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SUMMARY 

Modem spectrofluorometers have several instrumental settings to be adjusted and decided on before 
sample measurement, e.g. excitation and emission slit widths, emission scan velocity and spectral ranges 
to be recorded. The influences of these settings on the recorded spectra are cmcial, particularly when 
applying full fluorescence spectra in the analysis of a given problem. The effect on the fluorescence 
emission spectra when changing the slit widths is studied in detail by recording the emission spectra of an 
ovalene standard block at al1 possible excitation (3-15 nm) and emission (3-20 nm) slit width 
combinations. By the two-way curve resolution method altemating regression (AR) it is possible to 
resolve the emission spectra into three hidden spectra describing the come,  medium coarse/fine and fine 
structure of the recorded spectra. By the three-way methods PARAFAC and Tucker it is possible to 
separate the effects of both the excitation and emission slit widths on the recorded spectra. An analogous 
analysis of a natural sugar sample results in a one factor PARAFAC solution, probably because of the 
large amount of different substances found in a table sugar sample resulting in rather featureless emission 
spectra not so susceptible to influence by the instrumental settings. Finally, it is demonstrated that two-way 
unfold PLS, PARWAC and Tucker regression models are able to predict the excitation and emission slit 
widths from the recorded emission spectra. The root mean square errors of prediction (RMSEP) are about 
0.5 nm (R~0.990)  for the excitation slit and 0.3 nm (Rz0.999) for the emission slit. O 1996 by John 
Wiley & Sons, Ltd. 

KEY WORDS fluorescence spectroscopy; slit widths; PARAFAC; Tucker; three-way regression; 
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INTRODUCTION 

Fluorescence spectroscopy has for decades been a versatile analyticai tool in the chemicai laboratory, 
mostly owing to its extreme sensitivity and selectivity when considering the spectral shapes 
produced by anaiysis of single chemicai component solutions."* During OUT work with the 
fluorescence technique for fast on-linelat-line anaiyses in the food indushy 3*4 we have made several 
investigations of the instnimental aspects of fluorescence spectro~copy,~*~ including the inñuence of 
dil€erent scan velocities, lamps and slit width adjustments on the obiained spectra. These 
investigations have primaniy been concemeú with the performance of the inshument when using the 
recorded spectra in a black box fashion with multivariate calibration models for e.g. the prediction of 
relevant quality parameters in sugar production. During these anaiyses we became attentive to the 
more general problem of how to understand the effect of diEerent siit width adjustments on the 
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recorded spectra. In the analytical chemicai literanire, little has been published in this area (consult 
e.g. the reviews on fluorescence spectroscopy in Analyfical Chemistry7**). This may be because the 
explanations presented in textbooks on fluorescence spectroscopy and instnuneniai analysis seem 
satisfactory for the application spectroscopist:'*9~'o 'Generally wider slit widths are used for 
quantitative analysis where accurate absorbance measurements are requird, narrower sliis are 
employed for qualitative work where spectral detail is important' (Reference 10, p. 510). This 
quotation describes qualitatively the effects of changing the slit widths, but one might ask what the 
quantitative effects of these changes are, a question that becomes even more relevant considering the 
increasing use of whole fluorescence spectra in combination with chemometr ic~ .~~~~~~"- '~  
In this paper, two- and three-way resolution techniques are used in the analysis of the slit width 

problem. The problem of two-way resolution methods such as altemating regre~sion'~ and evolving 
factor analy~is'~ is that the found solutions are not necessarily unique. By imposing restrictions on 
the data it is possible in some cases to obtain unique solutions by two-way methods. These 
uniqueness problems can be solved when increasing the order of the data structure from two to 
three. The PARAFAC method is capable of giving unique three-way array resolutions and several 
applications have been rep~rted. '~~ '~ The slit width problem is attacked by analysing fluorescence 
spectral data produced by real sample measurements with a Perkin Elmer spectrofluorometer. 
Instead of assuming e.g. triangular stru~tures*~ of the influence of changing the slit widths and 
using this in a hard modelling fashion a complete soft modelling approach is chosen. A standard 
block sample and a natural sugar sample are analysed at diíferent excitation and emission slit width 
combinations, yielding three-way arrays of fluorescence intensities to be analysed. Both two-way 
(altemating regression) and three-way (PARAFAC and Tucker) methods are employed. 
Furíhermore, a comparkon between classical unfold PLS, PARAFAC and Tucker regression 
models is given with respect to the prediction of slit widths from the measured emission spectra. 

EXPERIMENTAL 

Instrumentation and programmes 

Al1 experiments are performed on a Perkin-Elmer LS 50B spectrometer. The Perkin-Elmer LS50 
FLDM Instrument programme (version 4.00) is used for instrument control. Spectral data are 
converted to ASCII files by a programme made in the OBEY language fumished by Perkin- 
Elmer (OBEY, version 3.50). An OBEY programme made by S. Huckins, Perkin-Elmer, is 
applied to obtain the raw unsmoothed fluorescence emission spectra during spectrum recording. 
Uncorrected fluorescence emission spectra sampled with 0.5 nm intervals at a maximum scan 
velocity of 1500 nm min-' are recorded in al1 experiments. The sample holder was thermostatted 
to 22-010-1°C. Calculations are performed with Matlab for Windows version 4.2c.l 
(MathWorks, Inc.) and Unscrambler version 5.5 (CAMO A/S). A toolbox made by Claus A. 
Andersson, Food Technology, The Royai Veterinary and Agricultura1 University 2o was used for 
the PARAFAC and Tucker decompositions. The altemating regression algorithm was 
programmed in the Matlab language. 

Experiment í 

A standard block consisting of ovalene (standard block 2 in the Perkin-Elmer C 520-7440 set) is 
measured at excitation wavelength 351 nm. Emission spectra in the range 400-585 nm are 
recorded at al1 possible combinations of the excitation slit width (range 3-15 nm with 1 nm 
step) and the emission slit width (range 3-20 nm with 1 nm step), giving rise to a 234 
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(= 13 x 18) x 371 matrix. In this data structure the two slit width orders are combined to yield a 
two-way array. By nature the recorded data actually constitute a three-way array with 
dimensions 13 (excitation slit widths) x 371 (emission wavelengths) x 18 (emission slit widths). 
When analysing the three-way data structure the emission wavelength direction is reduced by 
utilizing only every fourth data point. This yields a 13 x 93 x 18 array where the emission 
wavelengths cover the range 400-584 nm with 2 nm steps. 

Experiment 2 

A stock solution of sugar is prepared by dissolving 75.0 g of table sugar in 500.0 ml of doubly 
deionized water. Emission spectra at excitation wavelength 340 nm are recorded in the range 
372-600 nm at 63 different slit width combinations. The excitation slit width is varied with 
2 nm steps from 3 to 15 nm (seven levels), while the emission slit width is varied with 2 nm 
steps in the range 3 to 19 nm (nine levels). Every excitation-emission matrix measurement is 
made on a freshly pipetted sugar sample taken directly from the stock solution, i.e. 63 samples 
have been analysed. The three-way data structure obtained has the dimensions 7 x 114 x 9 
(excitation slits x emission wavelengths x emission slits), where the emission data point range 
has been reduced by using every fourth data point. 

THEORY 
Scalars are represented by italic lowercase letters ( x ) .  Lowercase bold-face letters (x) are 
vectors (one-way arrays), capital bold-face letters (X) are matrices (two-way arrays) and 
underlined capital bold-face letters (X) designate three-way arrays. Elements of two-way and 
three-way arrays are represented as xij and xijk, where x can be the measured fluorescence 
intensity. The reader is referred to the literature for thorough descriptions of the employed 
methods. 15.17.1821 -26 

Alternating regression 

Suppose we have a two-way array X in which each row is a fluorescence emission spectrum (J 
wavelengths) of a sample containing different amounts of F fluorophores. if the number of 
samples analysed is Z, we want to resolve the measured mixture emission spectra into the pure F 
spectra and to obtain the concentration levels of the analytes in each sample. That is, the 
equation that is to be solved is X = CST, where X (í x J) is the raw data matrix, C (Z x F) is a 
concentration matrix and S ( J x F )  is a spectrum matrix. The alternating regression (AR) 
method works by the repetitive solution of two regression problems15 and the basic assumption 
is that the data structure is bilinear. Firstly, an estimate of e.g. S is achieved (either by filling 
with random numbers or by using e.g. the first F principal components). From this estimate, C is 
calculated by the least squares solution C=XS(STS)-', then an improved estimate of S is 
obtained by calculating S = XTC(CTC) -' and this iteration is performed a sufficient number of 
times determined by e.g. the size of the residuals when reconstructing X from C and S. in each 
iteration cycle, negative elements are set to zero, i.e. the assumption is that both concentration 
and spectral profiles are larger than or equal to zero. 

PARAFAC 

The more complex three-way generalization of AR is PARAFAC, which is also based on 
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conditional linearity assumptions (trilinearity). The PARAFAC model can be written as2’ 
F 

where xjjk is an element Ui x and for a given F the norm of E (with eiements e,,) is minimized; 
u<, bjf and ck, are defined to be elements in the matrices A, B and C respectively. In the three- 
way data smcture described in Experiment 1 X (Z x J x K) is a 13 x 93 x 19 array and the 
dimensions of the PARAFAC solutions A (Z x F ) ,  B (J x F) and C (K x F) become 13 x F, 
93 x F and 19 x F respectively. The main advantage of PARAFAC is that the obtained solutions 
are unique except with respect to scaling transformations and permutations of the columns of A, 
B and C.” The PARAFAC algorithm used in the calculations presented below is based on an 
altemating least squares approach.” 

Tucker 

The three-way generalization of principal component anaiysis is represented by the Tucker mode1.25,26 
F G H  

x i j k  = 7 aif bjg C k h  g f g h  e i j k  
f = l  g = l h = l  

where xijk is an element in X and for a given combination of F, G and H the norm of E (with 
elements e,) is minimized. The three-way array G is the core array. Again we define u<, bjf and 
ckf to be elements in the matices A, B and C re~pectively.’~ PARAFAC is a special case of the 
Tucker model with F = G = H and a three-way identity core matrix. The Tucker solutions (A, B, 
C and d )  contain rotational ambiguities,*’ but through the core array al1 possible three-way 
interactions can be modelled, making the Tucker model more flexible than the PARAFAC 
model. The Tucker calculations presented in this paper are based on an altemating least squares 
approach without constraints on the matrices A, B, C and GV2O 

Regression rnodels 

Multivariate calibration of three-way data has been offered some attention during the last 5-10 years 
in chemmetrics. Most mdels are baseú on the unfoldmg of the three-way array into a two-way 
mahix, making it possible to use the weii-founded algonthms of two-way PLSl or PLS2 regres~ion,~’ 
but making it diíñcult to interpm e.g. loadings with a large number of variables. A trilinear PLS 
algorithm has been developed by Stahle2* and the theory of a general multilinear PLS method has 
been presented by B~o.~’ Below the two-way muitivariate calibration approach is straightforwardly 
extended to three-way arrays based on the PARAFAC and Tucker decompositions. 

Assume that we want to make a calibration model capable of predicting the excitation slit 
width y, (Z x 1) from the three-way data presented in Experiment 1. Firstly, the three-way data 
array X is decomposed by the PARAFAC algorithm, resulting in the matrices A ( I x F ) ,  B 
(J x F) and C (K x F). It is then possible to solve the model 

y = A r  (3) 
by ordinary multiple linear regression or e.g. a PLSl approach; r is the vector containing the 
regression coefficients. Test set validation and cross-validation can be performed in the normal 
way to estimate the optimal number of factors. For a new unknown sample the a-loadings are 
calculated from the sample matrix (X), B and C and next the predicted y is calculated from 
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equation (3). A can of course be exchanged with C (or B) if e.g. the emission slits are to be 
calibrated for. The main advantage of the PARAFAC regression model compared with other 
models is that the matrices A, B and C are unique and directly interpretable. The method for a 
Tucker decomposed array is completely analogous, inserting the Tucker A, B or C into equation 
(3). The a-loadings of an unknown sample are calculated from the sample matrix (X), B, C and 
- G (and vice versa if B or C is to be used in the regression). 

RESULTS AND DISCUSSION 

Two-way methods (principal component analysis and alternating regression) 

Experirnent 1 

In Figures 1A to lD, selected examples of the measured emission spectra in Experiment 1 are 
given. Small emission slit widths give rise to spectral shapes with a fine structure trading a high 
signal-to-noise ratio for spectral resolution, while the opposite holds for large emission slit 
widths (compare Figures 1A and 1B). The spectral shapes obtained when using small and large 
excitation slits respectively are more alike (Figures 1C and 1D). The main difference rests in the 
signal-to-noise ratio, which is larger when using a large excitation slit. Furthermore, we see that 
the influence of the emission slit width adjustment on the recorded fluorescence intensity leve1 is 
much larger compared with the influence of the excitation slit width (compare Figures 1A and 
1B with Figures 1C and 1D). A principal component analysis (PCA) of the mean centered 
two-way data structure produces three significant components. The score and loading plots are 
shown in Figures 2A and 2B respectively. The explained variances by these components are 
99.21%, 0.66% and 0.09% respectively. Using the loadings as input (S) to the altemating 
regression algorithm results in the estimated emission spectra and amount (or ‘concentration’) 
profiles depicted in Figure 3. From these plots it is possible to describe both qualitatively and 
quantitatively the effects of changing the slits. Al1 emission spectra are composed of different 
amounts of the three hidden spectra, which may be designated as coarse structure, medium 
coarse/fine structure and fine structure (Figure 3A). The amount (Figure 3B) of the coarse 
structure spectrum shows the same behaviour at al1 excitation slits: it increases with an increase 
in the emission slit. The amount of the fine structure spectrum increases slightly with the 
excitation slit and has a maximum at an intermediate emission slit width. Finally, the amount of 
the medium coarse spectrum is proportional to the excitation slit as well as the emission slit. 

Three-way methods (Tucker and PARAFAC) 

Experirnent 1 

The above two-way resolution may be non-unique and it is difficult to distinguish the effects of the 
excitation and emission slits. By arranging the data in a three-way cube, it is possible to employ the 
PARAFAC and Tucker methods in order to resolve the data into the m e  underlying emission 
spectra and also to have an idea of the contribution from both the excitation and the emission slits. 
Consider the data structure in Experiment 1 as a three-way data structure with dimensions 
13 x 93 x 18 (corresponding to excitation slit x emission wavelengths x emission slits of Z x J x K). 
Mean centering of the unfolded two-way array I K x J  is performed prior to modelling, i.e. the 
emission spectra are mean centred. By unfolding the three-way array into the three possible two- 
way arrays followed by rank determination of these arrays, it is possible to find the number of 
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Figure 1. Fiuorescence emission spectra (excitation 351 nm) from Experiment 1.  (A) Thirteen spectra 
corresponding to excitation slits 3-15 nm and emission slit locked at 3 nm. (B) Same as A but with 
emission slit locked at 20 nm. (C) Eighteen spectra corresponding to emission slits 3-20 nm and 

excitation slit locked at 3 nm. (D) Same as C but with excitation slit locked at 20 nm 
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Figure 2. PCA on two-way data smicture given in Experiment 1.  (A) Score plot of first three score 
vectors. Numbers 1-18 correspond to emission slits 3-20 nm at excitation slit 3 nm, numbers 19-36 
correspond to emission slits 3-20 nm at excitation slit 4 nm, etc. (B) Loading plot. Full curve, first 

loading; broken curves, second loading; dotted curve, third loading 
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Figure 3. (A) Resolved spectra and (B) amount profiles by altemating regression of Experiment 1 
two-way array. Line styles correspond in the plots. Sample numbering: see Figure 2. Full curve, first 

factor; broken curve, second factor; dotted curve, third factor 

components to use in a Tucker m~del . '~  The ranks in the emission wavelength and emission slit 
directions are determined to be about three, while the rank in the excitation slit direction is about 
two. For a start a Tucker model with F = G = H = 3 was chosen. In Figure 4B the spectrai loadings 
obtained by this analysis are shown. Comparing with Figure 2B, it is seen that the PCA loadings 
are aimost identical with the smoother Tucker spectral loadings. In Figures 4A and 4C the 
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Figure 4. Tucker decomposition of the three-way data structure in Experiment 1 .  (A) Excitation slit 
loadings. (B) Spectral loadings. (C) Emission slit loadings. Line styles correspond in the plots. Full curve, 

first factor; broken curve, second factor; dotted curve, third factor 
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Emssion slit (nm) 

Figure 4. Continued 

excitation and emission slit width loadings are given. It is now possible to analyse the separate 
contributions from the slits. The variance explained by the Tucker (3,3,3) model is 99.96%. 
Performing a Tucker (2,3,3) analysis gives almost identical loading matrices (except of course for 
the third excitation loading which is now missing), and the variance descnbed by such a model is 
also 99.96%, indicating that only two dimensions are necessary in the excitation slit mode. 

A PARAFAC analysis with three factors is also performed (also explaining 99.96% of the 
variance). Using four- or five-factor analysis, degenerate solutions are obtained (some loadings 
become almost identical). The solution matrices containing the slit width loadings have been 
normalized, resulting in the spectral loadings depicted in Figure 5B. Owing to the blow-up of 
the first spectral loading, both the second and third spectral loadings seem smoother than their 
Tucker counterparts (Figure 4B), but this is actually not the case when comparing the loadings 
on an equal scale. The PARAFAC excitation slit loadings (Figure 5A) are comparable with the 
corresponding Tucker loadings (Figure 4A), except for the third excitation loading which has 
become smooth in the PARAFAC solution. The third emission slit loadings have maxima at 
different slit widths, the Tucker loading seeming more in accordance with the third AR amount 
profile, while the second emission slit PARAFAC loading (Figure 5C) increases with increasing 
slit width as opposed to the second Tucker loading. The AR conclusions on the spectral structure 
(coarse, medium coarse/fine, fine) dependence of the slit width adjustments also hold for the 
Tucker and PARAFAC solutions (Figure 5B). Furthermore, the contributions from the different 
slits can now be interpreted directly from the score plots. In future research it will be interesting 
to investigate a PARAFAC method with non-negativity constraints on the loading matrices in 
order to achieve positive solutions (from the non-centred data) as well as restricted Tucker 
models also taking into account a lower rank of the excitation slit direction. 
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Figure 5. Three-factor PARAFAC decomposition of three-way data structure in Experiment 1. (A) 
Excitation slit loadings. (B) Spectral loadings. (C) Emission slit loadings. Line styles correspond in the 

plots. Full curve, first factor; broken curve, second factor; dotted curve, third factor 
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Figure 5. Continued 

Experiment 2 

It has previously been demonstrated that the behaviour of standard samples is different from the 
behaviour of natural samples when using Auorescence spectroscopy. 30 To investigate the slit 
width effect on natural samples, a sugar sample is analysed. The complex composition of the 
sugar beet in combination with the influence of the different sugar processing steps results in a 
final sugar product with low concentration levels of a large amount of impurities, some of which 
are fluorescing, e.g. phenols, melanins and amino a ~ i d s . ~ ~  A two-factor PARAFAC analysis of 
the three-way array from Experiment 2 yields the spectral loading vectors seen in Figure 6. The 
second spectral loading is noisy and highly correlated to the first spectral loading indicating that 
a one-factor solution is sufficient. Owing to the multiple chemical components present in the 
sugar sample, the spectral shape is very broad and without structure. Since a one-factor solution 
is sufficient, the only major effect of changing the slits is a change in the signal-to-noise lev4, 
i.e. one might as well open the slits fully in order to obtain the best signal-to-noise ratio. This is 
in agreement with earlier published r e s ~ l t s , ~  where the effect of different slit width combinations 
on the performance of PLS predictions of sugar samples was investigated. 

Comments and perspectives regarding slit width resolution 

By introducing more excitation wavelengths, it is possible to obtain four-way arrays, and by 
including the scan velocity as a variable, we have five-way arrays covering al1 the major 
instrument settings of a modern spectrofluorometer. The advantages, if any, of such data 
stnictures in Auorescence spectroscopy remain to be investigated by suitable N-way methods. As 
seen from Figure 1, there is a large difference in the absolute noise leve1 of different slit 
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Figure 6. Spectral loadings from two factor PARAFAC decomposition of emission specira measured on 
sugar sample (Experiment 2). Full c w e ,  first factor; broken curve, second factor 

combinations. This problem should be taken into account in future investigations knowing that 
the PARAFAC algorithm minimizes the residuals. Furthermore, a possible photodecomposition 
of the measured standard block should be considered in more detail in future experiments, even 
though the very good correlations (see below) between the measured spectra and the slit width 
adjustments imply that the variation seen is most likely due to slit width changes. One 
component solutions should be analysed in future experiments for comparison with the standard 
block spectra and spectrofluorometers of different makes should also be compared. 

Regression models for the prediction of slit widths 

It might be interesting in instniment calibration to be able to predict the slit width positions from a 
measured emission spectnim of a given standard. The two-way data structure presented in 
Experiment 1 (dimensions 234 x 371) is used as the independent matrix containing the spectral 
variables, while the excitation and emission slit widths are the variables to be predicted. In Table 1 
the test set (117 samples, every second sample) prediction errors obtained by ordinary two-way 
PLSl models are given. The linear PLSl model is not capable of predicting the excitation slit 
widths, while the emission slit widths can be modelled. Utilizing the three-way data stnicture, it is 
possible to model also the excitation slit width as seen in Table 1, where the fui1 cross-validated 
prediction results when using unfold PLS, PARAFAC MLR, and Tucker MLR on the three-way 
data structure from Experiment 1 are given. MLR means multiple linear regression, which is the 
method used in solving equation (3). If one wants orthogonal loadings as input to equation (3), the 
PARAFAC and Tucker decompositions can be made with orthogonal restrictions on the relevant 
ioadings. i t  should be mentíoned that in this preliminary study full cross-validation has been 
performed only in the regression step of the Tucker and PARAFAC models (equation (3)) and in 
the Tucker decomposition F = G = H .  The emission slits are predicted with slightly smaller 
RMSEP values than the excitation slits. The performance dserences between the calibration 
methods on the three-way data structure are very small, except from an interpretable point of view: 
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Table 1. Root mean square error of prediction (RMSEP) and correlation coefficient (R) for prediction of 
excitation and emission slit widths from emission spectra (see text). RMSEP= 
[ i = 1  (SWfdicLed - SW~fcrrnce)*/N]’/Z, where SW,*cd is the model estimated slit width, SW,Rcference 1s ’ the 

m e  slit width and N is the number of samples 

Number of Number of 
samples factors RMSEP R 

Two-way PLS” Excitation 

Unfold PLSb Excitation 

Tucker MLRb Excitation 

PARAFAC MLRb Excitation 

Emission 

Emission 

Emission 

Emission 

117 
117 
13 
18 
13 
18 
13 
18 

1.825 
0.367 
0.544 
0.275 
0.485 
0.337 
0.487 
0.344 

0.874 
0-998 
0.990 
0.999 
0.992 
0.998 
0.992 
0.998 

~ ~ ~~ 

a Test set. 
Full cross-validation. 

the loadings of the Tucker and PARAFAC models are much easier to inspect than the unfolded 
loadings of the PLS m d e l  (compare Figures 4AB and 5AB with Figure 7). Finally, a slight 
sigmoidal shape is seen in some of the predicted versus measured plots, indicating that a 
transformation of the dependent variable will lower the overall prediction errors further. 

CONCLUSIONS 

Two- and three-way resolution methods make it possible to quantify and interpret the spectral 
effects of changing the excitation and emission slit widths of a spectrofluorometer when 
analysing a standard block. By application of Tucker and PARAFAC methds  it is possible to 
separate the effects of the slit adjustments of both monochromators. When analysing a sugar 

-0.1 1 

4.21 I t I I 
I I 
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Figure 7. Unfold PLS Ioading weights when modelling excitation slit width. Full curve, first loading; 
dotted curve, second loading 
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sample in the same fashion, no significant spectral changes are observed, probably owing to the 
featureless broadband emission spectra onginating from the fluorescence analysis of a sugar 
sample. This means that the slits might as well be fully open when analysing such samples. By 
means of unfold PLS, Tucker and PARAFAC regression both the excitation and emission slit 
widths can be predicted from a measured standard block emission spectrum. 
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