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Multivariate SPC Charts for Monitoring Batch 
Processes 

Paul NOMIKOS and John F. MACGREGOR 

Department of Chemical Engineering 
McMaster University 

Hamilton, Ontario L8S 4L7 
Canada 

The problem of using time-varying trajectory data measured on many process variables over the finite 
duration of a batch process is considered. Multiway principal-component analysis is used to compress 
the information contained in the data trajectories into low-dimensional spaces that describe the operation 
of past batches. This approach facilitates the analysis of operational and quality-control problems in 
past batches and allows for the development of multivariate statistical process control charts for on-line 
monitoring of the progress of new batches. Control limits for the proposed charts are developed using 
information from the historical reference distribution of past successful batches. The method is applied 
to data collected from an industrial batch polymerization reactor. 

KEY WORDS: Control charts; On-line monitoring; Polymerization; Principal-component analysis; 
Reference distribution; Statistical process control. 

Batch and semi-batch processes play an important role 
in the production and processing of high-quality speciality 
materials and products. Examples include the production 
of polymers, pharmaceuticals, and biochemicals; the sep- 
aration and transformation of materials by batch distilla- 
tion and crystallization; and the processing of materials 
by injection molding. In general, a batch process is a 
finite-duration process consisting of the following steps: 
Charging of the batch vessel with a specified recipe of 
materials; processing under controlled conditions during 
which process variables such as temperatures, pressures, 
agitation, and feedrates are varied according to specified 
time trajectories; and finally discharging of the product. 
On completion of the batch, a range of quality measure- 
ments is usually made at the quality-control laboratory on 
a sample of the product. 

Batch processes generally exhibit some batch-to-batch 
variation arising from such things as deviations of the pro- 
cess variables from their specified trajectories, errors in the 
charging of the recipe of materials, and disturbances aris- 
ing from variations in impurities. Abnormal conditions 
that develop during these batch operations can lead to the 
production of at least one batch or a whole sequence of 
batches with poor-quality product if the problem is not de- 
tected and remedied. In spite of this, most industrial batch 
processes are run without any effective form of real-time, 
on-line monitoring to ensure that the batch is progress- 
ing in a manner that will lead to a high-quality product 
or to detect and indicate faults that can be corrected prior 
to completion of the batch or can be corrected in sub- 
sequent batches. For the most part, they rely simply on 
the precise sequencing and automation of the major steps 

in each batch run. Some effort has been made in indus- 
try to use relational data base software to try to uncover 
particular attributes of the measurement trajectories, such 
as the timing of valve openings or the maximum tem- 
perature or pressure attained during an interval, that ap- 
pear to affect product quality and then to monitor these 
attributes. 

The application of statistical process control (SPC) 
charts to batch processes has been very limited. Most 
SPC methods use only the product quality measurements 
obtained at the end of each batch (e.g., Vander Wiel, 
Tucker, Faltin, and Doganaksoy 1992) and therefore mon- 
itor only the batch-to-batch variation. Hahn and Cockrum 
(1987) investigated the case in which one also has a few 
quality measurements taken during the batch run. Marsh 
and Tucker (1991) recognized that the process variable 
measurements taken during a batch run, although tran- 
sient in nature, do follow a certain dynamic pattern, and 
they proposed a simple SPC technique for monitoring a 
single measurement variable. Konstantinov and Yoshida 
(1992) (temporal shapes of time profiles) and Holloway 
and Krogh (1992) (trajectory encoding) applied qualita- 
tive reasoning to tackle the monitoring problem of dy- 
namic processes. Both tried to determine if the on-line 
observations received from the process up to the present 
time are consistent with some acceptable dynamic behav- 
ior of the system. The lack of statistical reasoning in 
their work and their univariate orientation are their main 
drawbacks. Bonvin and Rippin (1990) used target-factor 
analysis to identify on-line possible reaction stoichiome- 
tries from measured composition or thermal data and to 
detect any batch runaways (Prinz and Bonvin 1992). 
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With on-line computers connected to most batch pro- 
cesses, massive amounts of data are being collected rou- 
tinely during the batch on many easily measured process 
variables such as temperatures, pressures, and flowrates. 
One may have measurements on up to 50 or more vari- 
ables every few seconds throughout the entire history of a 
batch. Furthermore, there is usually a history of many past 
successful and some unsuccessful batches. Not only is the 
relationship among all of the variables at any one time im- 
portant, but so is the entire past history of the trajectories 
of all these variables. The history of the process-variable 
trajectories during a batch provide a "fingerprint" for each 
batch, and it should be possible from these data to build an 
empirical model to characterize the operation of success- 
ful batch runs. The major difficulties are how to handle the 
many measured process variables, their time-varying and 
highly correlated structure, and the nonlinear finite-time 
nature of batch operations. 

To handle such large multivariable problems in continu- 
ous processes operating around a fixed target, multivariate 
SPC charts based on principal-component analysis (PCA) 
and partial least squares or projection to latent struc- 
tures (PLS) have been developed (Kresta, MacGregor, and 
Marlin 1991; Skagerberg, MacGregor, and Kiparissides 
1992; Miller, Swanson, and Heckler 1993; MacGre- 
gor, Jaeckle, Kiparissides, and Koutoudi 1994). These 
methods can use the many highly correlated process mea- 
surements that are being continuously collected. The in- 
formation contained in these data is projected into low- 
dimensional spaces defined by latent vectors, and control 
charts that are simple to present and easy to interpret have 
been proposed and are now used in industry. Furthermore, 
the diagnostic capabilities of these multivariate methods 
have been shown to greatly enhance one's ability to iso- 
late assignable causes for violations of these charts (Miller 
et al. 1993; MacGregor et al. 1994). 

Recently MacGregor and Nomikos (1992) and 
Nomikos and MacGregor (1994) employed multiway 
PCA (MPCA) to extend multivariate SPC methods to 
batch processes. By again projecting the information 
contained in the process-variable trajectories down into 
low-dimensional latent-variable spaces, both the variable 
correlations and their time histories could be summa- 
rized in a few plots. These multivariate approaches are 
based on analyzing a historical reference distribution of 
the measurement trajectories from past successful batches. 
The variation in the trajectories among those batches 
(common-cause variation) is characterized in a reduced 
latent-vector space using MPCA. The behavior of new 
batches is then compared to this reference distribution to 
test the following hypothesis: H,: The on-line measure- 
ments of the process-variable trajectories up to the current 
time in a new batch are consistent with normal batch op- 
eration as defined by the historical reference distribution. 

The objectives of this article are (a) to present an 
overview and some new variations of the MPCA method 

that have been proposed for the analysis and on-line moni- 
toring of batch processes, (b) to establish statistical control 
limits for the multivariate SPC charts that arise from these 
methods, and (c) to illustrate the approach with an applica- 
tion of the analysis and monitoring of an industrial batch 
polymerization reactor. 

The article is organized as follows. MPCA applied to 
batch processes is outlined in Section 1, and its use in the 
post-analysis of past batch polymerization runs is illus- 
trated in Section 2. The selection of a suitable historical 
reference distribution of past normal batches is illustrated 
and modeled via MPCA in Section 3. Several varia- 
tions of multivariate SPC charts for on-line monitoring 
of the progress of new batches are presented in Section 4, 
and statistical control limits for each of the multivariate 
SPC charts are developed in Section 5. Two examples of 
monitoring new batches are given in Section 6, and some 
engineering issues and future directions are discussed in 
Section 7. 

1. MPCA FOR MODELING BATCH PROCESSES 

Consider the problem at hand-namely, analyzing a his- 
torical set of batch trajectory data. In a typical batch run, 
j = 1, 2, ..., J variables are measured at k = 1, 2, ..., K 
time intervals throughout the batch. Similar data will ex- 
ist on several (i = 1, 2,...., ) similar process batch runs. 
This vast amount of data can be organized into a three-way 
array X(I x J x K) as illustrated in Figure 1. The dif- 

J 

Figure 1. Arrangement of Batch Data in MPCA (lower part) 
and its Equivalent PCA Form (upperpart). The three-way array 
X unfolds into a matrix X where a normal PCA analysis can 
be performed to extract the t scores and p loadings. 
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ferent batch runs have been arranged along the vertical 
axis, the measurement variables are across the horizontal 
axis, and their time evolution occupies the third dimen- 
sion. Each horizontal slice through this array is a (J x K) 
matrix containing the trajectories of all the variables from 
a single batch (i). Each vertical slice is an (I x J) ma- 
trix representing the values of all the variables for all the 
batches at a common time interval (k). 

Several multidimensional statistical methods have been 
proposed for decomposing such data arrays into the sum 
of a few products of vectors and matrices and to summa- 
rize the variation of the data in the reduced dimensions of 
these spaces. MPCA was introduced by Geladi, Esbenson, 
and Ohman (1987) and was successfully applied in im- 
age analysis (Geladi et al. 1989) and to some cases in 
chemometrics (Smilde and Doornbos 1991). Other mul- 
tiway methods (Geladi 1989) such as the Tucker model, 
the PARAFAC model (Smilde and Doornbos 1991), the 
canonical decomposition, the three-mode factor analysis 
(Zeng and Hopke 1990), and the tensor rank (Sanchez 
and Kowalski 1990) have been proposed for special sit- 
uations. MacGregor and Nomikos (1992) and Nomikos 
and MacGregor (1994), however, were able to show that 
MPCA was well suited to handle multiway batch data. 

MPCA is equivalent to unfolding the three-dimensional 
array X slice by slice (three possible ways), rearranging 
the slices into a large two-dimensional matrix X (two pos- 
sible ways), and then performing a regular PCA. Each of 
these six possible rearrangements of the data array X into 
a large data matrix X, followed by a PCA on the matrix 
X, corresponds to looking at a different type of variability. 
For analyzing and monitoring batch processes, the most 
meaningful way of unfolding the array X is to arrange 
its vertical slices, corresponding to each point of time, 
side by side into a two-dimensional matrix X(I x JK) 
with the vertical slice corresponding to the first time in- 
terval at the left side (Fig. 1). The data are then mean 
centered and scaled prior to performing a PCA. This un- 
folding is particularly meaningful because, by subtracting 
the mean of each column of this matrix X, we are in effect 
subtracting the mean trajectory of each variable, thereby 
removing the main nonlinear and dynamic components in 
the data. A PCA performed on these mean-corrected data 
is therefore a study of the variation in the time trajectories 
of all the variables in all batches about their mean tra- 
jectories. Figure 2 shows the measurements for a single 
variable over the whole-batch duration from 36 normal 
batches, where one can see clearly the kind of variation 
that MPCA will explain at each time interval. The vari- 
ables in each column of X are also scaled to unit variance 
by dividing by their standard deviation so as to handle dif- 
ferences in the measurement units between variables and 
to give equal weight to each variable at each time interval. 
If one wishes to give greater or less weight to any partic- 
ular variable, however, or to any particular period of time 
in the batch, these weights are easily changed. Another 

TIME 

Figure 2. Measurement Trajectories of a Single Variable 
(temperature) for 36 Normal Batches. At each time interval 
there are 36 observations, one from each batch. The black 
band that all these observations create is the variability that 
MPCA tries to explain. 

way of scaling that gives similar results to what we use 
in this article is scaling each variable at each time inter- 
val by its overall (throughout the batch duration) standard 
deviation. 

This form of MPCA decomposes the data (X or X) into a 
summation of R products of score vectors (t) and loadings 
matrices (P or p), plus residuals (E or E), which are as 
small as possible in a least squares sense. 

R R 

X = Ztr () Pr + E or X = trp +E. 
r=l r=1 

Figure 1 illustrates the correspondence between the scores 
and loadings of MPCA performed on the array X and those 
of a PCA performed on the equivalent unfolded matrix 
X. The NIPALS (nonlinear iterative partial least squares) 
algorithm for sequential computing the dominant principal 
components, is given in Appendix A. 

The t vectors (t) are orthogonal and the loading vectors 
p (unfolded P) are orthonormal. Usually, a few princi- 
pal components can express most of the variability in the 
data when the variables are highly correlated, as in this 
case, and can point out any similarities and dissimilar- 
ities among batches. Each element of the t vector (t) 
corresponds to a single batch and depicts the overall vari- 
ability of this batch with respect to the other batches in 
the data base throughout the whole batch duration. The 
loading vectors (p) provide the directions of maximum 
variability and give a simpler and more parsimonious de- 
scription of the covariance structure of the data. Each 
loading vector (p), as one can see from the unfolded 
matrix X (Fig. 1), summarizes the time variation of the 
measurement variables around their average trajectories, 
and its elements are the weights applied to each vari- 
able at each time interval within a batch to give the t 
score for that batch. The power of MPCA results from 
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using the joint covariance matrix of the variable devia- 
tions from their main trajectories. Thus it uses not just 
the magnitude of the deviation of each variable from its 
mean trajectory but also the contemporaneous correlation 
among all of the variables over the time history of the 
batches. 

1.1 Selecting the Number of Principal 
Components 

The number of principal components needed to build 
an MPCA model that describes adequately the normal 
behavior of a batch operation can be found with several 
criteria. These criteria range all the way from significance 
tests to graphical procedures (Jackson 1991). One quick 
and dirty criterion is the broken-stick rule (Jolliffe 1986). 
This is based on the fact that if a line segment of unit length 
is randomly divided into z segments the expected length 
of the rth longest segment is 

1 z 
G= 100-E1/i. 

i=r 

As long as the percentage of variance explained by each 
principal component is larger than the corresponding G, 
then one can retain the corresponding principal compo- 
nent. The number of segments is the maximum possible 
rank of X, z = min(I, KJ), and the rule should be ap- 
plied only to unit variance-scaled matrices. This criterion 
is rather crude but still is a quick method to judge if a prin- 
cipal component adds any structural information about the 
variance in the data or explains only noise. 

When the purpose of a PCA analysis is to construct 
a model that will be used on future observations, then 
the suggested criterion to obtain the optimum number of 
components is cross-validation (Efron 1983, 1986; Stone 
1974). Cross-validation shows how the prediction power 
of a PCA model increases as one adds more principal 
components. It is a simple, but computationally lengthy, 
procedure similar to the jackknifing method. Given a data 
base of I normal batches with J variables and K time inter- 
vals, the unfolded X matrix has dimensions I x J K. After 
scaling the matrix X, one batch is excluded from the data 
base and a PCA model is built with the remaining (I - 1) 
batches. This is done for all the batches in the data base, 
and each time the sum of the squared prediction errors af- 
ter each principal component is recorded for the batch not 
included in the model building. At the end, these sum-of- 
the-squared-prediction errors corresponding to each prin- 
cipal component (r) are added for all the batches to give 
the Pressr. 

One way to choose the model dimension is to select the 
one with minimum Press, but this has been shown to have 
poor statistical properties (Osten 1988). Wold (1978) and 
Krzanowski (1983, 1987) proposed two criteria for choos- 
ing the optimal number of principal components. Wold 
checked the ratio R = Pressr/RSSr_l, where RSSr is 
the residual sum of squares after the rth principal com- 

ponent based on the PCA model, which is built using the 
whole data base. This criterion compares the prediction 
power of a model based on r principal components with 
the squared differences between observed and estimated 
data using r - 1 principal components. A value of R larger 
than unity suggests that the rth component did not improve 
the prediction power of the model and it is better to use 
only r - 1 components. Krzanowski suggested the ratio 

W = ((Pressr_- - Pressr)/Dm)/(Pressr/Dr) 
Dm = I + JK - 2r 

Dr = JK(I - 1) - + JK - 2i, 
i=l- 

where Dm and Dr are numbers indicating the degrees of 
freedom required to fit the rth component and the degrees 
of freedom remaining after fitting the rth component, re- 
spectively. This statistic is similar to the F test for the 
inclusion of an additional variable in a linear regression 
model. It gives the ratio between the improvement in pre- 
dictive power by adding the rth component and the pre- 
dictive value of the same component. If W is larger than 
unity, then this criterion suggests that the rth component 
is worthwhile to be included in the model. 

There is no sound statistical test for the cross-validation 
procedure. The main problem is not knowing how many 
degrees of freedom one starts with nor how many degrees 
of freedom are extracted with each principal component 
(e.g., Box, Hunter, MacGregor, and Erjavec 1973). Thus 
the number of principal components needed in a PCA 
model should be based on the overall picture that these 
criteria give. 

2. POST-ANALYSIS OF INDUSTRIAL 
BATCH DATA 

Data supplied by DuPont from an industrial batch poly- 
merization reactor are used to illustrate the application of 
the proposed method. The cycle in the reactor consists of 
two stages, and the time spent processing in both stages is 
approximately two hours. Ingredients are loaded into the 
reactor to begin the first stage. Reactor-heating-medium 
flows are adjusted to establish proper control of pressure 
and the rate of temperature change. The solvent used to 
convey ingredients to the reactor is vaporized and removed 
from the reactor vessel. The vaporization process is vig- 
orous enough that the contents of the vessel do not require 
stirring. After nearly one hour spent removing solvent, 
the second stage begins. During this stage the ingredi- 
ents complete their reaction to yield the final product, a 
polymer. Once again, vessel pressures and the rate of 
temperature change are controlled during this processing 
stage. The batch finishes by pumping the polymer product 
from the vessel at the end of the second cycle. 

The results of a critical property measurement are usu- 
ally received 12 hours or more after each batch has fin- 
ished, and therefore there is no time for recipe adjustments 

TECHNOMETRICS, FEBRUARY 1995, VOL. 37, NO. 1 

44 

This content downloaded from 132.229.14.7 on Tue, 27 Aug 2013 15:48:52 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


MULTIVARIATE SPC CHARTS FOR MONITORING BATCH PROCESSES 

in the next batch. Furthermore, it is often difficult to es- 
tablish when a batch is going wrong and to diagnose what 
caused the property to deviate from target. This makes the 
application of an on-line SPC monitoring method attrac- 
tive for this process. Failure to attain on-aim control of 
the critical property leads to increased manufacturing costs 
either through necessitating blending with other batches 
or through downgrading the product to end uses that have 
a lower selling price. 

A data set of 55 successful and some unsuccessful 
batches was provided from the preceding process. Each 
batch had a duration of 100 time intervals (K), and 10 
measurement variables (J) were monitored throughout 
the batch. Variables 1, 2, and 3 are temperature measure- 
ments inside the reactor, whereas variables 6 and 7 are tem- 
perature measurements in the heating-cooling medium. 
Variables 4, 8, and 9 are pressure measurements, and the 
rest of the variables are flowrates of materials added to the 
reactor during its operation. A plot of the 10 variable tra- 
jectories for a typical batch is shown in Figure 3. Batches 
40, 41,42, 50, 51, 53, 54, and 55 had the final quality mea- 
surement well outside the atceptable limit, and batches 38, 
45, 46, 49, and 52 were above or very close to that limit. 
The batches can be compared with an MPCA analysis by 
plotting their t scores and their sum of squared errors: 

KJ 

Qi = E(i, c)2. 
c=l 

The t plot represents the projection of each batch history 
onto the reduced plane defined by the principal compo- 
nents, and the Q plot represents the squared distance of 
each batch perpendicular to this plane. 

First, a preliminary MPCA analysis was conducted to 
identify if there was enough information in the process- 

2 
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Figure 3. Trajectories From all of the Measurement Variables 
From a Typical Batch Run. 
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Figure 4. Results of MPCA Analysis (two principal compo- 
nents) of the Original 55 Batches. Batches 49 through 55 are 
identified as abnormal batches either because of their posi- 
tion in the t plot (batch 50 through 55) or their residuals Q 
(batch 49). 

variable trajectory data to discriminate between normal 
and abnormal batches. Two principal components were 
extracted, and Figure 4 shows that batches 50, 51, 52, 53, 
54, and 55 are clearly identified from their position in the 
reduced space (t plot) as being very different from the 
rest of the batches. In hindsight their different behavior 
can be seen by visual inspection of the measurement tra- 
jectories if one superimposes these over the trajectories 
from normal batches on the same plot. Due to their struc- 
tural similarity (maxima, minima, points of inflection, or 
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discontinuity) with trajectories from normal batches, how- 
ever, operators can easily see nothing different when they 
are displayed alone. Batch 49 also is identified as differ- 
ent due to its large residual (Fig. 4). The quality of this 
batch was barely acceptable, and its main difference com- 
pared to normal batches was during a time period (50-65 
time intervals) when most of the measurement variables 
do not usually exhibit much variation (flat trajectories). 
The p loadings of the first two principal components dur- 
ing this time period are small, so any difference shows up 
in the residuals., This example with batch 49 points out 

20- 

10 - 

-10 - 

45 
46 39 * 47 * 

43 

44 23 16 

3219fi 2 * 
14*1 

6 *? 

3 
14.?2 

-20 

-30 - - 20 0 0 10 20 30 

T2 

O 

BATCH 

Figure 5. Results of MPCA Analysis (three principal compo- 
nents) of the First 48 Batches. Batches 37, 39, and 43 through 
48 can be identified (t plot) as batches with unusual opera- 
tional behavior. 

the complementary nature of the t scores and residuals. 
Any variation that is not explained by the current princi- 
pal components is contained in the residuals, and it will 
be explained in one of the components. 

A second MPCA analysis was run, this time exclud- 
ing these last six batches. The results from this analysis 
after three principal components are given in Figure 5. 
Batches 38, 40, 41, and 42 cannot be identified as abnor- 
mal batches. There is nothing unusual in their trajectories 
to be captured by MPCA because the cause of their unac- 
ceptable product does not have any effect on the measured 
trajectories. This shows that there are cases in which the 
measurements are typical of a successful batch and still 
the product may not meet the performance standards. The 
problems in batches like these may have come from poor 
quality materials, inadequate preprocessing, or something 
that can be observed only if one measures other on-line 
variables as well. Again another group of batches clus- 
tered away from the main body of batches in the t2-t3 
plot. Further investigation of what went wrong with these 
batches must take place because most of them are in se- 
quence (43 through 49) and two of these (45, 46) gave 
unacceptable product. It is important to note that the dif- 
ferences in the preceding batches could not be detected 
by a simple visual inspection in the measurement vari- 
ables. The residuals in Figure 5 suggest that there are 
no other major differences in the operational behavior of 
the batches. 

3. REFERENCE DISTRIBUTION OF NORMAL 
BATCH OPERATION 

To develop multivariate SPC charts, one must have a 
history of past successful normal batches that can provide 
a reference distribution against which future batches can 
be compared. This reference distribution should contain 
all of those batches deemed to be subject only to common- 
cause variation. All batches exhibiting characteristics that 
one might wish to alarm as special causes in the future 
should be omitted. Based on the preceding MPCA anal- 
ysis, 36 batches (I) were selected as the reference data 
base. All of the other batches were excluded because 
either they had problematic operation or they gave unac- 
ceptable product. 

Table 1 shows the results of extracting successive prin- 
cipal components and gives the percent sum of squares 
explained and the three previously discussed criteria for 
selecting the required number of principal components. 
The broken-stick rule indicates that the first two principal 
components are significant, and the W statistic suggests 
three components. The R statistic implies that one could 
use either two or three components. Based on these results 
we chose to include three (R) principal components in our 
MPCA model. The fact that three principal components 
explain only about 55% of the total variability in the data 
is not disappointing if one considers the many variables 
(JK) in the unfolded matrix X. The rest of the variabil- 
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Figure 6. Results of MPCA Analysis (three principal components) of the "In-control" Reference Data Base With the 95% and 
99% Confidence Limits for the Residuals 0, the Ds Statistic, and the t Plots. None of the batches exhibit unusual operational 
behavior. 

ity is mainly due to measurement noise and to random 
variation in normal batch operation. 

The t plots with their 95% and 99% confidence el- 
lipsoids in Figure 6 show that none of the 36 batches 
exhibit any unusual behavior. The slight gap between 
two clusters in the tl - t2 plot was not attributed to any 
significant difference but simply to not having enough 
batches in the reference data base to fill this gap and 
give a smooth variation across the first principal com- 
ponent. The bottom left plot in Figure 6 has the sum of 
the squared residuals (Qi) for each batch with their 95% 
and 99% confidence limits (Appendix B), and shows that 
no batch exhibits any significantly large residual. The 
assumption behind these approximate confidence limits 
for Q is that the variables (JK) in the unfolded matrix 
X have a multinormal distribution with population mean 

O (Jackson and Mudholkar 1979; Jensen and Solomon 
1972). This assumption is reasonable in our case be- 
cause we have chosen a reference data base of normal 
operating batches. The t scores of all principal compo- 
nents were found to follow very well a multinormal dis- 
tribution (Horswell and Looney 1992), a result arising 
in part because the t scores are linear combinations of 
random variables. Thus with the assumption that the t 
scores follow a multinormal distribution with population 
mean 0 and estimated covariance matrix S(R x R), which 
is diagonal due to the orthogonality of the t scores, one 
has the following Hotelling statistic (Tracy, Young, and 
Mason 1992): 

Ds = tRS tR/(I - 1)2 /2( )/2, 

where tR is the vector containing the scores of a given 
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Table 1. Percentage of Explained Sum of Squares 
(cumulative and for each principal component) From the 

MPCA Analysis of the Reference Data Base and the Results 
From the Three Criteria to Determine the Optimal Number 

of Principal Components 

PC % SSX % PCSSX G R W 

1 38.55 38.55 11.59 .65 17.58 
2 50.22 11.68 8.82 .91 5.35 
3 56.75 6.53 7.43 1.04 2.24 
4 61.33 4.57 6.50 1.17 .76 

x 
(I) 
C] 
w z 

batch from the R retained principal components and the 
critical values of the beta variable at significance level a 
can be found from critical values of the F distribution by 
using the relationship 

BR/2,(I-R-1)/2,a = (R/(I - R - 1))FR,I-R-l,a 
- (1 + (R/(I- R - ))FR,I-R-i,a). 

Accordingly, the 95% and 99% confidence ellipsoids in 
the t plots (Fig. 6) are centered on 0, and their axis lengths 
in the direction of the rth principal component are given 
by (Johnson and Wichern 1988) 

?(S(r, r)Bl ,(I-2-1)/2,a(I - 1)2/I)1/2. 

The Ds statistic gives a measure of the Mahalanobis dis- 
tance in the reduced space between the position of a batch 
(t scores) and the origin that designates the point with the 
minimum variation in the batch process behavior. Again, 
no batch in the bottom right plot of Figure 6 shows any 
unusual variability. 

The Q and DS plots shown in Figure 6 appear to justify 
the normality assumptions that we have made and corrob- 
orate our choice of this data base to describe the normal 
batch operation. These plots provide the diagnostics to 
test if we have included any unusual batch in our data 
base and if we have built a representative model of the 
normal batch operation. 

Figure 7 shows the percent of the sum of squares ex- 
plained by the model with respect to time and variables. 
The first principal component concentrates more on the 
first stage of the process, at which the vaporization takes 
place, and the variables associated with this period (1, 
2, 3, and 10). The second principal component captures 
most of the variability in the second stage of the process, 
at which most of the polymerization takes place, and in- 
volves mainly variables 6, 8, and 9. When the process has 
two stages, as in this industrial example, it is common 
to see one principal component to explain the first stage 
and another to explain the second stage. MPCA does this 
because the correlation of the measurement variables in 
each stage changes, and thus a single principal component 
may not be able to explain both of them. None of the three 
principal components explains much of the variation dur- 
ing the transition period (50 through 65) because most of 

30- 

20- 

10- 

0 2 4 6 8 10 12 

VARIABLES 

Figure 7. Cumulative Percent of the Sum of Squares Ex- 
plained, With Respect to Time and Variables, for the Three 
Principal Components. The lowest line represents the percent 
explained by the first principal component, the line above it 
gives the percent explained by the first two principal com- 
ponents, and the top line shows the percent explained by all 
three principal components. 

the variables during this time period have flat trajectories 
with few deviations from them. 

4. MULTIVARIATE SPC CHARTS FOR 
ON-LINE MONITORING 

The p-loading matrices from the MPCA analysis of the 
reference data base contain most of the structural infor- 
mation about how the variable measurements deviate from 
their average trajectories under normal operation. If a new 
batch is to be tested for any unusual process behavior, one 
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can use the these p-loading matrices to check this hypoth- 
esis by obtaining the predicted t scores and residuals for 
the new batch Xnew(K x J). 

Scale and unfold Xnew to X'new ( x JK): 
R 

tr = X newPr, e = Xnew - E trPr- 
r=l 

If the t scores of the new batch are close to the origin 
and its residuals are small, then this indicates that its 
operation is similar to that in the reference data base of 
normal batches. 

A problem arises when one wants to perform the test 
sequentially in time as the new batch evolves. In this sit- 
uation the matrix Xnew is not complete until the end of the 
batch operation. At each time interval during the batch op- 
eration, the matrix Xnew has all the measurements only up 
to that time interval. The rest of the Xnew matrix from the 
current time to the end of the batch is still undefined. The 
most valid way to overcome this problem is to build K dif- 
ferent MPCA models, one up to each time interval k using 
only the information available up to that time. This results 
in the need to store K loading vectors (p) for each princi- 
pal component of dimension (Jk x 1, k = 1,2,..., K), 
and to apply the one appropriate for the current time k to 
calculate the scores and residual for that time. Although 
this is the most correct approach, the computational and 
storage requirements would be very large except for short 
duration (small K) batch processes having a relatively 
few on-line measurement variables (J). An alternative 
monitoring scheme, without using MPCA, is to make 
the assumption that the measuring variables are multi- 
normally distributed and at each time interval k to per- 
form an F test based on a Hotelling statistic. This will 
test if the Jk variables measured up to the current time 
(k) are too far away from the origin of the multivariate 
distribution estimated from the reference-good data base. 
This scheme is unattractive because one has to store at 
each time interval a large covariance matrix (Jk x Jk) 
that is ill-conditioned because of the highly correlated 
variables. 

Therefore, we propose several approximate MPCA 
methods for constructing sequential tests. All of these 
involve using the full (JK x 1) loading vectors p, ob- 
tained from the MPCA on the entire histories of the batches 
in the reference data base and then filling in the future 
observations in Xnew in different ways. All of these 
approaches will give the same predicted t scores and resid- 
uals at the end of the batch when the full Xnew is known. 
To monitor the progress of a new batch as new observa- 
tions become available, one of the methods discussed in 
Section 4 is used to fill out the Xnew matrix, and then the t 
scores and residuals are calculated for each time interval. 
The t scores assert the overall performance of a batch, 
and the best way to track the particular instant that some- 
thing behaves differently is to use the squared prediction 

error 
kJ 

SPEk= E e(c)2 
c=(k-1)J+l 

associated with the latest on-line measurements at time 
interval k from the process. The sum of the squared resid- 
uals over all time periods, Q = EKJ e(c)2, is not a good 
indicator because it does not represent the instantaneous 
perpendicular distance of a batch from the reduced space 
as does the SPE and it is affected by the errors associated 
with the filling in of future unknown observations in the 
matrix Xnew. 

4.1 Anticipating the Future Observations in Xnew 

Three methods are considered in this article for filling 
in the unknown data in Xnew between the current time 
interval k and the end of the batch. Recall that the Xnew 
(unfolded Xnew) after scaling contains the deviations of the 
measurements from their mean trajectories. Monitoring 
charts for SPE and the first latent variable tl (similar charts 
are obtained for t2 and t3) are shown in Figure 8 for each 
of these methods. The approximate 95% and 99% control 
limits and the outermost values (five for the SPE and six 
for the t scores) at each time interval from the reference- 
normal data base are also shown. The control limits for 
the t scores and the SPE are developed in Section 5. 

1. The first approach to filling in the unknown obser- 
vations in xnew is to assume that the future observations are 
in perfect accordance with their mean trajectories as calcu- 
lated from the reference data base. Thus the assumption 
behind this approach is that the batch will operate nor- 
mally for the rest of its duration with no deviations in its 
mean trajectories, and one has to fill the unknown part of 
Xnew with zeros. The advantage of this approach is a nice 
graphical representation of the batch operation in the t 
plots and the quick detection of an abnormality in the SPE 
plot (MacGregor and Nomikos 1992). In the upper part of 
Figure 8 one can see the cone shape of the control limits 
for the t scores due to the assumption of future normal 
operation. A new batch always starts from the origin of 
the t scores in the reduced space and progressively moves 
out. The drawback of this approach is that the t scores are 
reluctant, especially at the start of the batch run, to detect 
an abnormal operation. 

2. A second approach is to assume that the future de- 
viations from the mean trajectories will remain for the rest 
of the batch duration at their current values at time interval 
k (Nomikos and MacGregor 1994). In this case, the as- 
sumption is that the same errors will persist for the rest of 
the batch run. Under this assumption, the SPE chart is not 
as sensitive as in the first approach, but the t scores pick 
up an abnormality more quickly. A compromise between 
the first two approaches that shares their advantages and 
disadvantages is to assume that the future deviations will 
decay linearly or exponentially from their current values 
to 0 at the end of the batch run. 
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Figure 8. Control Limits (95% and 99%) for the SPE and t Scores, With the Outermost Values at Each Time Interval for the Three 
Approaches of Handling Future observations in Xnew The upper plots are for the approach with zeros, the middle plots for the 
approach with current deviations, and the last plots for the approach by projection. 
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3. The last approach uses the ability of PCA to handle 
missing data. The unknown future observations can be re- 
garded as missing values from an object (batch) in MPCA. 
Hence one can use the principal components of the refer- 
ence data base to predict these missing values by restrict- 
ing them to be consistent with the already observed val- 
ues up to time interval k and with the correlation structure 
of the measurement variables in the data base as defined 
by the p-loading matrices of the MPCA model. MPCA 
can do this by projecting the already known observations 
(Xnew,k(kJ x 1)) into the reduced space and calculating 
the t scores at each time interval as (Appendix C) 

tR,k = (PkPk) PkXnew,k 

where Pk(kJ x R) is a matrix having as columns all the 
elements of the p-loading vectors (Pr) up to time interval 
k from all the principal components. The matrix (P'kPk) 
is well conditioned because of the orthogonality property 
of the loading vectors (Pr). This method appears to be 
superior to the other methods if at least 10% of the history 
of a new batch is known. It has the great advantage of 
giving t scores very close to their actual final values, and 
thus their control limits have quite constant trajectories 
(Fig. 8). Caution must be used at the beginning of a new 
batch in which this method may give quite large and un- 
explainable t scores because there is so little information 
to work with. 

Which approach to use depends on the specific charac- 
teristics of the process under consideration. If the trajec- 
tories of the process measurements do not exhibit frequent 
discontinuities or early deviations, one may use the third 
approach. If there is knowledge that the disturbances in a 
given process are quite persistent, then it is better to use 
the second approach which generally has worked well in 
most cases we have investigated. If a batch process does 
not exhibit persistent disturbances or has variables with 
discontinuities in their trajectories, then it may be better 
to use the first approach. In general, one can use a combi- 
nation of the preceding approaches, like starting with one 
approach and switching after some time to another one, 
and to build in this way some engineering knowledge in 
his monitoring scheme. 

5. CONTROL LIMITS FOR THE MULTIVARIATE 
SPC CHARTS 

Independent of which way one may choose to handle 
the future observations in a new batch run, the on-line 
monitoring will be based on control charts in which the 
control limits will be established in the same way. These 
charts will monitor the t scores and the SPE of a new 
batch as it progresses. If a new batch is still operating in 
the same way as the batches in the reference data base, 
but still has a larger than normal variation in its measure- 
ments, this will show up clearly as large deviations of the 

t scores from the origin of the reduced space. In the case 
in which a totally new fault that is not represented in the 
data base occurs, the principal components will then not 
be able to describe correctly the variation. Thus the new 
observations will move off the MPCA plane, resulting in 
large values of the SPE. The residuals account for any 
disturbance that is not described sufficiently in the data 
base of good batches, and this makes them very sensitive 
in detecting such new faults. 

The control limits for these charts are calculated by 
passing each of the batches in the reference data base 
through the monitoring procedure and collecting their t 
scores and SPE at each time interval k. These 36 obser- 
vations for the t scores and SPE at each time interval 
provide the external reference distribution (Box, Hunter, 
and Hunter 1978) upon which the control limits can be 
directly calculated. The assumption is that this external 
reference distribution is sufficient to capture the common- 
cause variation in normal batch operations and that this 
variation will still be functioning in the same manner in 
future batch runs. 

5.1 Control Limits on t Scores and SPE 

The t scores are linear combinations of the measure- 
ment variables and by the central limit theorem should 
be approximately Normally distributed. Analysis of the 
batch data revealed that they were indeed well approxi- 
mated by a Normal distribution (D'Agostino and Stephens 
1986; Lilliefors 1967) except at the first few time inter- 
vals. These early deviations from Normality result from 
the approximations used to handle the future observations 
in Xnew. Under the assumption of Normality the con- 
trol limits at significance level a, for a new independent t 
score, at any given time interval are given by (Chew 1968; 
Hahn and Meeker 1991) 

?tn-l,a/2Sref(1 + 1/n)1/2, 

where n, sref are the number of observations and the esti- 
mated standard deviation of the t-score sample at a given 
time interval k (the mean is always 0) and tn-l,a/2 is the 
critical value of the Studentized variable with n - 1 df at 
significance level a/2. The Hotelling statistic (Tracy et al. 
1992) for a new independent t vector becomes 

D = t'RkS tR,kI(I - R)/R(I2 - 1) ~ FR,I-R 

and the axis lengths of the confidence ellipsoids in the 
direction of the rth principal component are given by 
(Johnson and Wichern 1988) 

?(S(r, r)F2,1_2,a2(12 - 1)/I(I - 2))1/2. 

The SPE is a quadratic form of the errors associated 
with the least observations at time interval k (SPEk = 
c _=(k_I)j+le(c)2). These errors were found to be well 
approximated by a multinormal distribution N(0, S). 
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Box (1954) and Jackson and Mudholkar (1979) derived 
approximate distributions for such quadratic forms. Box 
showed that it is well approximated by a weighted chi- 
squared distribution (gxh ), where the weight (g) and the 
degrees of freedom (h) are both functions of the eigenval- 
ues of S. Jackson and Mudholkar's approximate distribu- 
tion, as shown in Appendix C, is very close to that given 
by Box. In this article we use the gx 2 approximation of 
Box for the distribution of the SPE to estimate the control 
limits at any point in time. Although the g and h can be 
estimated from the eigenvalues of the estimated E, a sim- 
pler approach is used here based on matching moments 
between a gx2 distribution and the reference distribution 
of SPE at any time interval k. The mean and variance of 
the gx2 distribution (,/ = gh, a2 = 2g2h) are equated to 
the sample mean (m) and variance (v) of the SPE sample 
at each time k (Appendix B). It is a quick way to estimate 
g and h reasonably well provided that the number of SPE 
observations is sufficiently large. Thus the control limit 
on the SPE at significance level a for time interval k are 
given by 

SPE, = (v/2m)X2m2iv a 

where X2m a is the critical value of the chi-squared vari- 
able with 2m2/v df at significance level a. 

Estimates of g and h are shown in Figure 9 for the moni- 
toring scheme used in the last plots in Figure 8 (i.e., filling 
in the missing data by projection). These results are sim- 
ilar to those obtained using the other two approaches to 
handling the future observations in Xnew, with differences 
occurring mainly in the first 10 to 15 time intervals. These 
plots of g and h provide information about the chang- 
ing nature of the distribution of the residuals throughout 
the duration of the batch. Low values of the degrees of 
freedom (h) indicate that the distribution is dominated 
by large variability of only a few of the measurement 
variables around their mean trajectories. High values of 
h occur during more stable periods in which deviations 
from most of the variables are contributing evenly to the 
SPE. For example, the batch period (10-40) represents 
a fairly smooth behavior during the well-controlled va- 
porization stage. Period (45-50) represents the transition 
from the vaporization to polymerization stage and (65- 
70) a change in nature of operation during polymeriza- 
tion. In both of these periods a few variables are changed 
rapidly. Moreover, sudden changes are made to the pro- 
cess at the start and at the end of the batch run. The g 
is simply a scaling factor to enable one to match the mo- 
ments. 

Because the number of observations in the reference 
distribution at each time interval may not be very large 
(I = 36 in this example), the control limits on the t 
scores and SPE can be quite variable. Because most batch 
processes progress in a reasonably smooth manner and 
each time interval is closely related to its previous and 
next ones, one might expect the control limits to change 
smoothly. Therefore, we have used the idea of window- 

0o 1 

TIME 

0 20 40 60 80 100 

TIME 

Figure 9. Plots of Estimated g and h Values From the gXh 
Distribution. 

ing taken from spectral analysis (Jenkins and Watts 1968) 
for the results in Figures 8 and 9. The reference distribu- 
tion at time interval k was composed of the observations 
at time intervals k - 2, k - 1, k, k + 1, and k + 2. In 
effect, we have used a moving window that is five time 
intervals wide to combine data for the estimation of the 
control limits on the t scores and SPE at the center of 
the window. In our example this provides n = 5*36 ob- 
servations for the calculation of the limits at each time 
interval. In general the width of the smoothing window 
will depend on the number of batches in the reference dis- 
tribution and on the nature of the process itself. In the 
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Table 2. Overall Significance Levels for the Control Limits of the t Scores and SPE for the 
Three Approaches to Handling the Future Observations in Xnew 

Approach Zeros Current deviations Projection 

t1 .002 .000 .006 .001 .006 .000 
t2 .052 .011 .041 .003 .086 .009 
t3 .030 .000 .051 .002 .056 .000 
SPE .052 .014 .049 .015 .049 .012 
Instantaneous a .050 .010 .050 .010 .050 .010 

case in which there are many batches in the reference data 
set, very little smoothing will be necessary. The use of a 
window helps small sample sizes but relies on the addi- 
tional assumption that the variance of the statistics varies 
in a smooth manner with respect to time. In practice (as in 
spectral estimation), several window widths can be tried 
and one chosen that gives reasonably smooth control lim- 
its (low variance) but does not affect their main shapes 
(low bias). 

5.2 Overall Type I Error 

The preceding control limits for the t scores and SPE 
were based on the approximate distributions of these 
statistics at any one point in time. Considering only that 
period of time, the a value in these tests would be the Type 
I error. Although this is a common procedure for setting 
control limits (Bauer and Hackl 1980; John 1990; Mac- 
Gregor and Harris 1993; Montgomery 1994), it is not cor- 
rect when one considers the sequential application of the 
procedure over the entire batch run. In general, the Type I 
error associated with monitoring the entire 100 time inter- 
vals will be different from the a, value for the instantaneous 
test. If the statistics were independent over time then the 
overall Type I error would be given by 1 - (1 - a)00, 
which is .634 for a = .01. The t scores and SPE values 
at successive times are not independent, however, and the 
overall Type I error could only be determined knowing the 
joint distribution of these statistics over all periods. For- 
tunately, to establish the control limits each set of batch 
data in the reference data base is passed through the mon- 
itoring procedure, and the number of values of each test 
statistic falling outside the control limits can be enumer- 
ated. Thus an overall Type I error can be estimated for the 
control chart as the number of values of the test statistic 
outside the control limits in the reference data base di- 
vided by the total number of observations (IK). These 
overall Type I errors are presented in Table 2 for the two 
values of the instantaneous test Type I errors. The esti- 
mated overall Type I errors for the SPE test are quite close 
to the instantaneous a values. We have found this to be 
generally true in every data set we have investigated so 
far. The overall Type I errors for the t scores are gener- 
ally close to the nominal a value when the instantaneous 
a = .05, but the approximation is poorer for instantaneous 
a =.01. 

6. MONITORING AN INDUSTRIAL 
BATCH PROCESS 

Two examples are given in Figures 10 and 11 for on- 
line monitoring of two new batches from the industrial 
polymerization process using the projection approach for 
filling in Xnew. Neither batch was included in the reference 
data base of normal batches used to develop the MPCA 
model. The batch in Figure 10 is a new batch that was felt 
to have exhibited both acceptable operation and acceptable 
final polymer quality. The batch in Figure 11 is batch 49 
discussed earlier in our post-analysis study. This batch 
yielded a product of marginal quality, in that the quality 
measurement was right at the acceptable limit. 

Figures 10 and 11 show plots for the SPE and one of the 
t scores along with their control limits. Plots of the joint 
tl-t2 space and the D statistic are also shown. The con- 
trol limits on these later two charts are only approximate 
ones because they are based on the covariance matrix S of 
the t scores from the post-analysis of the reference data 
base, which has available the measurement variables for 
the whole batch duration. These two charts evaluate at 
each time the expected performance of the whole batch 
duration assuming that the future behavior of the batch is 
well described by the approach that is used to fill in the 
unknown observations in Xnew. To provide more precise 
control limits for thejoint t space and the D-statistic charts 
would require evaluating and storing the estimated joint 
covariance matrix (R x R) of the t scores for each point 
in time. Note that the t scores are truly orthogonal only at 
the final time corresponding at the end of the batch. 

The batch with acceptable product (Fig. 10) shows no 
abnormality in any of the SPC charts. The SPE chart for 
batch 49 clearly signals that something is unusual between 
time intervals 57 and 65. During this period the p load- 
ings are small, which makes the t scores slow to respond 
to the change. After the 65th time interval the measure- 
ments return to their normal trajectories, as do the t scores, 
because now the unusual previous behavior plays a less 
significant role in them. Unlike the SPC charts on the other 
abnormal batches investigated, in which once a problem 
was detected the t and SPE values remained outside of the 
control limits for the remainder of the batch, in this batch 
(49) the problem disappears shortly after time 65. In spite 
of its return inside the acceptable control region, this batch 
is characterized as abnormal because of the violation of 

TECHNOMETRICS, FEBRUARY 1995, VOL. 37, NO. 1 

53 

This content downloaded from 132.229.14.7 on Tue, 27 Aug 2013 15:48:52 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


PAUL NOMIKOS AND JOHN F. MACGREGOR 

SPEOUTOF 95%9UMIT1 99% UMIT0 T OUT OF 95% LIMIT 0 9996 IMIT 0 

4U ------------------- ---------------- ---------- 

20- 

'I. 

R 
0 
f- 

0 

-20 

-40 

50 60 70 80 90 

TIME 

30 

20 

10 

0 

I.- 

.60 
0 -10 20 30 40 50 60 70 80 90 10 

TIME 

D OUT OF 90 LIMIT 0 95% UMIT 0 
3 

2.5 - 
-- - - -- --- -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - - 

2 

1.5 

1 

-10 - 

-20- 
* ** *-.-*****-**...........- -................ ,e eee ..... 

. ??.eeeee?eeeeeeeeee?ee?e?eeee?e??ee? 

-40 -20 0 20 40 
0 10 20 30 40 50 60 70 80 90 100 

TIME 
T 1 

Figure 10. Monitoring Charts for a New Batch With Good Operation. SPE and ti plots (95% and 99% control limits), joint t1-t2 
and D statistic plots (90% and 95% control limits). 

the control charts during the period 57-65. Indeed, this 
deviation did result in a product with a borderline quality. 

Once a fault or special event has been detected, it is 
important to diagnose the event to find an assignable cause. 
For this aspect of SPC, the multivariate methods are much 
more useful than univariate methods. By interrogating 
the underlying MPCA model, the contribution of each 
measurement variable to the deviations observed in the 
SPE and in the t scores can be displayed (Miller et al. 
1993; MacGregor et al. 1994). These "contribution" or 
"diagnostic" charts can be immediately displayed on-line 
by the operator as soon as the special event is detected. 
Although they may not provide an unequivocal diagnosis, 
they at least will clearly show the group of variables that 
are primarily responsible for the detected deviations. In 

the case of the industrial batch polymerization run 49, 
they clearly pointed to simultaneous deviations in four 
variables (6, 7, 8, and 9) from their average trajectories. 
On closer examination of these trajectories it was seen 
that at time period 57 these four variables did deviate in a 
systematic manner and returned to their mean trajectories 
around time 67. Therefore, the special event in this batch 
could be attributed to an operational problem with these 
variables. 

From the preceding examples it is clear that one has to 
monitor closely the SPE and D charts and, if something 
goes wrong, to check the individual t-score plots to get a 
better understanding of what is going on. In some cases 
it may be possible to identify areas in the reduced space 
(t plots) corresponding to a particular fault and thus to 
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Figure 11. Monitoring Charts for "Bad" Batch Number 49. 
statistic plots (90% and 95% control limits). 

construct an expert system for diagnosis. It should also be 
noted that a violation of the control charts does not mean 
that the product will be unacceptable. It only means that 
the operational behavior of the batch is unusual and this 
unusual behavior may lead to low-quality product. 

7. DISCUSSION AND ENGINEERING ISSUES 

MPCA provides an answer to the question if the on- 
line measurements have enough information to detect un- 
successful batches. Post-analysis by MPCA has proven 
useful for discriminating between batches with normal and 
abnormal operation and to identify the time periods and in 
which measurement variables the differences occur. Large 
p loadings are good indicators of where to look to explain 

SPE and t3 plots (95% and 99% control limits), joint t1-t2 and D 

differences in the t scores. MPCA has also been shown to 
provide a useful means of augmenting knowledge gained 
from the final quality measurements for assessing whether 
or not a past batch is a good one. This is a rather attractive 
means of characterization, if one considers how difficult it 
is to obtain quality measurements and the uncertainty that 
is involved in them. Certainly, one quality measurement, 
as in the industrial example of this article, cannot capture 
all the quality aspects of the final product. 

In common with all on-line monitoring methods, these 
multivariate SPC methods can only detect "observable" 
events-that is, events that influence at least one or more of 
the measured variables. This is analogous to the require- 
ment of "observability" in state estimation of mechanistic 
models (Kuo 1987). Some events that lead to quality prob- 
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lems may pass undetected if they have no impact on the 
measurement variables. The only way of improving this 
situation is to add new measurements that are responsive 
to these events. Indeed, in another industrial batch pro- 
cess that we investigated, an important quality problem 
related to surface properties of the product was not able 
to be detected by these MPCA charts. This had not been 
unexpected, however, because none of the on-line mea- 
surements available were related to surface chemistry. 

The batch runs must be comparable for MPCA to be 
effective. By comparable runs, we mean batches that op- 
erate in reactors of similar design, with the same catalysts, 
the same operational program, and so forth. If some- 
thing changes in the process, a new MPCA model must 
be built to accommodate this change. This is a general 
requirement of any method based on an empirical refer- 
ence model. In our industrial example, the reactor unit is 
removed from service every several hundred batches for 
routine maintenance and cleaning. This cleaning changes 
the heat-transfer characteristics of the reactor for the first 
few batches after the reactor is placed in service again, and 
special precautions and control in the operation of these 
batches is required. Our batch data base is from a seasoned 
unit that makes the resulting MPCA model unsuitable for 
monitoring these first batches after the cleaning. 

The only requirement of the proposed method is the 
availability of a good data base on past batches and the 
ability to access the same data in real time for new batches. 
Data-collection systems and data historians on many in- 
dustrial batch processes are inadequate. Historical data on 
all the variable trajectories are often not saved but rather 
summarized by only a few raw statistics. The sensors for 
measuring the on-line variables must also be well main- 
tained on a regular basis. 

The sampling rate must be adequate for capturing the 
important trajectory information in the process. If there 
exists prior knowledge that a particular period during the 
batch is very important for product quality, then the sam- 
pling rate should be increased over that period. By in- 
creasing the sample rate it will be possible to track faster 
any deviations from the average trajectories over that pe- 
riod, and it will also weight that period more heavily in 
the MPCA model because there will be more p loadings 
corresponding to it. Another way to weight a particu- 
lar period or variable more heavily is with proper scaling 
when the MPCA model is being built. The method can 
also handle different numbers of measurement variables 
during different stages of the batch operation. One can 
either put zeros in the time intervals that these variables 
are not measured or augment columnwise the unfolded 
matrix X at the appropriate time intervals at which these 
variables are measured. 

A difficulty with the proposed method, as outlined in 
this article, occurs when one encounters batch processes 
in which the duration of each batch or the timing for key 
events during each batch is different. An example of this 

occurs when various decisions during the batch are not 
automated but left to the discretion of an operator. The 
batches are usually synchronized at time 0 using a trig- 
ger variable whose change indicates the start of the batch. 
If the batch trajectory shapes are similar from batch to 
batch and only the elapsed time required to achieve a 
given endpoint changes, then for post-analysis one can 
often renormalize the time scale so that all batches have 
the same duration. This is not feasible for on-line moni- 
toring, however, because the duration is not known a priori 
except in cases in which one can easily develop rules to 
anticipate delays between different batch stages. One way 
to handle varying batch times in on-line monitoring is to 
replace time by another measured variable that progresses 
monotonically in time and has the same starting and end- 
ing value for each batch. Examples would be an on-line 
measure of conversion in a chemical reactor or a measure 
of lance position in injection molding. Numerous other 
possibilities exist, but each is specific to the nature of the 
batch process. The data used in this article were from 
a well-automated process, and the only thing we had to 
do was to discard a few observations in the original raw 
data base prior to the start and after the end of the batch 
operation. 

The MPCA used in this article only makes use of 
the process-variable trajectory measurements (X) taken 
throughout the duration of the batch. Measurements on 
product quality variables (Y) taken at the end of each batch 
were used only to help classify a batch as "good" or "bad". 
Nevertheless, such product-quality data can be used in a 
much more direct fashion. Multiway PLS (Wold et al. 
1987) can be performed using both the process-variable 
data array X and the product-quality data matrix Y. Rather 
than focusing only on the variance in X, MPLS focuses 
more on the variance of X that is most predictive for the 
product quality Y. In addition, one usually has also matrix 
Z containing measurements on the initial setup conditions, 
such as quality measurements on the reactants, and mea- 
surements on the initial amount of each ingredient charged 
to the batch. Changes in these variables may often be as 
important to the product quality as variations in the pro- 
cess trajectories. MPLS or multiblock versions of MPLS 
(MacGregor et al. 1994) can easily incorporate all of these 
data (Z, X, Y) into the proposed multivariate SPC moni- 
toring schemes. The charts and methods for setting them 
up are identical to those presented here using MPCA. 

Many articles have been written recently on the topic 
of combining SPC and automatic process control (APC) 
(Box and Kramer 1992; Tucker, Faltin, and Vander Weil 
1993; Vander Wiel et al. 1992). It is important to note 
that the multivariate SPC charts proposed in this article are 
meant to be applied to data collected while the underlying 
batch process is being controlled by the feedforward and 
feedback APC schemes. If something goes wrong during 
a batch run, the controllers may be able to compensate for 
it. Although its final product may be acceptable, MPCA 
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will detect this batch as abnormal because of the unusual 
behavior caused by the excessive control actions. 

When discussing these multivariate SPC monitoring 
schemes, a very appealing feedback control idea has some- 
times been proposed-namely, that whenever a fault is 
detected the MPCA model be inverted to solve for val- 
ues of the adjustable variables that could be reset to bring 
the batch back into the in-control region of the t space. 
This suggestion is not reasonable, however, because the 
MPCA model is not a cause-and-effect model but rather 
only a model for the correlation structure of the process 
variables under routine operating conditions. It cannot 
be used to predict the effects that independent changes in 
some of the measurement variables will have on the qual- 
ity of the final product. Furthermore, once the t scores or 
the SPE have indicated the occurrence of a special event, 
simply forcing them back into the control region will not 
imply acceptable end product, as illustrated in the example 
with batch 49 (Fig. 11). Of course, this does not mean that 
nothing should be done when a fault is detected. The na- 
ture of any corrective action will depend on the underlying 
cause and on the time during the batch at which the fault 
occurred. Therefore, the best form of control action is 
probably to use on-line diagnostic tools to interrogate the 
underlying MPCA model for possible reasons for the fault 
and respond accordingly using one's process knowledge 
or an expert system. Even if the current batch cannot be 
saved, SPC philosophy dictates that an assignable cause be 
found and corrected so as not to affect any future batches. 

8. CONCLUSION 

Multivariate SPC methods have been presented for the 
analysis and on-line monitoring of batch and semi-batch 
processes. The only information needed to develop these 
methods is a historical data base on measured process- 
variable trajectories from past successful batches. MPCA 
is used to summarize and compress the data with respect 
both to variables and time into low-dimensional spaces 
that describe the normal batch operation. In spite of the 
complexity of the original problem, this approach leads 
to multivariate SPC charts that are as simple as univariate 
Shewhart charts but are more powerful in their ability to 
quickly detect and diagnose special events that may occur 
during the progress of a batch. The methodology is generic 
so as to be easily applied in most batch and semi-batch pro- 
cesses and provides a continuous basis for improvement. 
Control limits for the principal components t-score and 
residual charts are developed using information from the 
historical reference distribution of past batches. Finally, 
the methods are illustrated through their application to the 
analysis and on-line monitoring of an industrial polymer- 
ization reactor. 
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APPENDIX A: NIPALS ALGORITHM FOR MPCA 

1. Unfold X(I x J x K) into X(I x JK). 
2. ScaleX. 
3. Choose a column of X as t. 
4. p = X't. 
5. p = p/Ip. 
6. t=Xp. 
7. If t has converged, then go to Step 8; otherwise go 

to Step 4. 
8. E = X- tp'. 
9. Go to Step 4 with X = E to extract the next principal 

component. 

APPENDIX B: CONTROL LIMITS FOR 
QUADRATIC FORMS OF RESIDUALS 

Let x be an observation vector from a multinormal pop- 
ulation N(O, S) and Xi the eigenvalues of S, then approx- 
imate control limits for the quadratic form Q = x'x with 
significance level ca are given by (Box 1954) Qa = gXh2 
and (Jackson and Mudholkar 1979) Q = 01 [1 - 02ho( - 
ho)/002+za(202h)l1/2/1 ]l/ho, where X2 is the chi-squared 
variable with h df and z is the Normal variable that has the 
same sign as ho. The rest of the parameters are 01 =- E i, 
02 = X2 03 - 

3 g = 02/0l, h = 02/02, and 
ho = 1 - 213/302. The relationship between them 
becomes clear when one uses the Wilson-Hilferty ap- 
proximation for the chi-squared variable (Evans, Hast- 
ings, and Peacock 1993) and rewrites Box's equation as 
follows: Qa, gh[1 - 2/9h + z,(2/9h)1/2]3. Every 
term (except the second one) in this equation approxi- 
mates well the corresponding term in Jackson and Mud- 
holkar's equation when one has extracted most of the sig- 
nificant principal components (Xi with large values), and 
thus 02 0103. 

In our case, we use Jackson and Mudholkar's equation 
for the control limit on Q, and we estimate the Oi from 
the estimated residual covariance matrix. The matrices 
E'E(JK x JK) and EE'(I x I) have the same eigenval- 
ues: V = EE'/(I - 1), 01 = trace(V), 02 = trace(V2), 
and 03 = trace(V3). The control limits for the SPE are 
based on Box's equation, and we approximate g and h by 
matching moments of the g2 distribution. We chose to 
do this because we have to estimate a control limit at each 
time interval, and this way is faster than using the traces of 
powers of the residual covariance matrix (J x J) at each 
time interval. Thus let m and v be the estimated mean and 
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variance of the SPE at a particular interval k, then the g 
and h are approximated by g = v/2m and h = 2m2/v. 
The method of matching moments is susceptible to error 
when there are outliers in the data or when the number of 
observations is small. Outliers have been avoided, how- 
ever, by the careful selection of the reference normal data 
base, and the number of SPE values used to estimate the 
control limit at each time interval is fairly large due the 
smoothing window we apply in our data. 

APPENDIX C: PCA PROJECTION 

At each time interval (k) we are searching for a t vector 
(tR,k(R x 1)), which, along with the p loadings from 
the PCA model developed from the training set of good 
batches, will approximate the observations available up to 
time period k(Xnew,k(kJ x 1)) with the least squared error 
Xnew,k = PktR,k. The Pk(kJ x R) is the matrix that has as 
columns all the elements of the p-loading vectors (Pr) up 
to time interval k from all R principal components. The 
least squares solution to the preceding equation, which is 
the projection of vector Xnew,k onto the space defined by Pk, 
is given bytR,k = (PPk)- PXnew,k. The matrix (PPk)-1 
is well conditioned even for the early time intervals, and it 
approaches the identity matrix as k approaches K (the final 
time interval) due to the orthogonality of the p-loading 
vectors. 

[Received January 1994. Revised June 1994.] 
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