assessed.

The students’ preferences with respect to music were partially
described in Figure 6.  The strength of the preference was primarily indicated

Figure 5
Figure 4 Labeled with Number, Key and Tempo
Dimensions labeled and groups of preludes labeled with different colors. On the circle of
fifths, the curved path corresponds with the order of the Preludes in the figure.
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by their score on the second subject component, and its nature could be seen
by the joint biplot associated with the second subject component.  The core
array already showed that primarily the second component of the preludes
was involved in determining the preferences of the students.  Some students
liked the mournful music with a slow tempo in a minor key [e.g. Nr. 2 (a-
Lento) and c-Largo)], while others liked cheerful music with a fast tempo in
a major key, [e.g. Nr. 3 (G-Vivace) and Nr. 23 (F-Moderato)].  Figure 6
depicts the preferences of the first type of students; to view the preferences
of the second group the arrows of the scales should be mirrored around the
origin.

Figure 6
Joint Biplot for the Individual Differences (= second) Subject Component
For clarity, some preludes and scales were not labeled. The opposite poles of attractive
and interesting are indicated. This picture corresponds to subjects score positively on
the second subject component. Subjects with negative scores have the scales mirrored
around the origin. Note that the scale of this figure is larger than that of Figure 4.
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It should be noted that the explained variances of the two scales related
to the preference dimension are relatively small, indicating that the
judgments of the students are very diverse or not very well focused, so that
a large part of the variability of these scales could not be modeled by the
three-mode model chosen.  There are undoubtedly many more
characteristics of music that determine the individual preferences, but they
were not contained in this set of semantic differential scales.

Conclusion

In this article we have given an overview and an illustration of the way
individual differences in semantic differential research can be conceived and
modeled.  Some of these differences, such as differences in mean scale
usage by subjects, were eliminated from the main analysis, but they can be
further analyzed as well, should there be a specific interest in them.  Other
differences were explicitly modeled and a series of models were outlined
each of which incorporated one of more types of individual differences.

As an alternative to the approach outlined here, one could perform
separate analyses for the common part (first term of Equation 8) and for the
individual differences part (second term of Equation 8), that is a (two-mode)
singular value decomposition on the first and a three-mode analysis of some
kind on the second term.  The advantage of separate analyses is the
simplicity of the analysis of the first term and possibly an easily interpreted
three-mode solution with very few components for the second term.  A
disadvantage is that two independent analyses are performed without any
explicit relationship between the two, which can create complications in
interpretation.  To avoid such a situation, we proceeded with the
simultaneous analysis.

One of the advantages of the approach proposed here is that it becomes
possible to assess whether individual differences are present, whether they
are worth including in the analysis, and ways are shown to analyze their
nature in some detail.  The price to pay for increasing insight into these
aspects of the data, is an increase in complexity of analysis, but that seems
a natural consequence of the questions asked.  Complex questions require
complex methods to analyze them and generally do not supply very simple
answers.  On the other hand, due to extremely simple core array and the joint
biplots, a fairly transparent description of the major patterns of similarities
and differences of the Chopin preludes could be given.



T. Murakami and P. Kroonenberg

282 MULTIVARIATE BEHAVIORAL RESEARCH

References

Carroll, J. D. & Chang, J. J.  (1970).  Analysis of individual differences in multidimensional
scaling via an N-way generalization of “Eckart-Young” decomposition.  Psychometrika,
35, 283-319.

Harris, C. W. & Kaiser, H. F.  (1964).  Oblique factor analytic solutions by orthogonal
transformations.  Psychometrika, 29, 347-362.

Harshman, R. A.  (1970).  Foundations of the PARAFAC procedure: Models and
conditions for an “explanatory” multi-modal factor analysis.  UCLA Working Papers
in Phonetics, 16, 1-84.

Harshman, R. A. & De Sarbo, W. S.  (1984).  An application of PARAFAC to a small
sample problem, demonstrating preprocessing, orthogonality constraints, and split-
half diagnostic techniques.  In H. G. Law, C. W. Snyder, Jr., J. A. Hattie, & R. P.
McDonald (Eds.), Research methods for multimode data analysis (pp. 602-642).  New
York: Praeger.

Harshman, R. A. & Lundy, M. E.  (1984a). The PARAFAC model for three-way factor
analysis and multidimensional scaling.  In H. G. Law, C. W. Snyder, Jr., J. A. Hattie,
& R. P. McDonald (Eds.), Research methods for multimode data analysis (pp. 122-
215).  New York: Praeger.

Harshman, R. A. & Lundy, M. E. (1984b).  Data preprocessing and the extended
PARAFAC model.  In H. G. Law, C. W. Snyder, Jr., J. A. Hattie, & R. P. McDonald
(Eds.), Research methods for multimode data analysis (pp. 216-284).  New York:
Praeger.

Heise, D.  R.  (1969).  Some methodological issues in semantic differential research.
Psychological Bulletin, 72, 406-422.

Henrion, R. & Andersson, C. A. (1999). A new criterion for simple-structure
transformations of core arrays in N-way principal components analysis.
Chemometrics and Intelligent Laboratory Systems, 47, 189-204.

Kaiser, H. F. (1958).  The varimax rotation of analytic rotation in factor analysis.
Psychometrika, 23, 187-200.

Kiers, H. A. L.  (1997).  Three-mode orthomax rotation.  Psychometrika, 62, 579-598.
Kiers, H. A. L.  (1998).  Joint orthomax rotation of the core and component matrices

resulting from three-mode principal components analysis.  Journal of Classification,
15, 245-263.

Kiers, H. A. L. & Van Mechelen, I.  (2001).  Three-way component analysis: Principles
and illustrative application.  Psychological Methods, 6, 84-110.

Kroonenberg, P. M.  (1983a).  Annotated bibliography of three-mode factor analysis.
British Journal of Mathematical and Statistical Psychology, 36, 81-113.

Kroonenberg, P. M.  (1983b).  Three-mode principal component analysis: Theory and
applications (Errata, 1989; available from the author).  Leiden: DSWO Press.

Kroonenberg, P. M.  (1985).  Three-mode principal components analysis of semantic
differential data: The case of a triple personality.  Applied Psychological
Measurement, 9, 83-94.

Kroonenberg, P. M. & De Leeuw, J.  (1980).  Principal component analysis of three-mode
data by means of alternating least squares algorithms.  Psychometrika, 45, 69-97.

Levin, J.  (1965).Three-mode factor analysis.  Psychological Bulletin, 64, 442-452.
Murakami, T., ten Berge, J. M. F., & Kiers, H. A. L.  (1998).  A case of extreme simplicity

of the core matrix in three-mode principal components analysis.  Psychometrika, 63,
255-261.



T. Murakami and P. Kroonenberg

MULTIVARIATE BEHAVIORAL RESEARCH 283

Nielzen, S. & Cesarec, Z.  (1981).  On the perception of emotional meaning in music.
Psychology in Music, 9, 17-31.

Osgood, C. E.  (1964).  The semantic differential technique in the comparative study of
cultures.  American Anthropologist, 66, 171-200.

Osgood, C. E. & Luria, Z.  (1954).  A blind analysis of a case of multiple personality.
Journal of Abnormal and Social Psychology, 49, 579-591.

Osgood, C. E., Suci, G. J., & Tannenbaum, P. H.  (1957).  The measurement of meaning
Urbana, IL: University of Illinois Press.

Pinson, C.  (1983).  Pour une étude critique du différentiel sémantique (A critical
assessment of the semantic differential).  Revue Française du Marketing, 95 (3), 3-25.

Snider, J. G. & Osgood, C. E. (Eds.) (1969).  Semantic differential technique: A sourcebook.
Chicago, IL: Aldine.

Snyder, F. W. & Wiggins, N. (1970).  Affective meaning systems: A multivariate approach.
Multivariate Behavioral Research, 5, 453-468.

Swanwick, K.  (1973).  Musical cognition and aesthetic response.  Bulletin of the British
Psychological Society, 26, 285-289.

Takeuchi, H., Kroonenberg, P. M., Taya, H., & Miyano, H. (1986).  An analysis of
Japanese language on thermal sensation.  Mathematical Linguistics, 15, 201-209.

ten Berge, J. M. F.  (1989).  Convergence of PARAFAC preprocessing procedures and the
Deming-Stephan method of iterative proportional fitting.  In R. Coppi & S. Bolasco
(Eds.), Multiway data analysis (pp. 53-63).  Amsterdam: Elsevier

Timmerman, M. E. & Kiers, H. A. L.  (2000).  Three-mode principal components analysis:
Choosing the numbers of components and sensitivity to local optima.  British Journal
of Mathematical and Statistical Psychology, 53, 1-16.

Tucker, L. R.  (1964).  The extension of factor analysis to three-dimensional matrices.  In
H. Gulliksen & N. Frederiksen (Eds.), Contributions to mathematical psychology (pp.
110-127).  New York: Holt, Rinehart & Winston.

Tucker, L. R. (1966).  Some mathematical notes on three-mode factor analysis.
Psychometrika, 31, 279-311.

Wiggins, N. & Fishbein, M. (1969).  Dimensions of semantic space:  A problem of
individual differences.  In J. G. Snider & C. E. Osgood (Eds.), The semantic differential
technique:  A book of readings (pp. 183-193).  Chicago: Aldine.

Accepted January, 2003.


