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Quantifying catecholamines using multi-way kinetic modelling
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Abstract

A new method for quantifying adrenaline and noradrenaline concentrations from mixtures of catecholamine standards is
described. The method derives selectivity from the different rates, at which the fluorescing 3,5,6-trihydroxyindole derivatives
(lutines) of the catecholamines are formed and degraded for adrenaline and noradrenaline. The standards used had the
concentration ranges 50–1200 nmol/l for adrenaline and 30–1400 nmol/l for noradrenaline. Fluorescence landscapes were
measured at consecutive time points for every sample hereby creating a four-way data array. It is shown that the raw dataset
can be dramatically reduced in size without loosing significant information hereby making calculations much faster and
lessening instrumental performance requirements. The data follow a two-component four-way parallel factor analysis model
(PARAFAC), from which quantitative information is also obtained. Two-component multilinear partial least squares regression
(N-PLSR) was also employed for the quantification of the catecholamines. The results for PARAFAC andN-PLSR were very
similar with root mean squared errors of cross-validation (RMSECV) being in the range 24–30 nmol/l. Several improvements
of the method are suggested, and it is expected that the method will be suitable for determination of catecholamines in urine
from healthy subjects.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Urinary catecholamine excretion is a measure of
acute stress, and has been used as such in several oc-
cupational health investigations, for review see[1].
At present, high performance liquid chromatography
(HPLC) methods are typically used for separation of
adrenaline (A) and noradrenaline (NA) followed by
quantification using fluorescence or electrochemical
detection (see e.g.[2–4] and for review see[5]). A
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representative HPLC method using the lutine reac-
tion as post-column derivatisation reaction[4] has a
limit of detection (LOD) of 3.1 nmol/l for adrenaline
and 5.2 nmol/l for noradrenaline. Development of a
faster and cheaper method for determining adrenaline
and noradrenaline in urine would facilitate that these
biomarkers are used more often in the investigation
and prevention of stress in the working environment.
An analytical method for the determination of the cat-
echolamines should firstly be able to distinguish the
two analytes, and secondly be able to accurately de-
termine small concentration changes in the urine from
healthy subjects. The urinary concentrations in healthy
subjects are in the ranges 0–100 nmol/l for adrenaline
and 50–500 nmol/l for noradrenaline.
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Fig. 1. The lutine reaction: catecholamine (A) is oxidised to adrenochrome/noradrenochrome (B) and tautomerises to lutine (C), which
further oxidises to degradation products (o-quinones/melanins). R= CH3 for adrenaline and R= H for noradrenaline.k1 andk2 designate
the rate constants for reactions (2) and (3).

1.1. The lutine reaction

The fluorophore of adrenaline and noradrenaline is
the same, namely catechol (C6H6O2), and it has been
shown that it is not possible to distinguish the fluores-
cence spectra of these two compounds[6]. Adrenaline
and noradrenaline can be derivatised to the corre-
sponding fluorescing lutines (3,5,6-trihydroxyindole
derivatives1) (cf. Fig. 1).

As can been seen fromFig. 1, the lutines are in-
termediates. Adrenolutine and noradrenolutine have
slightly different excitation and emission maxima, but
more importantly the rates of formation and degra-
dation are different; adrenolutine is formed and de-
graded faster than noradrenolutine. Several authors
(e.g.[4,7–10]) have described the formation of lutines
in strongly alkaline media after oxidation of the cat-
echolamines to adrenochrome and noradrenochrome,
respectively. Hexacyanoferrate(III) is typically used
as oxidising agent[4,8–10], sometimes with zinc sul-
phate as catalyst[8,9]. The pH is of importance when
oxidation takes place, since the rate of formation of
noradrenochrome is very slow at acidic pH values.
The alkaline solution inducing tautomerisation can be,
e.g. strong sodium hydroxide or carbonate buffer. The
fluorescence from the lutines rather quickly fades out
unless an antioxidant is present; ascorbic acid was
often preferred[4,8–10]. Adding the antioxidant at
the same time destroys excess oxidising agent. The
fluorescent lutines are further degraded (oxidised) to
non-fluorescent melanins (if no antioxidant is present
this degradation will be fast).

The lutine reaction was first described by Lund
[7] in 1949–1950, and he stated “the difference in

1 From now on the namelutines will be used.

oxidisability between adrenaline and noradrenaline
permits the determination of these two substances in
the same sample”. However, most often the lutine
reaction has been employed as a selective derivati-
sation reaction for catecholamines after they were
cleaned-up from the urine matrix and separated by
HPLC (e.g.[4,10,11]). A few authors have tried quan-
tifying the catecholamines not using a traditional sep-
aration technique: Christenson and McGlothlin[12]
used derivative fluorescence spectra of the lutines to
determine the ratio of adrenaline and noradrenaline.
Valcárcel et al.[13] proposed second-derivative syn-
chronous fluorescence spectroscopy to differentiate
and quantify the catecholamines in urine; this method
was later adopted and automated by Cañizares and
Luque de Castro[8]. Llavero et al.[9] utilised the
lutine kinetics for quantification using initial rate and
fluorescence amplitude. Finally, Wu et al.[14] and
Cai et al. [15] employed the lutine reaction (only
quantifying adrenaline) as a model system for their
method based on detecting the intermediate product
in successive reactions[14] and error–compensation
algorithm [15]. It was chosen to base the method
development described in this paper on the method
by Llavero et al.[9].2 The method presented here
should have the advantage of using data with much
more information (whole fluorescence landscapes,
instead of measurements at one excitation and one
emission wavelength) for the determinations implying
a more stable method towards interferents, matrix ef-
fects and less prone to minor changes in the reaction
conditions.

2 Performance parameters: linear range for A: 0.5–2500 nmol/l
and for NA 1–2800 nmol/l; no LOD given; repeatability 0.9% for
A and 2.1% for NA (studied on replicates of 24-h urine samples).
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1.2. Fluorescence spectroscopy and chemometrics

Fluorescence spectroscopy is a fast, cheap and sen-
sitive analytical method, and is attractive to use in con-
junction with chemometric methods. Parallel factor
analysis (PARAFAC)[16–18]of fluorescence data has
previously been applied for quantification as well as
resolution of mixtures with good results[19,20]. Mea-
surements of fluorescence landscapes as a function of
time were studied using PARAFAC in work by Tan
et al.[21] and Gui et al.[22]. Excitation/emission ma-
trices were resolved by PARAFAC in order to study the
kinetic system of simultaneous degradation of chloro-
phyll a and b extracted from spinach[21]. Kinetic
fluorescence detection was employed to determine
the concentrations of two overlapped components
(glycine and glutamine) after thin-layer chromato-
graphic separation; the data are analysed by trilinear
decomposition (the same model as PARAFAC)[22].

Partial least squares regression (PLSR)[23] was
also shown to work well for fluorescence data (e.g.
[24–26]), when quantitative calibration models are the
sole purpose of the analysis. No direct resolution of
pure spectra or time profiles is obtained with this ap-
proach. Further,N-way partial least squares regression
(N-PLSR)[27] on fluorescence landscapes was shown
to have advantages, e.g. in terms of interpretability,
over bilinear PLSR.N-PLSR was successfully em-
ployed for analysing kinetic-spectroscopic multi-way
data[28–30].

The aim of this study was to develop an analyti-
cal method for mixtures of catecholamines, potentially
suitable for urine samples, using lutine kinetics, flu-
orescence spectroscopy and chemometrics. The first
task was to build a suitable semi-automated flow sys-
tem connected to an excitation emission fluorimeter
in order to collect the data. Secondly, to quantify the
catecholamines using chemometric models.

2. Theory

2.1. Lutine kinetics

The different rate constants of the formation and
degradation of lutines will be employed to differen-
tiate and quantify catecholamines in mixtures. Two
consecutive pseudo-first-order reactions are assumed

to describe the development in lutine concentrations
over time (see e.g.[14]). All reactants are added in
excess which means that only the concentrations of
adrenochrome and noradrenochrome are rate deter-
mining in reaction (2) (Fig. 1), and the lutine concen-
trations are rate determining in reaction (3) (Fig. 1).
Rate expressions for the consecutive first-order reac-
tions have previously been reported by, e.g. Wu et al.
[14]. Eq. (1) states the according theoretical expres-
sion for the adrenolutine concentration [L] at time ‘i’,
having a starting concentration of adrenaline [A]0 and
the two rate constantskA,1 andkA,2 (cf. k1 andk2 in
Fig. 1). An equivalent equation holds for noradreno-
lutine concentration with respect to [NA]0, kNA,1 and
kNA,2.

[L] i = kA,1[A] 0

(kA,2 − kA,1)
(e−kA,1ti − e−kA,2ti ) (1)

Hence, it is expected that the fluorescence intensity
of the lutines is linearly related to the catecholamine
concentration. The oxidation of catecholamines to
adrenochrome/noradrenochrome (cf.Fig. 1, reaction
(1)) is not monitored. This reaction is simply run for a
specified time interval for each sample, only changing
the catecholamine concentrations, meaning that the
same fraction of catecholamines should be oxidised
in each run. Excess oxidant is immediately destroyed
when the antioxidant is added (with the alkali). The
lutines are the only compounds inFig. 1 fluorescing
in the area with excitation range roughly 390–410 nm
and emission range roughly 500–530 nm.

2.2. PARAFAC

Fluorescence intensity measurements at several ex-
citation and emission wavelengths can be described
by a trilinear PARAFAC model[16–18]. Ideally then,
PARAFAC resolves the true emission and excita-
tion spectra of each compound in a mixture, when
the correct number of components is chosen for the
PARAFAC model. This usually requires that all exci-
tation and emission spectra are linearly independent
(i.e. no two are identical in shape) and that the con-
centration of the analytes vary independently. More
relaxed conditions can also be provided, but in gen-
eral it is problematic if any spectra or concentration
profiles are identical[31,32].
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Adrenolutine and noradrenolutine spectra and the
concentrations chosen in this study fulfil these require-
ments. The development of the lutine fluorescence
landscapes through time was monitored. It was as-
sumed that each analyte has a distinct concentration
profile (followingEq. (1)), resulting in the data ideally
following a two-component quadrilinear PARAFAC
model, written inEq. (2).

xijkl =
F∑

f =1

aifbjfckfdlf + eijkl (2)

wherexijkl is the fluorescence intensity measured in
samplei at emission wavelengthj and excitation wave-
lengthk and timel. There areI samples,J emission
wavelengths,K excitation wavelengths andL times.F
is the number of components andeijkl holds the resid-
uals of the model. In a quadrilinear model there are
four modes (in this case: one concentration, two spec-
tral and one time). The model consists of four load-
ing matrices (A, B, C andD), with as many columns
(here: two) as there are components/analytes, holding
the pure spectra/profiles of each mode. It holds that,
e.g.A is of sizeI × F and has typical elementsaif .

In traditional second-order calibration, each score
vector (column in the sample loading matrix) is taken
to be indicative for one analyte and only that spe-
cific score vector is used for building the calibration
model for that particular analyte (e.g. using univari-
ate linear regression). However, as model errors and
similar effects may degrade the performance of the
model, it seems reasonable to use all score vectors for
building the calibration model for any given analyte.
In this particular case meaning that multivariate lin-
ear regression using both score vectors is applied for
the prediction of each analyte (analogous to principal
component regression, PCR). If including adrenaline
scores in the prediction of noradrenaline concentration
(and vice versa) improves the calibration result, this
indicates that there are either chemical interactions be-
tween the components or mathematically derived in-
teractions arising e.g. from lack of synchronisation in
time curves due to experimental errors.

Hence, having built a PARAFAC model, the sample
loadings can be used in a regression model, predicting
reference concentrations, hereby producing regres-
sion coefficients for the prediction of new samples. In
order to predict concentrations in new samples with

similar composition (i.e. no additional fluorescing
components present), all loadings except the sample
loadings are fixed, while recalculating a PARAFAC
model for a new sample set of fluorescence measure-
ments. This results in new sample loadings, which
can be converted to concentrations by multiplying
with regression coefficients from the calibration. The
second-order advantage (handling “uncalibrated” in-
terferents) is retained even when new interferents
are present during prediction, because the crucial
part of the second-order advantage is related to the
uniqueness of the PARAFAC model and not the type
of subsequent calibration model[33,34]. Imagine,
for example, that samples are to be predicted that
contain two additional components (here, two ad-
ditional fluorophores). By fitting a four-component
PARAFAC model where the emission, excitation and
time profiles of two of the components are fixed at
the previously found estimates, then A and NA can
be predicted. Hence, the second-order advantage also
holds in these situations. As is always the case in
second-order calibration, it is an underlying assump-
tion that the loadings, used for calibration, are not
influenced by the new interferents.

There are different routes to take for how to actually
perform prediction when new interferents are present.
As indicated above, the known spectral loadings may
be fixed, but the scores of the calibration samples
may also be fixed to avoid systematic errors to affect
these. Alternatively, it is also feasible to model the
data without fixing any parameters. This would enable
an exploratory confirmation as to whether the prior
model is actually valid. These different possibilities
have not yet undergone systematic investigations in
the literature.

2.3. N-PLSR

N-way partial least squares regression[27] is an
extension of PLSR[23,35]to higher orders. The model
for four-way-PLSR is shown inEq. (3).

xijkl =
F∑

f =1

tif w
J
if w

K
kf w

L
lf + eijkl (3)

xijkl is the fluorescence intensity measured in sam-
ple i at emission wavelengthj and excitation wave-
length k and time l. The scalarF is the number of
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components andeijkl holds the residuals of the model
(which is not identical to the residual in the PARAFAC
model). A slightly modified version of theN-PLSR
model has been suggested recently[36], but the de-
tails of this algorithm will not be described here. It
incorporates a so-called core array in the model of the
four-way array, but the scores and loadings remain the
same and so do the predictions. The algorithm (new
as old) finds the scores,t, that give maximum covari-
ance with the dependent variables (y) in a quadrilinear
sense. The result of a four-way-PLSR is four matrices
(T holding the scores and threeW matrices holding
the weights), each with as many columns as there are
PLSR components. The advantage of usingN-PLSR
over unfold-PLSR is a stabilisation of the decomposi-
tion, which potentially gives increased interpretability
and better predictions.

Eqs. (2) and (3)are algebraically the same, but
there is difference in the way the loadings are sought.
PARAFAC is a curve resolution method, seeking to ex-
plain the variance in the data (in the four-way case as
a set of “quadriads”) in a least squares sense, without
taking the dependent variable,y, into account.N-PLSR
seeks the solution that will give the best predic-
tion of y.

Fig. 2. Schematic illustration of the flow system consisting of seven pumps, three manifolds and three manual shut-off valves (preventing
back-flow when pumps are stopped). Since the cleaning solution was strong acid, this pump was connected directly to the flow cell, when
filling it with cleaning solution. This procedure ensured that the rest of the flow system would not be not polluted with acid.

3. Experimental

3.1. Flow system

A flow system for running the lutine reaction
was constructed using seven metering pumps (model
SV653 from Valcor Scientific,http://www.valcor.com/
valcor scientific.htm). The pumps were connected to
a valve controller (ValveLink 16, version 2.2, from
AutoMate Scientific,http://www.autom8.com), which
was linked to a computer. LabView (National In-
struments,http://www.ni.com) was used to control
the action of each individual pump (when to pump,
for how long, at which speed). The pump program
for LabView was written at Arizona State University
(ASU). A schematic figure of the system is shown in
Fig. 2. Manifolds and valves were purchased from Up-
church Scientific (http://www.upchurch.com). Man-
ifold 1 was a seven-port manifold (part no. P-151;
ports not used were blocked), while manifold 2 and 3
were three-way T- and Y-connectors (e.g. P-514 and
P-713). The three valves (P-721) were manually oper-
ated shut-off valves, which ensured that no back-flow
occurred. All tubing was Teflon (inner diameter: 0.085
inches–2 mm), the manifolds in PEEK and the valves

http://www.valcor.com/valcor_scientific.htm
http://www.valcor.com/valcor_scientific.htm
http://www.autom8.com
http://www.ni.com
http://www.upchurch.com
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Table 1
Solutions for the lutine reaction

Solution Concentration Solvent

Catecholamine stock solutions 573.14�M A 5 mM HCl
721.04�M NA

Oxidising agent, fresh solution every day 0.0031 M K3Fe(CN)6 0.1 M KH2PO4 adjusted to pH= 7 with 1 M NaOH
Catalyst 0.0017 M ZnSO4 Water
Alkaline solution 1 M CO3

− pH = 10.0 Prepared from solutions of Na2CO3 and NaHCO3, ad-
justed with 1 M NaOH.

Antioxidant, fresh every day 0.011 M C6H8O6 Water
Cleaning solution About 12% HNO3 Water

in EFTE3 material. The total length of coil from sam-
ple container to flow cuvette is ca. 100 cm, i.e. about
15 ml volume, including the oxidation loop, which
was 4 ml (27 cm). The flow system was connected to
a 10 mm× 10 mm quartz flow cuvette4 (volume ca.
3.5 ml) in the fluorimeter sample chamber. It is of
importance that the tubing from manifold 3,Fig. 2
to the flow cuvette is as short as possible, since the
lutine reaction starts immediately after mixing.

3.2. Fluorimeter

The measurements were performed on a fluo-
rimeter constructed according to Muroski et al.
[37]; later described and used by Jiji et al.[38,39].
The fluorimeter is a so-called single measurement
excitation–emission matrix (EEM) fluorimeter, with
which it is possible to measure fluorescence land-
scapes (EEMs) within a second. The light source
was a 75 W xenon arc lamp. The excitation grat-
ing had 600 grooves/mm and was blazed at 300 nm,
and the emission grating had 300 grooves/mm and
was blazed at 500 nm. Both excitation and emis-
sion slits were 1.0 mm. The detector was a CCD5

camera (model ST-6 OPTO-HEAD from Santa Bar-
bara Instrument Group,http://www.sbig.com), which
was maintained at−20.0◦C by a thermoelectric air
cooler. Data collection was controlled by Kestrel Spec

3 PEEK is polyeretherketone and ETFE (Tefzel) is
ethylene-tetrafluoroethylene, both have excellent solvent resistance.

4 The cuvette had black electrical tape on three corners, and on
the side opposite to the in-coming light in order to reduce stray
light interferences caused by internal reflection.

5 CCD: charge-coupled device.

ST-6 for Windows, version 3.13 (Catalina Scientific,
http://www.catalinasci.com/kestrelspec.htm).

3.3. Chemicals

Chemicals were all analytical grade and used as is
without further purification. Milli-Q-water was used
for all solutions. The chemicals used were:l-ascorbic
acid (C6H8O6), zinc sulphate (ZnSO4), potassium
hexacyanoferrate(III) (K3Fe(CN)6), monopotassium
phosphate (KH2PO4), sodium carbonate, anhydrous
(Na2CO3), sodium bicarbonate (NaHCO3), sodium
hydroxide (NaOH), hydrochloric acid, 37% (HCl)
and nitric acid, 65% (HNO3). About 10 mg of the free
bases of the two catecholamines6 (SIGMA, product
numbers: E4250 and A7257) were each dissolved in
100 ml 5 mM hydrochloric acid, producing stock so-
lutions with the concentrations 573.14�M adrenaline
and 721.04�M noradrenaline. From these two stock
solutions all sample solutions are prepared by dilution
with 5 mM HCl. Table 1shows the solutions used for
the experiments.

3.4. Measurements

A set of 33 samples of adrenaline and/or nora-
drenaline dissolved in 5 nM HCl was made from the
stock solutions. The concentrations in the samples
are presented inTable 2. Adrenaline concentrations
ranged from 30 to 1200 nmol/l and noradrenaline

6 Adrenaline’s systematic name is:d-1-[3,4-dihydroxyphenyl]-
2-methyl-aminoethanole and noradrenaline’s:d-1-[3,4-dihydroxy-
phenyl]-2-aminoethanole.

http://www.sbig.com
http://www.catalinasci.com/kestrelspec.htm
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Table 2
Concentrations of adrenaline and noradrenaline in the 33 samples
measured

Concentration (nmol/l) Number of replicates
in final dataset of 49Adrenaline Noradrenaline

1000 0 1
800 0 2
500 0 2
80 0 0
0 1400 1
0 1000 2
0 600 2
0 300 2

750 250 2
400 1100 2
250 250 2
50 100 2

100 300 2
400 700 2
900 400 2
200 800 2
500 200 2
350 700 2
400 400 2
200 500 2
200 400 2
600 600 2
700 550 2
60 60 2

300 100 2
60 30 1

1200 600 1
1000 1000 1

30 15 0
850 1200 0
300 50 0
400 200 0
600 800 0

All but two of the samples were measured in replicate, i.e. 64
measurements. Samples containing only one of the analytes are
mentioned in the first row. The last column in the table states how
many of the replicates measured (usually two) were included in
the ‘final dataset’ with 27 samples (49 measurements) (cf.Section
4.1).

concentrations from 30 to 1400 nmol/l. The 33 sam-
ples were measured in random order (each in two
replicates, except for two samples) at room tempera-
ture (24+/− 1◦C) in the course of four consecutive
days. Measuring the same sample at different days
made the replicates. Some white precipitate had pre-
viously been observed to build-up on the inside of
the cuvette during the time of several runs. Hence,

a cleaning procedure was incorporated so that the
cuvette was soaked in strong nitric acid during the ox-
idation, which seemed to prevent noticeable build-up.

In short, the procedure for one measurement was
(cf. Fig. 2):

1. Flush the system.
2. Mix sample (catecholamine solution), oxidising

agent and catalyst in manifold 1, and pump to
oxidising loop (ca. 6 ml of catecholamine solution
is used). At the same time cleaning solution is
pumped to the flow cell.

3. Stop flow. The oxidation takes place in the oxida-
tion loop during precisely 5 min. Before the 5 min
are up, the flow cell is flushed with water and a
dark current spectrum is collected.

4. Alkaline solution and antioxidant are mixed in
manifold 2 before they are pumped to manifold 3,
mixed with the solution from the oxidising loop,
and pumped to the flow cell in the course of 10 s
(flow rate to cell is ca. 42 ml/min). The fluores-
cence measurements were started by manually
pushing a button when the last pump stroke was
heard.

The pump program (the four steps described above)
took 350 s after which 60 fluorescence landscapes
were collected, which took about 20 min. The inte-
gration (exposure) time chosen for each landscape
was 15 s, with 1-s delay between readout of the CCD
and the beginning of a new exposure; the scan speed
was 100 nm/min. Each image was 30 by 250 pixels
(binning 3× 8), which corresponds approximately to
the wavelength ranges: 360–420 nm for excitations
and 450–610 nm for emissions. Hence, the four-way
raw data matrix has the size: 30 excitations and 250
emissions at 60 successive times, for each of the 64
samples/replicates.

3.5. Data analysis

The fluorescence landscapes (image files from
Kestrel Spec) were converted to text files using a
programme (‘missy’) developed for this purpose, and
the text files were imported into MATLABTM, ver-
sion 5.3, using a conversion m-file (programs were
written at ASU). Design experiments were evaluated
and bilinear PLSR calculations performed using The
Unscrambler®, version 7.6, Camo Inc. TheN-way
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Toolbox, downloaded fromhttp://www.models.kvl.dk,
was used for all other calculations. Data are available
at http://www.models.kvl.dk.

4. Results and discussion

4.1. Data pre-treatment

After importing the data into MATLABTM, the dark
current spectrum from each measurement was sub-
tracted from the respective fluorescence landscapes
(i.e. the same dark current spectrum is subtracted from
60 landscapes). Cosmic ray spikes from the CCD de-
tector were removed by manual inspection of each
sample/replicate (data points containing spikes were
set to missing; NaN in MATLAB), so they would
not disturb modelling. Next, the emission range was
truncated, so that only the wavelength area contain-
ing chemical information was included. Further, the
mean of every three emission points was used, since
insignificant information is lost and the data becomes
easier to handle computationally. This resulted in a
total reduction of the emission mode from 250 to 48
points, and the new emission range: 472–562 nm with
steps of approximately 2 nm (the excitation mode is
also in steps of 2 nm). In the wavelength ranges thus
chosen, no scatter interferences (Rayleigh or Raman)
are present.

Contour plots of some raw data (fluorescence land-
scapes seen from ‘above’) at different times for a pure
adrenaline and noradrenaline sample, respectively are
shown inFig. 3. The adrenolutine concentration in-
creases much faster than noradrenolutine concentra-
tion, which is seen when comparing the increase in
peak intensities of the left plots with the ones to the
right. Also, the concentration of adrenolutine is less ‘at
20 min’ compared to ‘at 10 min’, meaning that degra-
dation of adrenolutine has already ‘taken over’. It is
also noteworthy that the excitation and emission max-
ima for the two compounds are different. In order to do
a preliminary examination of the data, the dataset was
unfolded and two-way two-component PLSR1 with
adrenaline and then noradrenaline concentration as de-
pendent variable was calculated. The two-component
models seem to fit the data, and there is a clear lin-
ear relationship between the measured data and con-
centration of the analytes. However, as will be clear

from Section 4.3, the data shows small irregularities,
that affect PARAFAC modelling. On account of the
plots from PLSR1 models for the whole dataset 15
outliers were removed. Very few of them were severe
outliers, and would probably not disturb modelling
significantly had they stayed in the dataset. However,
in this initial investigation, the possible influence of
a potential outlier is uninteresting, and hence remov-
ing these 15 measurements ensures that conclusions
drawn do not pertain to trivial erratic causes. This re-
sulted in no systematic removal of samples (i.e. not
only the low concentration samples or the ‘pure’ sam-
ples were removed), cf.Table 2. Probable causes for
potentially outlying samples are bad synchronisation
(due to many manual interactions in the measurement
procedure), and suspected errors in calculation of a
few of the reference concentrations. Further it should
be noted that the outlier removal was very conserva-
tive, and most of them were found to fit the final model
(cf. Section 4.3).

The dataset used for further calculations had 27
samples (5 of which were left in only one replicate)
compared to previously 33, and in the reduced dataset,
adrenaline concentration range was 50–1200 nmol/l;
for noradrenaline 30–1400 nmol/l. The calculations
described below have this reduced dataset (30 exci-
tations, 48 emissions, 60 time points and 49 sam-
ples/replicates) as “origin”. Since the dataset only has
27 samples, no test set validation will be performed;
instead segmented cross-validation will be used.

4.2. Data compression

Since the dataset is still of considerable size (ca.
34 MB), it is computationally demanding to fit, e.g.
PARAFAC models. It is desirable to see which mode
has the greatest influence on prediction power, and
how much each mode can be reduced without decreas-
ing the predictive ability (root mean squared error of
cross-validation, RMSECV). A Box-Behnken exper-
imental design[40] with three levels of each design
variable, one centre sample and no replicates was used
to test this. Four design variables were chosen, and
this produced a total of 25 experiments. The design
variables were:

1. Reduction in emission mode by using everyk’th
point for modelling (k = 1, 5, 9).

http://www.models.kvl.dk
http://www.models.kvl.dk
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Fig. 3. Contour plots showing the development in lutine fluorescence (i.e. lutine concentration) through time for a 500 nM adrenaline sample (the three plots to the left) and
1000 nM noradrenaline sample (the three plots to the right). The numbers on the contours indicate the fluorescence intensity; vertical axes are emission wavelength (nm) and
horizontal axes are excitation wavelengths (nm).
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2. Reduction in excitation mode by using everyl’th
point for modelling (l = 1, 5, 9).

3. Reduction in time mode by using everym’th point
for modelling (m = 1, 5, 9).

4. Another reduction in time mode only using time
point 1 ton (n = 10, 35, 60). The reduction from
point 3 was performed after this truncation of the
time mode.

The responses chosen for evaluating the design ex-
periments are RMSECV’s (for adrenaline and nora-
drenaline, respectively) from PARAFAC modelling.
The two RMSECV’s for each design experiment were
calculated on the basis of a two-component four-way
PARAFAC model7 with segmented cross-validation
(seven segments; replicates in same segments). The
known concentrations were regressed on to the result-
ing cross-validation scores, and RMSECV obtained
from using the regression model on the left-out sam-
ples.

The designed experiment showed that design vari-
ables 1–3 had about the same influence, and that it is
possible to use every fifth measurement in each of the
modes and still not loose prediction ability. Truncating
the time mode has a higher influence, and shows that
using the first few time points is optimal for adrenolu-
tine predictions, and using all time points8 (or rather
the whole time scale) is optimal for noradrenolutine.
This is not surprising, considering that adrenolutine is
produced much faster than noradrenolutine, and prac-
tically only adrenolutine information will be present
in the first measurements. The redundancy of informa-
tion shows that it is possible to lessen the instrumen-
tal requirements, meaning that lower resolution in the
spectral modes and longer exposure times for the cam-
era is possible. This would mean that the precision of
the measurements could be improved (cf.Section 4.5).

Compressing the data by calculating a Tucker3
model (keeping the sample mode intact and reducing
the other three modes to few, e.g. seven, variables)
was tried as alternative to simple binning. However,
this approach was not fruitful because computation of
the Tucker3 model was very time consuming.

7 Loadings from a PARAFAC model with no reduction in any
mode were used as starting guesses.

8 The best compromise is using 45 of the 60 time points—but
there is very little difference in using 45 or all 60.

In order to have a dataset of reasonable size for
calculations, and still have enough data to be able to
visualise the findings so they relate to chemical prop-
erties, the following compromise is chosen: all 49
samples/replicates, 12 emission points, 10 excitations
and 20 time points spanning the whole time scale (i.e.
every fourth emission point and every third excitation
and time point from the reduced dataset, cf.Section
4.1). The size of this dataset is less than 1 MB.

4.3. PARAFAC modelling

A two-component four-way model is fitted to the re-
duced dataset, again using segmented cross-validation
(seven segments, replicates in same segment), which
results in seven PARAFAC calibration models of
different parts of the data. The calibration models
converge within 55 iterations, and explain more than
99.5% of the variance in the data. When inspecting
the loadings for emission, excitation and time mode,
these are practically identical for all seven models,
and are shown inFig. 4. The models showed overlap-
ping but not similar loadings for the two analytes in
the fluorescence modes; they showed a steep increase
in intensity for adrenolutine, and a much slower in-
crease for noradrenolutine (the general trends can
also be compared to raw data inFig. 3). The residu-
als for the models are generally random and equally
distributed between –100 and 100 fluorescence units.
A three-component PARAFAC model was calculated
in order to check whether a third component might
be needed to explain other variation in the data (e.g.
pick up some background variation thereby improv-
ing the model). This was not the case and the third
component only appeared to describe noise. It seems
that the two-component PARAFAC model qualita-
tively describes the data well. However, there is a
systematic model error, which can be dealt with by
taking the estimated score values of both analytes into
account when predicting the concentration of each of
the analytes (cf. next section).

In Eq. (4), the formula for RMSECV is seen;N is
the number of samples,yref the reference values and
ycv the predictions from cross-validation.

RMSECV=
√∑N

1 (yCV − yref)2

N
(4)
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Fig. 4. Loadings from time, emission and excitation mode for the seven PARAFAC models from cross-validation.

The scores from the sample mode of PARAFAC
models contain information on relative concentrations
(cf. Section 2.2). Hence, it can be expected that each
score vector is linearly related to the concentration of
one analyte.Table 3presents the RMSECV’s for the

Table 3
Root mean squared error of cross-validation (RMSECV) for the
two-component PARAFAC model (calculated in four different
ways) and for the two-component four-way-PLSR model

Result RMSECV (nmol/l)

Adrenaline Noradrenaline

PARAFAC results
One score = one analyte

Without offset 131.4 79.7
With offset 72.8 74.7

MLR on score matrix
Without offset 23.4 76.2
With offset 24.2 29.1

N-PLSR result 26.1 29.3

Good agreement is seen in the last two rows, meaning that
PARAFAC andN-PLSR give similar results.

model; four different methods for building a calibra-
tion model were investigated. First, one score vector
was regressed against one analyte’s reference con-
centration (with or without using an offset). Second,
both scores were used, i.e. multiple linear regression
(MLR) was performed for each of the analytes (with
and without offset). From the results inTable 3, it is
obvious that both scores are needed for quantifying
both components. This can have several causes; one
is that when both analytes are present they influence
each other’s rate constants. This would mean that the
consecutive first-order reaction model introduced in
Section 2does not hold. Another explanation is sim-
ply that the measurement uncertainty and instrumental
deficiencies (e.g. insufficient synchronisation) cause
a slight confusion of the contribution from the two
analytes to the scores. The second explanation is sub-
stantiated, as results very similar to those inTable 3
are obtained when predicting the whole sample set
from a PARAFAC calibration model including only
samples of pure analytes. Hence, the effect is most
likely not due to chemical interactions. In any case,
the apparent adequacy of the estimated pure time pro-
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Fig. 5. Predicted (from cross-validation) vs. reference concentrations forN-PLSR1 models for adrenaline (left) and noradrenaline (right),
respectively. The dotted lines arey = x.

files and spectra, as well as the quantitative results,
makes it reasonable to accept the model. Further in-
vestigations may explain what can be the cause of
the systematic error, but it remains that the best RM-
SECV with PARAFAC is less than 30 nmol/l for both
analytes.

The 15 samples, which were removed as possible
outliers in the previous calculations (cf.Section 4.1),
were predicted using one of the cross-validation mod-
els, in order to see if there were indeed severe out-
liers in the dataset of 33 samples.9 The root mean
squared errors of prediction (RMSEP) calculated after
performing MLR (including an offset) on the scores
from the 15 samples are 103.9 nmol/l for adrenaline
and 45.0 nmol/l for noradrenaline (to be compared
with 24.2 and 29.1 nmol/l, cf.Table 3), which espe-
cially for adrenaline is a large increase. If instead 59
of the original 64 samples/replicates are predicted,
RMSEP for both compounds are practically identical
to the ones found for the dataset with 49 samples.
Hence, only five measurements10 do indeed deviate
significantly from the others, and are considered as
outliers.

9 The outlying samples are now used as prediction set, and an
RMSEP instead of an RMSECV can be calculated.
10 Actually three whole samples, one of these was only measured

in one replicate.

4.4. Comparison with N-PLSR

RMSECV’s from two two-componentN-PLSR111

are 26.1 and 29.3 nmol/l for adrenaline and nora-
drenaline, respectively. In bothN-PLSR1 models, two
components explain more than 99.5% of the vari-
ance in the data, and more than 99% variance of the
y-data. Predicted (from cross-validation) versus refer-
ence plots are shown inFig. 5. The loadings for the
N-PLSR models are very similar to the PARAFAC
loadings. However, loadings fromN-PLSR models
cannot be interpreted as can PARAFAC loadings,
since PARAFAC’s aim is curve resolution, i.e. the
loadings have a ‘physical meaning’, whichN-PLSR
loadings do not have.

From this it seems thatN-PLSR and PARAFAC
will give similar results (cf.Table 3). However, the
PARAFAC model still has thesecond-order advantage
compared to theN-PLSR models. This means that a
PARAFAC model in theory is stable even though the
sample matrix might change, which can be expected
to be of importance when analysing real urine sam-
ples. However, the matrix can be somewhat controlled
by using a clean-up procedure (seeSection 4.5) that
results in a well-defined sample matrix. Thus, the final

11 For the N-PLSR the same cross validation segments as in
PARAFAC modelling were used.
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choice betweenN-PLSR and PARAFAC has to take
future results on real samples and choices with respect
to pre-treatment of the samples into account and can
thus not be made at this point.

The limit of detection for the presented method
can be conservatively estimated on the basis of the
RMSECV’s inTable 3to ca. 75 nmol/l for adrenaline
and ca. 90 nmol/l for noradrenaline (LOD was calcu-
lated as 3×S.D.; RMSECV is an estimate for the mean
standard deviation (S.D.)). Probably a more realistic
value would be 3×S.D. for samples with low concen-
tration. LOD estimated on the basis of two samples12

is about 50 nmol/l for adrenaline and 70 nmol/l for
noradrenaline (usingN-PLSR predictions). Since the
method needs to be improved to compete with exist-
ing methods (cf.Section 4.5), the LOD presented here
is not nearly as low as can be expected for the opti-
mised method. LOD is usually calculated using defi-
nitions from IUPAC (LOD is ‘3 standard deviations of
20 measurements of a low concentration sample’) or
ISO (guide no. 111843-1 and 111843-2). Using one of
these definitions would be crucial for thorough evalu-
ation of the improved method.

4.5. Practical considerations and future
perspectives

The results show that the method still needs to be
improved. The goal for the development of this method
is to be able to measure samples in the concentration
range 0–1000 nmol/l for each of the analytes with a ca-
pability of detection (or limit of detection) in the range
1–7 nmol/l. The relative uncertainty on a measurement
should of course be as small as possible and at least
less than 10% (which was the uncertainty found for
the method by Hansen et al.[4]). This means that the
present method needs to have an analytical range and a
limit of detection about one order of magnitude lower
than now, and the uncertainty of measurements need
to be improved. Indeed, there are several realistic ap-
proaches to this end.

Since this is a kinetic method, timing is crucial.
Generally, a higher degree of automation in the sys-
tem and more precise pumps, and thereby better
control of timing, is expected to give a quite dramatic

12 Concentrations (in nmol/l) in the two samples were: 50 A+
100 NA and 60 A+ 60 NA.

improvement of the results. A temperature control
for the whole flow system would also be preferable,
since both kinetics and fluorescence measurements
are highly temperature dependent. When the flow
system has been optimised, the reaction conditions
will of course have changed, and an optimisation of
the chemical conditions (relative concentrations, re-
action temperature, etc.) is necessary. The capability
of detection might also be improved by increasing the
exposure time for the CCD camera, since the designed
experiment (Section 4.2) showed that as little as every
fifth time point can be used without loosing valuable
information. Additionally, using a better, hence more
expensive, CCD detector will improve sensitivity
further.13 Finally, the use of a fluorescent standard
would enable correction for changes in lamp intensity
and detector response. The above mentioned points
can be overcome by investing in new equipment, leav-
ing only the problem of cleaning up urine samples for
the procedure. There are numerous procedures devel-
oped for this purpose, which are presently used in the
different HPLC analysis available. It should be possi-
ble to choose a suitable clean-up procedure and incor-
porate it in the flow system, so the method would be
fully automated. Since the lutine reaction is specific
for adrenaline and noradrenaline, it would probably be
enough just to remove fluorescence background inter-
ference in the measurement area. At present, the speed
of analysis is about the same as for most HPLC meth-
ods (about 1/2 h per sample), but it is expected that the
analysis time can be reduced considerably, as there
are several parameters that can be adjusted (e.g. speed
of the kinetic reaction can be controlled with temper-
ature, and maybe further truncation of the time mode
will prove to be possible in a new system set-up). With
the above mentioned improvements it is likely that this
method will be able to compete with the most accurate
of the present HPLC methods, both regarding speed
of analysis and analytical performance parameters.

5. Conclusions

A method for determining adrenaline and no-
radrenaline concentrations from mixtures of cate-

13 The CCD camera presently used is really designed for amateur
astronomy, not for scientific spectroscopy.
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cholamines was described.N-PLSR and PARAFAC
models give similar results, RMSECV’s being in the
range 24–30 nmol/l. The raw data matrix can be dra-
matically reduced in size without loosing information.
Several improvements of the method are possible, and
it is expected that the method will be suitable for de-
termination of catecholamines in urine from healthy
subjects.
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