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Abstract: An asymmetric muitidimensional scaling model and an associated non-
metric algorithm to analyze two-mode three-way proximities (object X object X
source) are introduced. The model consists of a common object configuration and
two kinds of weights, i.e., for both symmetry and asymmetry. In the common
object configuration, each object is represented by a point and a circle (sphere,
hypersphere) in a Euclidean space. The common object configuration represents
pairwise proximity relationships between pairs of objects for the ’group’ of all
sources. Each source has its own symmetry weight and a set of asymmetry
weights. Symmetry weights represent individual differences among sources of data
in symmetric proximity relationships, and asymmetry weights represent individual
differences among sources in asymmetric proximity relationships. The associated
nonmetric algorithm, based on Kruskal’s (1964b) nonmetric multidimensional
scaling algorithm, is an extension of the algorithm for the asymmetric multidimen-
sional scaling of one mode two-way proximities developed earlier (Okada and
Imaizumi 1987). As an illustrative example, we analyze intergenerational occupa-
tional mobility from 1955 to 1985 in Japan among eight occupational categories.
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1. Introduction

‘Typical two-mode three-way proximities data consist of two or more
symmetric proximity matrices, where each comes from an individual subject,
experimental condition, or other source of data. Each element of a consti-
tuent proximity matrix represents a proximity between two objects
corresponding to a given row and column of the proximity matrix. After the
seminal work of Tucker and Messick (1963), several multidimensional scal-
ing (MDS) models based on weighted Euclidean distance models were intro-
duced to analyze two-mode three-way proximities (Bloxom 1968; Carroll and
Chang 1970; Horan 1969; Schénemann 1972). These models attempt to
account for differences in pairwise proximity relationships among sources or
among proximity matrices, and are generally called individual differences
MDS models. The differences have been customarily called ‘‘individual
differences.”” Hereinafter that term refers to differences in pairwise proximity
relationships depicted among sources. More general and extended models
were also introduced (Carroll 1972; Lingoes and Borg 1978; Okada and
Imaizumi 1980; Takane, Young, and de Leeuw 1977), but explicitly or impli-
citly such individual differences models assumed each of the square proxim-
ity matrices to be symmetric and thus cannot cope with a set of square asym-
metric proximity matrices.

In the case of one-mode two-way proximities, most MDS models
assume that a square proximity matrix can be regarded as symmetric (Gutt-
man 1968; Kruskal 1964a, 1964b; Torgerson 1952). When a square proximity
matrix is asymmetric, the easiest way to deal with the asymmetry of a prox-
imity matrix to average the two conjugate proximities to obtain a square syms-
metric proximity matrix, and then to analyze the resulting symmetric proxim-
ity matrix by standard MDS (Harshman 1978). But simply ignoring or
neglecting the asymmetry in a proximity matrix discards potentially valuable
information. Several MDS models and associated algorithms have been
introduced to deal with one-mode two-way asymmetric proximities (Chino
1978; Chino and Shiraiwa 1993; Constantine and Gower 1978; Cunningham
1978; DeSarbo and Manrai 1992; Gower 1977; Harshman 1978; Harshman,
Green, Wind, and Lundy 1982; Krumhansl 1978; Okada and Imaizumi 1987;
Saito 1991; Tobler 1977, 1979; Weeks and Bentler 1982; Young 1975, 1987;
Zielman 1991; Zielman and Heiser 1993, 1996).

In the case of two-mode three-way proximities, which consist of two or
more square asymmetric proximity matrices, asymmetry has been ignored
when INDSCAL (INdividual Differences SCALing; Carroll and Chang 1970)
or its derivative models were utilized. DeSarbo and Manrai (1992) and Ziel-
man and Heiser (1993) noted the desirability of dealing with asymmetry in
two-mode three-way proximities. Some models and associated algorithms
were introduced to deal with asymmetry in two-mode three-way proximities
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(DeSarbo, Johnson, A. Manrai, L. Manrai, and Edwards 1992; Zielman 1991;
Zielman and Heiser 1991, 1993). For the case of two-mode three-way prox-
imities, two sorts of individual differences should be noted: (a) individual
differences in symmetric proximity relationships, and (b) individual
differences in asymmetric proximity relationships.

The model of DeSarbo et al. (1992) is based on Tversky’s (1977) “‘con-
trast model.”” The configuration of objects given by their approach represents
a symmetric proximity relationship common to all sources, but ignores both
asymmetric proximity relationships and individual differences in symmetric
proximity relationships (which are gauged by other parameters). Individual
differences in asymmetric proximity relationships are represented by still
other parameters which have no association with the configuration of objects.
We have to interpret separately the obtained configurations for objects and for
parameters which represent asymmetry. Zielman and Heiser (1991, 1993)
introduced the ‘‘slide vector’” model, for one-mode two-way asymmetric
proximities. In that model, the asymmetry is represented by a slide vector
imbedded in a configuration of objects and is linked to the dimensions of the
configuration rather than to its objects. The configuration of objects
represents the symmetric proximity relationship. One has to add or subtract
the slide vector in the configuration of objects to ascertain the asymmetric
pairwise proximity relationships among objects. Although asymmetric prox-
imity relationships are represented by projections of object vectors onto the
slide vector, the projection corresponds to the square of the corresponding
proximity value. It is not easy to visually scrutinize the asymmetry for each
object pair.

Zielman and Heiser (1991, 1993) extended the model to deal with two-
mode three-way proximities by introducing a set of dimension weights for
each source, to represent the salience of each dimension for the source. The
set of weights represents individual differences in both symmetric and asym-
metric proximity relationships. The two different sorts of individual
differences noted earlier are difficult to distinguish in the extended model.
Zielman (1991) further extended his asymmetric MDS for one-mode two-way
proximities to cope with two-mode three-way proximities by introducing an
idiosyncratic configuration of objects for each source (or a set of transforming
matrices applied to a common space) and by applying a set of weights to the
parameters which represent asymmetry for each source. The set of idiosyn-
cratic configurations of objects represents individual differences in symmetric
proximity relationships, and the sets of weights represent individual
differences in asymmetric proximity relationships.

The extended model can represent a symmetric proximity relationship
for each source in a configuration, and an asymmetric proximity relationship
can be represented both in the configuration of objects for each source or in
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another configuration. Although a symmetric element of proximity for any
given pair of objects is represented as a distance in a configuration, the prox-
imity itself is not represented as a distance in any configuration. From these
considerations, three characteristics seem important in the development of
asymmetric MDS model for two-mode three-way proximities: (a) symmetric
and asymmetric proximity relationships are simultaneously represented in a
configuration of objects, (b) individual differences in both symmetric and
asymmetric proximity relationships are distinguished, and (c) the model is
based on distance, where both symmetric and asymmetric aspects of any pair-
wise proximity as well as the proximity value itself are represented as dis-
tances in the configuration of objects.

Characteristic (a) leads to ease of interpretation of the result. When
symmetric and asymmetric relationships are not represented in the same
configuration, we must juxtapose symmetric and asymmetric relationships
that are represented separately. It is far preferable to have both types of rela-
tionships in the same configuration. Characteristic (b) seems very significant
because the two sorts of individual differences stem from different substantive
causes. Characteristic (c) is important because most researchers utilizing
MDS are accustomed to a model where an object is represented as a point and
the recovered distance between two objects by an interpoint distance in a
configuration. It thus seems easier to interpret the result of an asymmetric
MDS analysis when both symmetric and asymmetric aspects of any proximity
value as well as the proximity value itself are represented as distances in a
configuration.

In the common space of Zielman’s (1991) model, both symmetric and
asymmetric proximity relationships are represented in one configuration. In a
configuration of objects for each source, symmetric and asymmetric proxim-
ity relationships are represented in the same configuration, when one of the
two alternatives of representing asymmetric relationship is adopted. Thus
Zielman’s (1991) model fulfills the characteristic (a). Zielman and Heiser’s
(1991, 1993) model fulfills the characteristic (a), but as mentioned earlier, the
asymmetric proximity relationship is represented by projections (of object
vectors on the slide vector) which correspond to the square of a proximity
value. The model of DeSarbo et al. (1992) represents the symmetric proxim-
ity relationship common to all sources in a configuration of objects but does
not represent the asymmetric proximity relationship in the configuration, and
thus fails criterion (a).

Zielman’s (1991) model fulfills the characteristic (b), because each
source has its own configuration of objects to represent individual differences
in symmetric proximity relationships, and sets of weights are used to
represent individual differences in asymmetric proximity relationships. The
model of DeSarbo et al. (1992) does not represent individual differences in
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symmetric and asymmetric proximity relationships geometrically but uses
two different sets of parameters to represent two respective sorts of individual
differences and thus fulfills the characteristic (b). Zielman and Heiser’s
(1991, 1993) model does not fulfill the characteristic (b), because one set of
weights is used to represent individual differences both in symmetric and
asymmetric proximity relationships.

Zielman and Heiser’s (1991, 1993) model represents both a proximity
value and its corresponding symmetric element as distances but does not
represent the asymmetric element as a distance (which is instead represented
as the differences among projections that correspond to the squares of prox-
imities). Thus Zielman and Heiser’s (1991, 1993) model only partially fulfills
the characteristic (c). The common space of Zielman’s (1991) model
represents both symmetric and asymmetric elements of a proximity value as
well as the value itself as distances. In a configuration of objects for each
source, symmetric and asymmetric elements of a proximity value can be
represented as distances, when one of the two alternatives to represent an
asymmetric proximity relationship is used. But a proximity value itself is not
represented as a distance even if that alternative is chosen. Therefore
Zielman’s (1991) model partially fulfills the characteristic (¢). The model of
DeSarbo et al. (1992) is based not on distance but instead on Tversky’s (1977)
“contrast model.’”” Thus, no asymmetric MDS model for two-mode three-
way proximities fulfills all three characteristics simultaneously. Relation-
ships between the models and their characteristics are summarized in Table 1.

The purpose of the present paper is to develop an asymmetric MDS
model and associated algorithm, to account for individual differences in
asymmetric proximity relationships, which fulfills the characteristics (a)
through (c) by analyzing two-mode three-way proximities, which consist of
two or more square asymmetric proximity matrices. The model and the asso-
ciated algorithm are extensions of Okada and Imaizumi’s (1987) model for
the asymmetric MDS of one-mode two-way proximities. The present exten-
sion inherits the characteristic that the asymmetry parameters are linked to
objects. This characteristic, combined with (a) and (c), means we can very
easily assess the asymmetry of each object pair visually by simply looking at
the configuration of objects.

2. The Model

In both the present and predecessor models, each object is represented
both by a point and a circle (sphere, hypersphere) centered at that point in a
multidimensional Euclidean space. The configuration of objects is called the
common object configuration, whose points represent symmetric proximity
relationship among objects and whose circles represent asymmetric proximity
relationship among objects for the group’ of all sources.
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Table 1
Summary Table of the Relationships

between the Models and Characteristics (a) through (c)

Models Characteristics

(@) ) ©
Zielman (1991) yes yes partially
Zielman & Heiser (1991, 1993) yes no partially
DeSarbo et al. (1992) no yes no

(a) Symmetric and asymmetric proximity relationships are simultaneously represented
in a configuration of objects.

(b) Individual differences in both symmetric and asymmetric proximity relationships
are distinguished.

(c) The model is based on distance.

The present model inherited characteristics (a) and (c¢) from Okada and
Imaizumi’s (1987) work. Although that predecessor cannot deal with indivi-
dual differences in both symmetric and asymmetric proximity relationships,
the components respectively representing symmetric and asymmetric proxim-
ity relationships are distinguished and separated (Okada 1990), as they are in
the present model. Each source has its own weight applied to a configuration
of points and a set of weights applied to the radii along dimensions. A weight
applied to the configuration of points, called the symmetry weight, represents
individual differences among sources in symmetric proximity relationships,
and a set of weights applied to the radii, called the asymmetry weight,
represents individual differences among sources in asymmetric proximity
relationships.
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Each source has its own configuration of objects, where each is
represented by a point and an ellipse (two-dimensional space), an ellipsoid
(three-dimensional space) or a hyperellipsoid (four- or higher-dimensional
space). The configuration of points in a common object configuration is
stretched or shrunk by applying the symmetry weight of a source, to derive its
configuration points for the given source. The ellipse (ellipsoid, hyperellip-
soid) embedded in a configuration of objects is derived by applying the asym-
metry weights of the respective source to the radius of the circle in the com-
mon object configuration.

Let s;; be the observed proximity from object j to object & for source i,
n be the number of objects, and N be the number of sources. Two-mode
three-way asymmetric proximities consist of N square n X n asymmetric prox-
imity matrices, one from each of the N sources. The (j,k)-th element of the i-
th proximity matrix is s;; where s;; is not necessarily equal to sg;.

Each object is represented by a point and a circle (sphere, hypersphere)
in a p-dimensional Euclidean space. Let x;, be the coordinate of the point
representing object j on dimension ¢ for the common object configuration, and
r; be the radius of the circle (sphere, hypersphere) centered at the point
representing object j. A common object configuration in a two-dimensional
space is represented in Figure 1.

The distance between two points representing objects j and k in the
common object configuration is given by

14 ’
djp = 1Y G —x)’1” .1
r=1
which represents the symmetric element of the proximity between objects j
and k in the common object configuration. The latter can be interpreted simi-
larly as with the configuration of objects of Okada and Imaizumi (1987) for
one-mode two-way asymmetric MDS. Thus, an object with larger radius is
more similar to an object with smaller radius than vice versa for the *group’ of
all sources. In the common object configuration -(r; —ry) and -(rp — 1))
represent the skew symmetric elements of the proximities respectively from
object j to k and from object k to j. The skew symmetric element can be
interpreted as a dominance effect (Zielman and Heiser 1996). For example,
larger r; means the relative vulnerability of brand j in brand switching
(Okada 1988a).
The distance between two points representing objects j and k in the
configuration of objects for source i is defined by

djki = W,'djk . (22)

Symmetry weight w;(w; 2 0) stretches or shrinks the configuration of points
for source i. Asymmetry weight u;, stretches or shrinks the radius of a circle
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Figure 1. Common object configuration. Five objects are represented in a common object
configuration. Each object is represented as a point (+) and a circle centered at that point in a
two-dimensional space. An object shown at the bottom of the figure, represented only by a
point. has a circle of radious = 0. Object j is represented as a point (x;,%;,) and a circle of
radius ;.
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Figure 2. Asymmetry weight configuration. Six sources are represented in an asymmetry
weight configuration. Each source is represented as a point (+) in a two-dimensional space.
Source i is represented as a point (#; |, 4;5).
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to provide the semiaxis along dimension ¢ of the ellipses in the configuration
of objects for source i. The ellipse centered at the point representing object j
in the configuration of objects for source i has semiaxes of length u;r; along
dimension 7 (t = 1, ... ,p), where u; (u; =0) is the asymmetry weight given
to radius of the circle in the common object configuration.

Symmetry weight w; represents the salience or importance of the sym-
metric component for source i. Asymmetry weight u;, represents the salience
or importance of the asymmetric component for source i along dimension .
Individual differences only in magnitude of symmetric relationships are
represented without respect to separate dimensions. In contrast, individual
differences in magnitude of asymmetric proximity relationships are
represented along each dimension for each source. The present model
focuses its attention more on individual differences in asymmetric proximity
relationships than on individual differences in symmetric proximity relation-
ships. Zielman and Heiser’s (1991, 1993) and Zielman’s model (1991) all
represent individual differences in the magnitude of symmetric proximity
relationships along each dimension, while the model of DeSarbo et al. (1992)
represents individual differences in magnitude of symmetric proximity rela-
tionships. The present model adopts the same stance as that of DeSarbo et al.
(1992) for representing individual differences in symmetric proximity rela-
tionships. Asymmetry weights are represented geometrically in the ‘‘asym-
metry weight’” configuration, where each source is represented as a point in a
p-dimensional space. Figure 2 shows an asymmetry weight configuration in a
two-dimensional space.

It is assumed that for source i, s;; is monotonically decreasingly (when
the observed sj; depicts similarity) or increasingly (when s; depicts dissimi-
larity) related to my,, where my,; is defined as

Mii = Ajgi — Viki Tj + Viji Tk - (23)

Vi I and v ry are introduced to account for skew symmetries in sj;, and
Vi 1 defined as

Vi = Zji 2.4
where
de‘
R 9
— Ak
3 ( Jt ! )2
r=1 Ui

viji and z;; are defined simply by interchanging j and k in Equations (2.4) and
(2.5), and are equal to vy, and zj; respectively. The two-way model of
Okada and Imaizumi (1987) is the case where subscript i is eliminated and
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Figure 3. my; and my;; in the configuration of objects for source i.
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Vi = Vg =1 in Equation (2.3). In the two-way model of Okada and
Imaizumi (1987) the asymmetry is unidimensional, whereas in the present
model asymmetry of each source is multidimensional.

In Figure 3, j and k are represented in a two-dimensional configuration
of objects for source i. Object j is represented as a point whose coordinates
are (w; x;1,w; xj2) and an ellipse, centered at that point, which has semiaxes
of length u;; r; along dimension 1 and u;, r; along dimension 2. Object & is
represented both as a point whose coordinates are (w; x;1,w; x;2) and as an
ellipse, centered at that point, which has semiaxes of length ;1 ry and u;, ry.
The lengths of the solid arrows in the upper and lower panels respectively
depict my,; and my;. The distance between the two points representing
objects j and k depicts dy;. The lengths of the dashed line in the ellipse
representing object j in the upper panel and object k in the lower panel
respectively depict vy, r; and v, ry.

In the present model, both symmetric and asymmetric proximity rela-
tionships are represented in the same configuration, the former as interpoint
distances, and the latter as differences of radii of circles in the common object
configuration or as differences of two distances between the ellipses (shown
as lengths of the dashed line in Figure 3) in the configuration of objects for
each source. Two components representing symmetric and asymmetric prox-
imity relationships are clearly distinguished and separated (sec Equation
(3.5)). The proximity itself as well as symmetric and asymmetric elements of
the proximity are represented as distances in the configuration. Each object
has its own circle or ellipse to account for asymmetry. Thus, the characteris-
tics (a) through (c) which characterize the development of the present asym-
metric MDS model mentioned are satisfied.

In the predecessor model for one-mode two-way asymmetric proximi-
ties, the orientation of the dimensions of a configuration is determined
uniquely up to orthogonal rotations (Okada and Imaizumi 1987). In the
present model, the orientation of the dimensions of a common object
configuration is determined uniquely up to reflections and the permutations of
the axes because of the introduction of the asymmetry weights. When the
orientation of the dimensions is arbitrarily altered, the asymmetry weights are
applied to differently oriented dimensions, and badness-of-fit consequently
increases. This aspect of the model leads to the uniquely oriented dimensions
of the common object configuration.

3. The Algorithm
A nonmetric algorithm to derive the common object configuration (xj;

j=1L...nt=1,...,pand r;; j=1,...,n) and asymmetry weights (u;;
i=1,...,N, t=1,..,p) by analyzing two-mode three-way asymmetric
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proximities sy; (j,k[j #k]=1,...,n) among n objects from N sources will
be presented. Symmetry weights (w;; i = 1,...,N), dependent on U, X and r,
are derived through the normalization of mj; (see Equation (3.7)). The algo-
rithm is an extension of the predecessor model for one-mode two-way asym-
metric proximities (Okada and Imaizumi 1987).

The measure of badness-of-fit between my,; and the monotone
transformed sy, called stress S, is based on the Stress Formula 2 (Kruskal and
Carroll 1969) and defined as
Y

Lss| G.1)
N5
where §; is the measure of badness-of-fit for source i, and is defined as
( - R . Y
> 2 (mj —myg)
j=1 ¢1;<=1
_ J
Si= |7, — 3.2)
> 2 (mpy —my)
j=1k=1
Jj#k

In equation (3.2) ﬁljki is the transformed sj; defined by Kruskal’s (1964b)
monotone algorithm, and m; is

2 2 Mk
=l ]5{:
— J#
= 3.3
i nmn-1) 3.3)

which represents the mean of my, for source i. The stress S is a function of
Xj;, I, and u;;. The problem here is to find xj, r;, and u; (as well as w;) which
minimize S in a Euclidean space of a given dimensionality. The iterative
algorithm to minimize § is based on the steepest descent method.

3.1 Summary of the Algorithm

As illustrated in Figure 4, the algorithm has three segments. The first is
reading proximity data and constructing initial configurations and values.
The second is the iterative process which minimizes S in a Euclidean space of
a given dimensionality p, and the third is standardizing the obtained result.
After constructing initial configurations and values of the common object
configuration X = [x;] and r = [r;], the asymmetry weight configuration
U = [u;,] and symmetry weights w = [w;], the iterative process begins. It con-
sists of (a) updating radii r = [r;], for existing X, U, and w, (b) updating X, (¢)
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normalizing X and my;, and deriving w through the normalization, (d) updat-
ing U, and (e) normalizing X and mj;, and deriving w through the normaliza-
tion. At each iteration, S is calculated to check for convergence. If not, a
new iteration begins. If no further iterations are needed, the iteration is ter-
minated and the standardization of X, U, and r, as well as w is executed.
When S becomes small enough to be neglected (S < 0.1E-4) or the difference
between S of the present iteration and that of the previous iteration becomes
negligible (Idifferencel <0.1E-7), it is judged that S converged.

3.2 Initial Configurations and Initial Values

Constructing initial configurations and initial values for X, r, U, and w
depends on whether a higher dimensional result of the analysis of the same
data is available. If so, initial configurations and initial values can be derived
from it; otherwise, they are derived from the data.

When the higher dimensional result is not available, the initial
(configuration of points of the) common object configuration X is derived
from the observed proximities. Each of N proximity matrices are sym-
metrized by averaging the conjugate elements. For each proximity matrix, an
additive constant is calculated (Torgerson 1952) and added to all elements of
that proximity matrix. Each matrix is then converted to a scalar product
matrix by double centering the matrix, and is normalized so that sum of
squares of all elements of the matrix is equal to 1. The mean matrix of N
scalar product matrices is calculated. A p-dimensional configuration of
objects is derived from the mean scalar product matrix by Torgerson’s (1952)
method. The derived configuration of objects is used as an initial common
object configuration X. The initial asymmetry weight configuration consists
of Nxp Us (all u; =1). We use 1 as the initial value of all symmetry
weights w; (i=1,...,N), and O as the initial value of all radii r;
G=1,....,n).

When the higher dimensional result is available, radii and symmetry
weights of the higher dimensional results are used as their initial values
respectively. The initial common object configuration X and the initial asym-
metry weight configuration are derived by extracting p most ‘‘heavily contri-
buting’’ dimensions from the higher dimensional result. The *‘contribution’’
of dimension ¢ is based on the sum of two elements: the sum of squares of x;,
(j =1, ...,n) which reflects the salience of the symmetric component of the
results, and the sum of squares of u;, ({ = 1,...,N) which reflects the sali-
ence of the asymmetric component of the results. The details of defining the
““‘contribution’” will be described in Section 3.7.

Another option for deriving initial common object configuration X and
radii r is to use the resultant configuration of objects and radii of the
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asymmetric MDS for one-mode two-way proximities (Okada and Imaizumi
1987). Two-mode three-way proximities can be analyzed by that asymmetric
MDS procedure as N replications of # X n proximity matrix.

3.3 Normalization

After constructing initial configurations and values, the iterative pro-
cess begins. At the beginning of each new iteration, as well as after updating
the common object configuration X and the asymmetry weight configuration
U, the common object configuration X is normalized so that

n n

Y x; =0 (forr=1,....p), and 3 3 x}=n. G.4)

j=1 j=11=1
The asymmetry weight configuration U is uniformly stretched or shrunk by
multiplying the scalar used in the normalization of the right formula of Equa-
tion (3.4).

As shown in Okada (1990) the sum of squared deviations of the my; is

additively decomposed into two terms:

n o n

Y3 (mp —m)* =n(n-1) Vildy) + nin -1V,
j=lk=1
Jjzk

Mk — Mji
——|, @35
> ] (3.5)

where V;(dj,;) and V;[(mj,; —my;;)/2] represent the variance of dj,; and of
(mj; —myj;)/2 for source i respectively. The first and the second terms of the
right side of Equation (3.5) represent the magnitude of symmetric and asym-
metric components of the configuration of objects for source i (Okada, 1990).
Because V;(dj;) is equal to w? V(dj), Equation (3.5) can be rewritten as

n n

Z Z (ﬂljk,' —n_1,~)2 = n(n - 1)[W12 V(d_/k) + Vl
j=lk=1
ek

Mijki — M

5 1, (G.6

where V(dj ) represents the variance of dj. For source i mjy; is normalized by
applying a scalar multiple to u; (r = 1, ... ,p) and to w; so that

n n _
> (mp—m)*=n, 3.7
j=1k=1
j#k
i. e., the sum of symmetric and asymmeftric components is constant for all
sources.
As will be noted later in Section 3.5, only U is improved in the itera-
tion, while w is unchanged from the previous iteration before the normaliza-
tion of my; shown by Equation (3.7). The normalization of my,; is effected by
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multiplying u; (£ =1, ...,p) and to w; by a scalar to stretch or shrink them
uniformly. Because u; (t =1, ...,p) were updated from the previous itera-
tion, w; is updated for the current u;, (f = 1, . .. ,p) by the normalization.

3.4 Updating Radii

Radii are updated for the current X, U, and w by obtaining a least
squares solution which minimize the criterion LS,
A 2
Nonono | (my; —dy)

LS, =3 3> |~ ——-@j-mw)}| , (3.8)

i=lj=1k=1 Vijki
J#k

and the obtained radii are normalized so that

minr; =0. 3.9

J

Thus r, which minimizes LS, for the current X, U, and w, where X, U, and w
minimize S, is derived, and r which directly minimizes S is not derived
because of the difficulty in the computations.

3.5 Updating the Common Object Configuration X and the
Asymmetry Weight Configuration

The common object configuration X and the asymmetry weight
configuration are updated by the steepest descent method, where the step size
is calculated by the linear search method which evaluates S at o = 0.0, 0.1
and 0.2 of the equation corresponding Kruskal’s (1964b, p. 120), where the
partial derivatives of § with respect to x;; and u; to obtain negative gradients
are presented. The partial derivative of S with respect to y, where y
represents either x;, or u; , is

; o Si n S; — | Ompi
S T he 9 T e 2 X ?(mjki — M) ~ F(mjki - m;) W@-lo)

j=1k=1 i i
j#k
where
% n n ~ 2
Si =2 % (M —my)”, (3.11)
j=lk=1
j#k

and
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n n )
22 Mk — ml) .
=k=

J

j#k
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(3.12)

oMy, oMy, dmy; Omy
In Equation (3.10) ——2 represents —— M M s given by
gy 0 Xy 0 Uy dxy
m. .
Equation (3.13), and is given by Equation (3.18). —TK is
0 Upy dxy
am',( adk 8v~k~
ki ki ki
— == —(r; - , 3.13
where
ddp  wilxy —x)® =8
= , (3.149
0 xy djpi
and
2
anki - w; (xji—XkS) _ szs —*xks (8’1 5 _ Skl 8”) . (3.15)
X Vi Uiy Vsjki
Vsui and Vi in Equation (3.15) are given by
s 2 2 2
Vi =wi 2, Xjr — X", (3.16)
t=1
and
# = Xk
Vi = z< -)? (3.17)
ult
dmjy
respectively. is
a Ltht
My, OV
jki Jki
— -, : 3.18
where
aa"f’“' - Wi di 5 (3.19)
Uy, Xigr — Xgs*
' jkt uzs 2 ]S s )2

MIS
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3.6 Standardization of the Resultant Configurations

The resultant X, r, U, and w have an indeterminacy. When X and r are
multiplied by a constant, the effect of the constant can be canceled by multi-
plying U and w by its reciprocal. As shown in Equation (3.5), for source i, the
sum of squared deviation of mj; from the mean m; is decomposed into two
terms, where the first and the second terms of the right side respectively
represent the magnitude of symmetric and asymmetric components of the
configuration of objects for source i. The similar decomposition is possible
for a common object configuration

n on — mjk _mkj
2 2 (mp—m)=nn-1) Vdp) +n(n -1V —2—]
I
=n(n-DVdp) +nn-DV(r;-n), (3.20)
where
I’I’ljk = d]k —rj + 1, (321)
and
n n
2. 2 M
j=,1¢kk=1
— J
= - 322
m nn-1) ( )

A common object configuration is standardized so that the first and the
second terms of the right side of Equation (3.20) respectively reflect the aver-
age relative magnitudes of symmetric and asymmetric components in N
configurations of objects. The average relative magnitude of symmetric com-
ponent g, over the N sources and the average relative magnitude of asym-
metric component g, over the N sources are defined by

L
> wi Vidy)
i=1

(Is = N . (3.23)
Y [wiVdp) + Vi(r; — )l
i=1

and
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N
Z Vi(r =)
o= : (3.24)
Y [wf V(dy) + Vir; =l
i=1

respectively. The common object configuration X is already normalized to
satisty Equation (3.4); thus radius r is standardized by a multiplicative con-
stant so that
V(d,

G (3.25)

V(iri—n)  da
U is multiplied by the reciprocal of the constant. This standardization
enables the common object configuration to depict the magnitude of sym-
metric and asymmetric components in a manner similar to the configuration
of objects in Okada and Imaizumi (1987).

3.7 Remarks on the Algorithm

The present algorithm allows for missing data simply by omitting them
(Kruskal 1964a) in Equations (3.2), (3.3), (3.10), (3.11), and (3.12). The
asymmetry weights u;, and symmetry weights w; are assumed to be nonnega-
tive in the present model. The former are kept nonnegative by changing signs
whenever an updated value becomes negative. Thanks to Equation (2.5), zj;
is not affected by the sign of u;,. As w; is derived through the normalization
by multiplying a scalar, it is kept nonnegative provided that the initial w; is
nonnegative.

When the higher dimensional result is available, both the initial com-
mon object configuration X and the initial asymmetry weight configuration
are derived by extracting the p most ‘‘heavily contributing’’ dimensions from
the higher dimensional result. The ‘‘contribution’’ of dimension ¢ of the
standardized X and U is defined by the sum of (a) the sum of squares of x;
(G =1,...,n) which reflects the average relative salience of symmetric com-
ponent and (b) the sum of squares of u; ({ =1,...,N) which reflects the
average relative salience of the asymmetric component; i.e., the contribution
of dimension ¢ is defined by

by=Y xh+ Y uf. (3.26)
The initial common object configuration X and the asymmetric weight

configuration are constructed from the p dimensions which have largest b, ,
where p is the dimensionality specified for the analysis.
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3.8 Procedure to Find the Solution

The procedure to analyze two-mode three-way asymmetric proximities
by the present algorithm consists of (a) determining the maximum dimen-
sionality to be used in the analysis, (b) analyzing the proximities by the
present algorithm in the spaces from the maximum dimensionality through
unidimensionality to obtain a solution in each of the dimensionalities, and (c)
selecting the “‘best’” result as the solution. The selection of the solution over
the different dimensionalities is based on the elbow criterion of the minimized
S and on the interpretation of the results (Okada and Imaizumi 1987). The
procedure mentioned above relies on rational initial configurations and
values. We alternatively use a random initial common object configuration.

4. An Application

The present model and its algorithm were used to analyze intergenera-
tional occupational mobility among eight occupational categories in four
years in Japan (Seiyama, Naoi, Sato, Tsuzuki and Kojima 1990, pp. 46-47,
Table 2.12). The data consist of four § x 8 transition tables. The (j,k)-th ele-
ment of each table represents the number of sons whose occupations are in
occupational category k and whose fathers’ occupations are (were) in occupa-
tional category j. Thus, the (j,k)-th element of the i-th table represents the
number of intergenerational occupational movements from the fathers’ occu-
pational category j to the sons’ occupational category £ in year i. The four
tables correspond to data from 1955, 1965, 1975, and 1985. The eight occu-
pational categories are

(1)  Professional occupations,

(2)  Non-manual occupations employed by large enterprises,
(3)  Non-manual occupations employed by small enterprises,
(4)  Non-manual self-employed occupations,

(5) Manual occupations employed by large enterprises,

(6) Manual occupations employed by small enterprises,

(7)  Manual self-employed occupations, and

(8)  Farm occupations.

These four tables constitute two-mode three-way proximities. The embol-
dened word(s) above are used to represent each occupational category in Fig-
ure 5.

In each of the four tables, there are differences among eight row and
column marginals which represent the differences in shares of manpower
among occupational categories. Stated differently, there are differences in the
sum of inflow and outflow to/from each of the eight occupational categories.
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Table 2
Rescaled Intergenerational Occupational Mobility Table

Son’s occupation

Father's Year 1955

occupation 1 2 3 4 b 6 7
1 1182 338 393 34 31 86 91 357
2 395 537 394 220 157 173 76 108
3 49 295 429 236 1635 302 79 00
4 355 508 3590 730 207 225 236 33
3 94 94 549 57 737 386 118 35
6 58 144 151 104 450 649 202 7.1
7 136 364 370 164 423 652 718 92
8 235 375 288 270 475 416 277 982

Year 1965

1 2 3 4 5 6 7
1 1029 329 264 39 142 198 116 16
2 453 507 317 183 222 138 97 44
3 226 232 541 138 262 177 59 08
4 289 442 415 949 208 259 172 37
5 170 318 349 15 569 420 104 3.1
6 25 125 330 65 344 332 156 39
7 77 421 435 303 372 506 789 50
8 349 413 455 287 655 8385 304 579

Year 1975

1 2 3 4 5 6 7
1 1233 443 528 156 135 110 74 37
2 375 766 464 275 247 222 112 41
3 147 303 49.1 114 170 344 19 24
4 343 550 719 895 362 326 389 33
5 298 296 340 12.1 758 547 107 36
6 128 167 363 71 406 667 120 24
7 276 369 558 287 408 528106.1 69
8 330 451 769 309 8551154 408 652

Year 1985

1 2 3 4 5 6 7
1 884 374 490 74 67 115 15 00
2 399 630 428 172 248 148 7.1 16
3 11.1 234 472 89 113 282 62 00
4 398 326 580 974 254 221 184 24
5 4235 326 361 45 726 271 124 00
6 140 237 385 76 322 3527 159 36
7 184 349 37.1 246 31.1 574 958 38
8 H3 416 356 368 687 984 402 518

215
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The sums respectively reflect the degree of attractiveness of the occupational
category which draws in manpower from other occupational categories and
relegation of manpower to other occupational categories. It seems preferable
to remove the differences in shares of manpower to disclose the structure of
intergenerational occupational mobility among the eight occupational
categories (Harshman et al. 1982; Okada 1988b; Slater 1976).

The i-th table was rescaled by multiplying with a rescaling constant c; j
applied to row j and column j so that, for j =1, . . . ,8, the sum of row j plus
column j elements of the rescaled table is equal to the mean sum of row plus
column elements of the raw i-th table (Harshman et al. 1982, p. 229; Okada
1988a, 1988b). The rescaled table is represented in Table 2.

The two-mode, three-way set of four rescaled intergenerational occupa-
tional mobility tables was analyzed by the present asymmetric MDS. The
analysis with rational initial configurations and values was done using the
maximum dimensionalities of eight through four. Then one S was obtained in
eight-dimensional space, two § in seven-dimensional space, three § in six-
dimensional space, ..., and five § in four- through unidimensional spaces. The
smallest S in each dimensional space was chosen as the minimized S in that
dimensional space. The resulting minimized S in five- through unidimen-
sional spaces were 0.335, 0.335, 0.349, 0.378, and 0.435. The minimized S
seem to indicate that the two- dimensional result is appropriate to be a solu-
tion. To obtain a baseline for comparison of this preferred solution, we con-
ducted analyses using 100 different initial common object configurations X
generated from uniformly distributed random numbers with r; = 0, u; = 1 and
w; = 1 as initial radii, an initial asymmetry weight configuration and initial
values of symmetry weights in a two-dimensional space. All results given by
these analyses yielded S values which were larger than 0.378 obtained above.
The smallest S among 100 results obtained was 0.395. Thirty eight of 100
resultant S values were smaller than 0.5. The set of four rescaled tables was
analyzed by Okada and Imaizumi’s (1987) one-mode two-way asymmetric
MDS as four replications of an 8 x 8 similarity matrix. Then the two-mode
three-way analysis using the obtained two-dimensional configuration of
objects and radii as the initial common object configuration for X and r with
u; =1 and w; = 1 was conducted. The analysis yielded as S value of 0.384.
Thus, the two-dimensional result having an S value of 0.378 should be chosen
as the best solution. The two-dimensional common object configuration is
illustrated in Figure 5. Symmetry weights w; (i = 1, ...,4) and asymmetry
weights u;, (i =1,...,4; £=1,2) are shown in Table 3. The asymmetry
weight configuration is illustrated in Figure 6.

In Figure 5 each occupational category is represented by a point and a
circle in a two-dimensional configuration. In Figure 6, each year is
represented by a point in a two-dimensional configuration. As noted earlier,
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DIMENSION 2
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DIMENSION 1

nual self

|
|
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1

Figure 5. Common object configuration of eight occupational categories.

A DIMENSION 2

1965, 1975

+
+

19585

1985

DIMENSION 1

Figure 6. Asymmetry weight configuration of four years.
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Table 3

Symmetry weight and Asymmetry weight

Year Symmetry weight Asymmetry weight

Dim 1 Dim 2
1955 0.503 0.424 0.379
1965 0.428 0.454 0.446
1975 0.402 0.497 0.438
1985 0.427 0.496 0.415

the orientation of dimensions in a common object configuration is uniquely
determined up to reflections and permutations and in an asymmetry weight
configuration up to permutations. The orientation of the dimensions in Fig-
ures 5 and 6 is given by the analysis, and no rotation was applied to the
obtained configurations. But similar to the INDSCAL model (Arabie, Carroll,
and DeSarbo 1987, p. 25), when we have asymmetry weights on a diagonal
(45 degree) line passing through the origin in any two-dimensional (sub)space
of the asymmetry weight configuration, the orientation of the dimensions has
an indeterminacy in that two-dimensional space. Although the asymmetry
weights obtained are not exactly on a diagonal line, four points in Figure 6
seem to be close to the diagonal line. Therefore, the orientation of the dimen-
sions might have indeterminacy. But as shown below, the dimensions have a
very clear-cut interpretation, which suggests that no rotation is needed to
interpret them. The uniqueness of the orientation of the dimensions will be
further discussed below.

In the upper half of Figure 5, there are four non-manual occupational
categories, and in the lower half of Figure 5 there are four manual occupa-
tional categories. Vertical Dimension 2 of the solution seems to represent the
difference between non-manual and manual occupational categorics. Hor-
izontal Dimension 1 seems to differentiate among the self-employed,
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employees of small enterprises, employees of large enterprises, and profes-
sional or farm occupations.

In the present application, an occupational category with a larger radius
means that sons whose fathers are (were) in the corresponding occupational
category have a larger tendency of moving from their fathers’ occupational
category and that sons whose fathers are (were) in other occupational
categories have a lesser tendency of moving into that occupational category.
The resulting radius of farm occupations is the largest. This result is compati-
ble with the fact that the number of farm laborers has drastically decreased
(Seiyama et al. 1990, p. 20, p. 48). Self-employed occupational categories
have larger radii than employed occupational categories. This result is also
compatible with the movement of manpower from self-employed to employed
occupational categories (Seiyama et al. 1990, pp. 43-44). Occupational
categories along the periphery of the horizontal dimension have larger radii
than in its center. Thus, manpower has been migrating from occupational
categories in the periphery to those in the center of the horizontal dimension.

Symmetry weights decreased from 1955 to 1975, and increased in
1985, showing that the symmetric occupational mobility among eight occupa-
tional categories decreased from 1955 to 1975 and increased in 1985. Asym-
metry weights along Dimension 1 were larger than those along Dimension 2
for each of the four years, showing that asymmetric occupational mobility
along Dimension 1 is greater than that along Dimension 2, and suggesting
that asymmetric occupational mobility within both non-manual and manual
occupational categories was larger than that between non-manual and manual
occupational categories. Asymmetry weights along Dimension 1 increased
from 1955 to 1975 and showed a small decrease for 1985, suggesting that
asymmetric occupational mobility within both non-manual and manual occu-
pational categories increased from 1955 to 1975 and slightly decreased in
1985. The asymmetry weight along Dimension 2 in 1955 was distinctly
smaller than those for 1965, 1975 and 1985, and those in 1965 and 1975 were
almost constant, while that in 1985 was slightly smaller than those in 1965
and 1975, suggesting the asymmetric occupational mobility between non-
manual and manual occupational categories increased in 1965 compared to
1955, was almost the same in 1975 as in 1965, and in 1985 was slightly less
than in 1965 and 1975. This result is compatible with the behavior of the
mobility between non-manual and manual occupational categories described
in Seiyama et al. (1990, p. 31-32).

From 1955 to 1965, asymmetric occupational mobility both dimensions
increased. The asymmetric occupational mobility along Dimension 2
increased more than the asymmetric occupational mobility along Dimension
1, suggesting the magnitude of asymmetric occupational mobility between
non-manual and manual occupational categories increased relatively more
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than that of asymmetric occupational mobility within both non-manual and
manual occupational categories. From 1965 to 1975, asymmetric occupa-
tional mobility along Dimension 1 increased, while asymmetric occupational
mobility along Dimension 2 decreased. Thus, from 1965 to 1975 the magni-
tudes of asymmetric occupational mobility within both non-manual and
manual occupational categories increased, while such mobility between non-
manual and manual occupational categories decreased. From 1975 to 1985,
asymmetric occupational mobility along Dimension 1 decreased but was
almost constant, while asymmetric occupational mobility along Dimension 2
decreased, suggesting the magnitudes of asymmetric occupational mobility
between non-manual and manual occupational categories decreased rela-
tively more than that within both non-manual and manual occupational
categories.

5. Discussion

An asymmetric MDS model and corresponding algorithm to analyze
two- mode three-way proximities have been introduced. The model and the
algorithm are extensions of Okada and Imaizumi’s (1987) for one-mode two-
way asymmelric proximities, and were successfully used to analyze intergen-
erational occupational mobility from father to son among eight occupational
categories.

As shown in the asymmetry weight configuration of Figure 6, four
points seem to be close to a diagonal line. The indeterminacy of the orienta-
tion of the dimensions will be further considered here. As noted earlier, the
best § value obtained in the two-dimensional space was 0.378. The dimen-
sions of the resultant two-dimensional asymmetry weight configuration were
rotated 10 degrees, clockwise and counterclockwise. Then the common
object configuration X, radii and symmetry weights which minimize S were
derived for both of the two rotated asymmetry weight configurations. For the
clockwise rotated case, S value was 0.448, for the counterclockwise case,
0.458, thus suggesting that the indeterminacy of the orientation of the dimen-
sions of the present solution is not serious.

The present asymmetric MDS model for two-mode three-way proximi-
ties is an extension of the predecessor (Okada and Imaizumi 1987). Alterna-
tive extensions were pointed out by a reviewer. For example, when u;, = i, a
simpler model is derived, in which an object has the same ellipse through all
sources in the configuration of objects. In this model v % and vy;; in Equation
(2.3) respectively become v and vi;. When u;, = u;, another, simpler model
is possible, where an object has circles of different radii for each source in the
configuration of objects. In this model, both Vi and vi; become v;.
Although capable of extensions, these simpler models cannot fully address
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the motivation for developing the present model, to model individual
differences in asymmetric proximity relationships. These two simpler models
can be combined into one where u;, is multiplicatively decomposed into two
terms, y; and u,, i.e., u; = y; 4. In this model all objects have an identical
ratio of the lengths of semiaxes through all objects, so that relative magni-
tudes of asymmetric proximity relationships along all dimensions are same
for all sources. In this model, u,; is represented as a point in an asymmetry
weight configuration, and y,u, (where u,, t=1,...,p) are uniformly
stretched or shrunk over p dimensions by y; and are represented on a line
passing through the origin. Although four points of the asymmetric weight
configuration shown in Figure 6 are not exactly on a line passing through the
origin, they nearly located on the line, suggesting this simpler model rather
than the present one is sufficient for the data shown in Table 2. But if this
model were used to analyze the data, the differences in magnitudes along the
two dimensions over the four years would not be manifest.

A more general model employs w;; instead of w; (Okada and Imaizumi
1992), and the common object configuration X is not uniformly stretched or
shrunk over p dimensions but is instead differentially stretched or shrunk
along each of the p dimensions, as in the INDSCAL model (Carroll and
Chang 1970). This alternative model can deal with individual differences in
symmetric proximity relationships according not only to magnitude but also
" to the magnitude of each dimension. Although this model seems interesting
as an asymmetric MDS model for two-mode three-way proximities, the major
intent of the present paper is, as noted earlier, to address individual
differences in asymmetric rather than symmetric proximity relationships. One
deficient of this more general model is the orientation of dimensions. In the
present model the orientation of dimensions is determined by u;, based the
individual differences in asymmetric proximity relationships. In the more
general model with w;, the orientation of dimensions is determined not only
by the individual differences in asymmetric proximity relationships but also
by the individual differences in symmetric proximity relationships, unless w;;-
and 1;, are respectively applied to discrepantly oriented dimensions ¢” and 1.
While Zielman’s (1991) two-mode three-way model does not have this prob-
lem, the two-mode three-way extension of the slide vector model (Zielman
and Heiser 1991, 1993) does seem to. A potentially promising model more
general than the present one also seems possible and allows each source an
idiosyncratic orientation of the dimensions for the configuration of objects.
Each source has its own ellipses with axes having an idiosyncratic orientation
in the object configuration. This model does not have the problem of deter-
mining the orientation of dimensions.

Although the asymmetry weights u; were assumed nonnegative,
another more general model which allows negative u;, can also be introduced.
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Moreover, the present algorithm can be applied to this more general model
with only minor modifications. With u;, allowed to be negative, we simply
alter Equation (2.4) to

Vie = sign () 1z 17, (.1
and Equation (2.5) to
w? L 9
Zjgi = D, sign (i) — xj)° . (5.2)
i (-xjs — Xks )2 t=1
S=1 Ltls

When u;, is assumed nonnegative, it is implicitly assumed that the direction
of asymmetry is same for all N sources, i.e., when sp; > 53, it is automati-
cally assumed that sy, > spj,. The more general model can depict the situa-
tion where the direction of asymmetry differs among N sources (Zielman
1991, p. 12) and can also expand the horizon of the application of the present
asymmetric MDS.
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