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Uncertainty estimation and figures of merit
for multivariate calibration

(IUPAC Technical Report)

Abstract: This paper gives an introduction to multivariate calibration from a
chemometrics perspective and reviews the various proposals to generalize the
well-established univariate methodology to the multivariate domain. Univariate
calibration leads to relatively simple models with a sound statistical underpinning.
The associated uncertainty estimation and figures of merit are thoroughly covered
in several official documents. However, univariate model predictions for unknown
samples are only reliable if the signal is sufficiently selective for the analyte of in-
terest. By contrast, multivariate calibration methods may produce valid predictions
also from highly unselective data. A case in point is quantification from near-in-
frared (NIR) spectra. With the ever-increasing sophistication of analytical instru-
ments inevitably comes a suite of multivariate calibration methods, each with its
own underlying assumptions and statistical properties. As a result, uncertainty es-
timation and figures of merit for multivariate calibration methods has become a
subject of active research, especially in the field of chemometrics. 

Keywords: multivariate calibration; standard error of prediction; prediction inter-
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1. INTRODUCTION

The International Union of Pure and Applied Chemistry (IUPAC) states that “In general, calibration is
an operation that relates an output quantity to an input quantity for a measuring system under given con-
ditions” [1], while according to the International Vocabulary of Basic and General Terms in Metrology
(VIM), calibration is an “operation establishing the relation between quantity values provided by meas-
urement standards and the corresponding indications of a measuring system, carried out under specified
conditions and including evaluation of measurement uncertainty” [2]. Unless otherwise mentioned, we
will assume in the remainder of this paper that analyte concentration(s) is the output quantity, while the
indication of the measuring instrument is the input quantity. Although the common case in analytical
chemistry is to have spectral values as inputs [1], signals can be of other types, e.g., electrochemical. In
univariate calibration, the concentration of a single analyte is predicted from a single instrumental sig-
nal. Provisions concerning uncertainty estimation in univariate calibration are offered by several offi-
cial documents [3–5], reflecting the fact that they are an important aspect of chemical measurement and
that, in a formal sense, an analytical result is not complete until a statement about its uncertainty is for-
mulated. The following compelling statement is taken from an editorial by de Bièvre in Accreditation
and Quality Assurance [6]: “So, a result without reliability (uncertainty) statement cannot be published
or communicated because it is not (yet) a result. I am appealing to my colleagues of all analytical jour-
nals not to accept papers anymore which do not respect this simple logic.” In the usual single-compo-
nent calibration scenario, expressions for sample-specific standard error of prediction are available from
IUPAC [1], as well as figures of merit, detection capabilities, and results reporting [7].

When deploying a univariate method to predict for unknown samples, one essentially assumes
that the signal is highly selective for the analyte of interest. According to the latest IUPAC recommen-
dation, “selectivity refers to the extent to which the method can be used to determine particular analytes
in mixtures or matrices without interferences from other components of similar behavior” [8].
Consequently, the signal may contain a significant contribution from other components only if this con-
tribution is well approximated by a particularly simple form. In case it is nearly constant, for example,
one may effectively eliminate it by a background correction or model it as an intercept (Fig. 1).
Traditionally, analytical chemists attempt to generate sufficient selectivity by improving the method, ei-
ther by experimental means (e.g., sample clean-up or chromatographic separation) or by instrumental
means (e.g., selecting a wavelength channel in a high-resolution instrument). However, the traditional
approach may not always work well for complex samples. Method development may also be impracti-
cal due to excessive costs. The increasing concern about food safety, clean environment, and fair
sports—to mention just a few challenging areas of application—currently leads to an accumulation of
analytical problems for which convenient traditional approaches are lacking. Consequently, nontradi-
tional approaches are called for.

Multivariate calibration can be seen as a promising mathematical approach to the ubiquitous se-
lectivity problem. Chemometricians have fostered multivariate calibration methods ever since the foun-
dation of chemometrics as an independent branch of chemistry in the early 1970s. As explained below,
multivariate calibration methods aim to construct a valid predictive model on the basis of (possibly
highly) unselective multiple predictor variables. Valcárcel et al. [9] summarize the potential utility of
chemometrics as follows: “The best selectivity levels can be obtained by applying chemometrics in the
various physico-chemical methods for discrimination of analytes.” In other words, by (correctly) ap-
plying chemometrics one may efficiently extract selective information from unselective data. This im-
mediately raises the question of how one should assess the degree of selectivity of intrinsically unse-
lective multivariate data. Many proposals can be found in the literature; see refs. [10–16] for reviews of
the subject. However, it is argued in ref. [17] that the selectivity criterion independently put forth by
Lorber [18,19] and Bergmann, von Oepen, and Zinn [20], henceforth referred to as the LBOZ criterion,
is the most suitable one for two reasons. First, it relates to prediction uncertainty in a transparent way.
Second, it allows for a consistent generalization to so-called multiway data analysis. A consistent gen-
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eralization is, for example, required when the data arise from hyphenated techniques such as gas chro-
matography with mass spectral detection (GC–MS or GS–MS–MS).

It stands to reason that, with respect to figures of merit and uncertainty estimation, no conceptual
difference should exist between univariate and multivariate calibration methods. Consequently, de-
scriptions of multivariate methods must also include the corresponding estimated figures of merit, and,
likewise, reports of analyte concentrations predicted by multivariate methods must include the corre-
sponding uncertainty estimates. However, while there is general consensus on univariate prediction un-
certainty expressions derived from basic statistics [1], cf. Fig. 1, their generalization to the multivariate
domain has been lacking for a long time. The common practice when applying multivariate calibration
strategies leads to a so-called root-mean-square error of prediction (RMSEP), which is an average over
a number of samples employed for model testing [21]. An average error, however, characterizes the
model rather than individual (unknown) samples in the prediction phase. Hence, although RMSEP is a
correct summary statistic for guiding the model selection process (e.g., optimal data pretreatment), it
cannot lead to prediction intervals with good coverage probabilities. This rather conspicuous difference
in the handling of prediction uncertainty is a serious gap between univariate and multivariate calibra-
tion methodologies. We pursue a two-fold purpose with this paper, namely to (1) review the consider-
able progress that has been made toward closing this gap and (2) provide guidelines for the proper use
of this newly developed methodology. In fact, uncertainty estimation is currently a major trend in the
chemometrics-oriented literature. It is worth pointing out that this trend was initiated by two seminal
papers more than a decade ago [22,23]. In our opinion, much of the currently reviewed material may
directly supplement the thoughtful ideas advanced in, for example, the IUPAC guidelines for multi-
component calibration [24] and some American Society for Testing Materials (ASTM) standards
[25,26].

The remainder of this paper is organized as follows. In Section 2, we discuss various aspects of
multivariate calibration from a chemometrics perspective. This tutorial-style section aims at making the
subject more accessible to non-chemometricians, since many of the methods and a great deal of termi-
nology have been developed within chemometrics. Section 3 reviews generally accepted univariate
methodology and previously proposed multivariate extensions and gives specific guidelines as to the ex-
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Fig. 1 Prediction of analyte concentration from a straight line fit with intercept. The uncertainty in the straight line
() fitted to the univariate data (ⓦ) is indicated by the familiar 95 %-confidence prediction bands (⋅⋅⋅). These
bands define intervals for individual predictions. Prediction intervals are relatively narrow close to the mean, where
the model is most precise. The shape of the confidence prediction bands further implies that extrapolation should
be avoided.



perimental parameters required for uncertainty estimation. The discussion in Section 4 of three types of
multivariate limit of detection estimators serves to illustrate the potential utility of these extensions. We
conclude with Section 5.

2. MULTIVARIATE CALIBRATION FROM A CHEMOMETRICS PERSPECTIVE

2.1 Why multivariate calibration?

Univariate calibration is concerned with the prediction of analyte concentration from a single spectral
value [1]. Usually, it is synonymous with the term “single-component analysis”. As a powerful exten-
sion of univariate calibration, multivariate calibration constructs a predictive model on the basis of mul-
tiple spectral values. For the most common procedures (see below), the predicted analyte concentration
is obtained as

(1)

where c denotes the (true) analyte concentration, a “hat” signifies prediction (of a random variable) or
estimation (of a parameter), rj is the signal measured at wavelength j (j = 1,…,J), bj is the (true) model
parameter associated with wavelength j, r is the J × 1 prediction sample spectrum with elements rj (j =
1,…,J), the superscript “T” signifies the transpose of a matrix or vector, and b is the J × 1 (true) model
parameter vector with elements bj (j = 1,…,J). The estimate of b is obtained from calibration data, sim-
ilar to fitting a straight line. Measuring a multivariate signal enables one to compensate for varying con-
tributions of interferences in the prediction sample; see Fig. 2. It is this compensating aspect that allows
one to conduct a truly quantitative analysis of intrinsically unselective multicomponent systems.
Algebraically, a “good” model vector copes with varying interferences by being approximately ortho-
gonal to their pure spectra. This near-orthogonality with respect to interfering signals implies that the
inner product on the right-hand side of eq. 1 is primarily dominated by the analyte spectrum.
Multicomponent analysis (MCA) is a topic of central importance to the analytical community [24]. It
is therefore expected that the sophistication of instrumental techniques will continue to increase, lead-
ing to a wealth of multivariate data (and suitable methods for their analysis).
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2.2 Classical vs. inverse model

The most common calibration procedures belong to either one of two classes, namely, depending on
whether the problem is cast into the classical or inverse model formulation. In the univariate classical
model, a spectral value (r) is modeled as a function of analyte concentration (c), i.e., r = f(c). Assuming
a linear additive signal for the various constituents (Beer–Lambert) leads to the multivariate classical
model for the prediction sample

r =c1s1 +···+cKsK + e = Sc + e (2)

where r is as defined before, the ck’s (k = 1,…,K) denote the concentrations of the K constituents, the
J × 1 sk’s (k = 1,…,K) are the pure-component spectra at unit concentration, S (J × K) is the spectral
matrix that has the sk’s as columns, c (K × 1) is the vector that holds the ck’s (k = 1,…,K), and e is a
J × 1 vector of noise. (We use matrix-vector notation to avoid excessive use of indices.) Equation 2 is
illustrated in Fig. 3 for a simulated three-component mixture. The concentrations of all K constituents
are obtained by fitting the pure-component spectra (S) to the spectrum of the prediction sample (r).
Usually, an ordinary least-squares (OLS) fit is employed:

ĉ = S+ r (3)

where the superscript “+” denotes the pseudo-inverse operation. The pseudo-inverse matrix is the gen-
eralization of the regular inverse of a square, full rank matrix to non-square, possibly rank-deficient ma-
trices. Above all, it allows one to solve overdetermined systems of equations (K < J). The solution eq. 3
is known as classical least-squares (CLS) or MCA. The parameter vector for the analyte of interest (b̂)
is obtained as the corresponding column of (S+)T. This is clarified in Fig. 4 for the artificial example of
Fig. 3. The scope of the classical model is rather limited, since it requires the spectra of all contribut-
ing species to be measured (so-called direct mode) or estimated from mixture spectra (so-called indi-
rect mode). In other words, the full S must be available. Successful application has been reported for
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Fig. 2 Illustration of how a univariate model will lead to severely biased predictions when unsuspected
interferences give a variable contribution to the signal, whereas multiple measurements may permit accurate
prediction in such a situation. To adequately model interferences, one must measure at least as many signals as
there are independently varying sources of variation in the spectra. Consequently, measurements at channels λ1 and
λ2 are sufficient for this simple two-component system. The resulting unit-concentration “spectra” for analyte and
interference (in arbitrary units) are sa = (2.5, 4.2) and si = (2.8, 1.1), respectively. A “good” model vector for the
analyte is b = (–0.12, 0.31), since applying the prediction eq. 1 to the pure spectra of analyte and interference would
approximately yield unity [= sTa b = 2.5 × (–0.12) + 4.2 × 0.31] and zero [= sTi b = 2.8 × (–0.12) + 1.1 × 0.31],
respectively. It is seen that the model (b) compensates for the varying contribution of the interference through a
negative coefficient for λ1. The symbols are explained in the text.



the calibration of atomic spectra, e.g., obtained by inductively coupled plasma–optical emission spec-
trometry (ICP–OES) [27–29].

The calibration of molecular spectra, however, usually requires a different approach, simply be-
cause identifying all constituents in the prediction sample is impractical or virtually impossible (e.g.,
petrochemical or biological matrices). Moreover, owing to interactions (matrix effects) the pure-com-
ponent spectra may no longer adequately describe the spectrum of the test mixture. Inverse models may
conveniently solve these problems by treating analyte concentration as a function of spectral values
[21]. They are preferred for the quantitation from, for example, Raman and near-infrared (NIR) (trans-
mission, reflection) spectroscopy. An added bonus of inverse modeling has been recently demonstrated:
the resulting model better copes with noise in the spectra, hence leading to significantly better predic-
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Fig. 3 Representation of eq. 2 for the simulated Gaussians (K = 3) adapted from Bergmann et al. [20]. Component
A is free from overlap, whereas components B and C strongly interfere. The instrumental signal of the prediction
sample is a linear combination of the corresponding elements of the pure-component spectra, superimposed by
noise. The concentrations are the weights in the linear combination. The symbols are explained in the text.

Fig. 4 Representation of eq. 3 for the simulated Gaussians (K = 3) adapted from Bergmann et al. [20]. It shows that
the prediction of a particular analyte is obtained by taking the inner product of the corresponding row of S+ and the
vector of instrumental signals. The parameter vector of component A is proportional to the pure spectrum, because
component A is free from spectral overlap. By contrast, the parameter vectors for components B and C have large
negative portions to compensate for the interference. The symbols are explained in the text. 



tions when the noise in the spectra is appreciable [30–32]. The multivariate inverse model for the pre-
diction sample is

(4)

where c is the (true) concentration of the analyte of interest, e is noise, and the remaining symbols are
as defined before. An estimate for b is obtained from calibration data, which is expressed as

c = Rb + e (5)

where c (I × 1) contains the analyte concentrations for I calibration samples, R (I × J) contains the spec-
tra, and e is an I × 1 vector of noise. Note that interferences do not play an explicit role in eq. 5, which
enables one to calibrate for single analytes—a major advantage over the classical model eq. 2. This is
the reason why the inverse and classical models are also known as partial and total calibration, respec-
tively. Often, the number of spectral values exceeds the number of calibration samples, i.e., I < J. As a
result, the calibration step requires solving an underdetermined system of equations to eliminate R from
the right-hand side of eq. 5. Consequently, OLS cannot be used for estimating the regression vector, un-
less the number of predictor variables is reduced. The combination of variable subset selection (to ob-
tain an overdetermined system of equations) and OLS is known as inverse least-squares (ILS). Many
algorithms exist for selection of the best subset, e.g., generalized simulated annealing, artificial neural
networks (ANNs), and genetic algorithms [33–35]. To avoid picking up variables by chance, the final
choice is best supported either by specific spectroscopic knowledge or by testing the predictive ability
of models calculated with different spectral subsets. Owing to the large number of possible subsets, this
approach is often cumbersome. Hence, a popular data-driven alternative is to calculate “scores” or “sur-
rogate variables” as linear combinations of the original predictors and perform the regression step on a
limited number of these scores (F < I). This leads to the so-called “full-spectrum” methods of which
principal component regression (PCR) and partial least-squares regression (PLSR) are the prime exam-
ples. As an aside, it is noted that score-based methods can be applied in the classical mode too. This has
already been demonstrated by Frank et al. [36] for PLSR in connection with the generalized standard
addition method (GSAM). A successful combination of CLS and PLSR has recently been reported as
well [37].

2.3 Framework for calibration

Instrumental data come in varying complexity. Sanchez and Kowalski [38–40] proposed to classify
them according to tensor algebra. For our purpose, it is convenient to view a tensor as an object that
holds data, see Fig. 5. In a loose sense, the order of a tensor equals the minimum number of indices re-
quired to organize the data in a meaningful way. Scalars and vectors are zeroth- and first-order tensors,
respectively. A (mathematical) matrix for which the elements obey certain (meaningful) relationships is
a second-order tensor, and so on. The framework of Sanchez and Kowalski is general in that it allows
for any number of indices, although in practice the data complexity will be second-order at most. An
added bonus of this classification is that it also pertains to the instruments that deliver the data, as well
as the methods for their analysis. Figure 5 further clarifies that multivariate calibration covers data
structures with multiple sets of predictor variables. In other words, multiway calibration is a subdivi-
sion of multivariate calibration. It is important to make this distinction, because often the terms “multi-
variate” and “first-order” are used interchangeably. Here, we will use the term “multivariate” to denote
all data structures of higher complexity than scalars.
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It should be noted that the term “order”, as employed in the present paper, is closely related to the
term “dimensionality of analytical experiments”, as described in a previous IUPAC Technical Report
[41], although the meaning of the latter term appears to be more general. In the framework of ref. [41],
thus, zeroth-order calibration is equivalent to a one-dimensional analytical experiment, first-order cali-
bration to a two-dimensional analytical experiment, etc.

2.3.1 Zeroth-order (univariate) calibration
Consider an instrument that yields a single ultraviolet (UV) absorbance, or a single electrochemical po-
tential. In other words, the data (datum) produced for a single chemical sample consist(s) of a scalar. A
scalar is a zeroth-order tensor, since an index is superfluous. Hence, the UV instrument can be classi-
fied as a zeroth-order instrument, and straight-line fitting using OLS can be viewed as a zeroth-order
method. The number of zeroth-order methods is extremely limited. A major drawback of zeroth-order
calibration is its inability to handle varying amounts of spectrally active interferences. Perhaps even
more disconcerting is the fact that this situation cannot be diagnosed because there is simply no way to
break up the various contributions to a zeroth-order signal, cf. Fig. 2.

2.3.2 First-order (multivariate) calibration
An NIR spectrometer produces spectra (Fig. 6). Now a single variable index suffices to organize the
predictor data (wavelength axis). Hence, the instrument is first-order, and standard (i.e., linear) PCR and
PLSR are first-order methods. The number of first-order methods already greatly exceeds the number
of zeroth-order methods. However, one may still keep an overview by classifying a first-order method
as solving either the classical or inverse model. First-order methods can cope with varying amounts of
spectrally active interferences (if they are sufficiently represented in the calibration phase). In addition,
first-order data enable one to diagnose a sample containing unsuspected spectral interferences as an out-
lier, because its spectrum will fit significantly worse to the model than the calibration spectra. These
properties have been aptly referred to as the first-order advantage [14]. However, it should be noticed
that although outliers can be detected, predictions cannot be corrected for the bias caused by the un-
suspected interferences. 
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Fig. 5 Representation of tensors with the associated order given in parentheses. The order of a tensor should not be
confused with, for example, the order of the familiar polynomial model based on scalars (zeroth-order tensors) or
the order of the derivative of spectra (first-order tensors). It is seen that the term “multivariate” covers data
structures of increasing complexity.



2.3.3 Second-order (multivariate) calibration and beyond
If the order of the predictor data exceeds unity, one enters the field that is traditionally known as
multiway analysis. Figure 5 illustrates that multiway analysis can be viewed as the natural extension of
first-order analysis. With increasing order of the predictor data, the number of possibilities for data
analysis seems to explode. This can be understood as follows. Second-order data are usually recorded
in two ways, namely, from two “hyphenated” first-order instruments (e.g., GC–GC, GC–MS, MS–MS,
etc.) or from a single second-order instrument (e.g., a spectrofluorometer capable of registering excita-
tion–emission matrices (EEMs) or a diode-array spectrophotometer where a chemical reaction takes
place). The predictor data for a single chemical sample fill a (mathematical) matrix (rows × columns),
which can be visualized as a two-dimensional surface or “landscape” (Fig. 7). For the proper selection
of a higher-order calibration method, it is of considerable interest to know whether special relationships
exist between the various orders. For example, GC–MS produces a (second-order) data matrix for a
pure component that, in the absence of noise, can be expressed as an outer product of two vectors, i.e.,
M = xyT where x and y denote the GC profile and mass spectrum, respectively. The outer product con-
cisely describes that, ideally, the mass spectrum does not depend on elution time and, likewise, the elu-
tion profile is identical for all masses. This kind of data has been termed bilinear (linear in one variable
when the other one is fixed and vice versa) to distinguish it from, for example, MS–MS data. MS–MS
data are not bilinear, because a daughter spectrum depends on its position in the parent spectrum.
Consequently, an MS–MS data matrix cannot be described, in the absence of noise, as M = xyT. Kiers
and Smilde [42] have correctly pointed out the existence of a more rigorous terminology, namely, com-
plexity-one and mixed complexity for bilinear and non-bilinear, respectively. This terminology reflects
whether, in the absence of noise, a pure-component data matrix has mathematical rank unity (com-
plexity-one) or higher (mixed complexity). However, we will use the term “bilinear” here, because, in
our opinion, it does not lead to confusion and also because it has been adopted in other authoritative
texts [43–45]. Second-order bilinear calibration methods are of considerable interest since many in-
struments produce data that, ideally, follow the bilinear model [46–48]. Suitable methods for analyzing
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Fig. 6 NIR spectra of 29 gasoline samples.



bilinear data are, for example, parallel factor analysis (PARAFAC) [49], the generalized rank annihila-
tion method (GRAM) [38], bilinear least-squares (BLLS) with calibration using pure standards [50] or
mixtures [44,45], and multivariate curve resolution–alternating least-squares (MCR–ALS) [51]. Since
MS–MS data are not bilinear, other methods should be used for calibration [42,52,53]. Bilinear data
structures are of prime relevance to the analysis of complex mixtures, because they permit quantifica-
tion even in the presence of unsuspected sample constituents. This property of second-order bilinear
data is known as the second-order advantage [14]. It is important to note that the second-order advan-
tage is already obtained using a single calibration sample and methods such as PARAFAC [49] or
GRAM [38]. (This calibration sample is conveniently obtained by a single addition of all analytes of
interest [38].) In this way, one avoids a major drawback of first-order methods, namely, the requirement
of a large and diverse calibration set. This practical benefit can hardly be overstated. In case no rela-
tionship between the various orders can be assumed, the alternative is to rearrange the higher-order data
arrays into vectors, which are first-order tensors, and then apply a first-order method. This procedure
leads, for example, to unfold-PCR and unfold-PLSR [54]. A promising alternative to these unfolding
methods is N-PLS [55], which is a genuine N-way method. It has been shown that N-PLS leads to sim-
pler models [55] and more stable predictions when the noise in the predictor variables is high [55–57].
However, for low-noise predictor data, the “unfolding” methods may be preferable when focus is on
prediction [56]. In the multivariate situation, one may therefore sometimes benefit from simultaneously
applying competing methods to perform the various tasks. Booksh and Kowalski [14] have given a com-
prehensive overview of what can be achieved depending on the order and inherent structure of the data.
A summary, adapted from ref. [14], is given in Table 1.

© 2006 IUPAC, Pure and Applied Chemistry 78, 633–661

Figures of merit for multivariate calibration 643

Fig. 7 EEM fluorescence landscape of a seawater sample. The vertical axis is in arbitrary fluorescence units (FU).
(Reproduced by permission of The Royal Society of Chemistry.)



Table 1 Characteristics of calibration of instruments of increasing complexity.

Order Analytes Standards Unsuspected interferences Statistics

0a 1 ≥1 Not diagnosed; Fairly simple;
prediction bias well developed

1b >1 ≥1 Per species Diagnosed; Relatively complex;
prediction bias under active research

2c >1 ≥1 Diagnosed; Very complex;
no prediction bias poorly developed

aLinear model.
bLinear additive model.
cBilinear model.

3. UNCERTAINTY ESTIMATION AND FIGURES OF MERIT

3.1 Accepted methodology in univariate calibration

Guidelines for univariate calibration are discussed in detail in several official documents [3–5]. They
include provisions that clearly express that all laboratories should possess and apply procedures en-
abling the estimation of the uncertainty of measurement for all calibrations [3]. More importantly, offi-
cial regulations state that when estimating this uncertainty of measurement, all error sources which are
of importance in a given situation should be taken into account using accepted methods of analysis. All
this highlights the need of estimating standard errors for predicted concentrations as part of the chemi-
cal measurement process. The following is a summary of accepted univariate methodology, occasion-
ally supplemented with new developments:

• Standard error of prediction. For the common single-component calibration performed by
straight-line fitting using OLS, expressions for the standard errors in the regression parameters
and also in the predicted analyte concentrations are available in the official literature [1].
Underlying these expressions is the assumption that the uncertainty in the concentration or refer-
ence values is negligible during model estimation. The resulting standard errors of prediction are
sample-specific, since the model is relatively more precise for samples close to the center of the
calibration standards. Recently, model estimation has been considered with non-negligible error
in the concentration or reference values, employing the bivariate least-squares (BLS) method
[58]. For a refinement of this work, see ref. [59].

• Prediction interval. Expressions for the prediction interval are available in the IUPAC literature
[1]. It follows from the application of t statistics and the estimated standard error of prediction as

(6)

where tν,α/2 is the upper α/2-percentage point of the t-distribution with ν degrees of freedom and
σ(ĉ – c) denotes the standard error of prediction (square root of the variance of the prediction error
ĉ – c). Prediction intervals for BLS are considered in [58].

• Figures of merit. Figures of merit for the univariate case are thoroughly covered by the IUPAC
literature [1]:
- Sensitivity. Sensitivity for a given analyte is defined as the slope of the analytical calibra-

tion curve [60,61]. Its dimensions are (signal units × concentration–1). Although the sensi-
tivity may vary with concentration, it is usually constant at low concentration values, where
the calibration curve becomes a straight line, cf. Fig. 1. In general terms, it is sensible to
consider sensitivity as the change in the (net) response of the instrument divided by the cor-
responding change in the stimulus (the concentration of the analyte of interest). A method
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is said to be sensitive if a small change in concentration of the analyte causes a large change
in the (net) response.

- Selectivity. A pairwise selectivity index has been defined as the ratio of the slopes of the cal-
ibrations lines of the analyte of interest and a particular interference [62], i.e.,

(7)

where sa and si denote the sensitivities of analyte and interference, respectively. Ideally, the
selectivity indices should be evaluated for each important interference likely to be present
in varying amounts, since this will lead to biased predictions. In Fig. 2, the pairwise com-
parison of sensitivities at λ2 yields ξi,a = 4.2/1.1 = 3.8. In other words, the measurement at
λ2 is about four times more sensitive to the analyte than the interference. Interestingly, se-
lectivity coefficients have been mainly evaluated for ion-selective electrodes [63–65].

- Signal-to-noise ratio. It is the ratio of the useful analytical signal to the background noise,
with the latter one identified as a measure of the statistical fluctuations in a blank signal.

- Analytical sensitivity. This parameter is defined as the ratio between sensitivity and instru-
mental noise. It appears to be more useful than “plain” sensitivity, because it is independ-
ent of the specific technique, equipment, and scale employed [66,67]. This parameter has
unit concentration–1, and its reciprocal value defines the minimum concentration difference
that can be appreciated across the linear range of the employed technique.

- Limit of detection. The detection capability is considered by IUPAC as a fundamental per-
formance characteristic of a chemical measurement process [7]. In the new IUPAC and
International Organization for Standardization (ISO) documents, detection limits (mini-
mum detectable amounts) are derived from the theory of hypothesis testing and the proba-
bilities of false positive (α), and false negative (β) [7,68,69]. For an illustration of the rele-
vant concepts, see Fig. 8. Its computation has been described in [70]. For a recent review,
see ref. [71]. With non-negligible error in the concentration or reference values, BLS may
substantially improve the more common OLS and weighted least-squares (WLS) proce-
dures, see ref. [72].

- Limit of discrimination. It is the minimum increase in analyte concentration in a prediction
sample which ensures that the analytical signal is significantly different from that corre-
sponding to the original analyte concentration [73]. It is intimately related to the analytical
sensitivity and may be considered as a generalization of the concept of limit of detection.

• Results reporting. IUPAC recommends to always report both the predicted value and its uncer-
tainty, even in case of a decision “not detected”. Otherwise, there is needless loss of information,
and, of course, the impossibility of averaging a series of results.
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3.2 Previously proposed methodology in multivariate calibration

Table 1 shows that the information content increases dramatically when moving from a simple univari-
ate (zeroth-order) model to its complex multivariate (first- and higher-order) counterparts. This increase
is primarily of a qualitative nature in the sense that more difficult analytical problems can be solved
using multivariate models. (In addition, an increasing volume of data will also lead to better noise av-
eraging, which is a favorable quantitative aspect.) Because of the intrinsically different information
content, one should not expect a straightforward generalization of all univariate quantities listed in the
previous section. Surprisingly, only an equally intuitive definition of multivariate selectivity appears to
be problematic. The following is a summary of previous proposals:

• Standard error of prediction. A recent review on calibration [74] states that there are two basic
ways of estimating uncertainty, namely, error propagation [75], which is also employed in the uni-
variate case for BLS [58], or resampling strategies, such as jackknife or bootstrap [76]. We pri-
marily focus on error propagation because it leads to closed-form expressions. These expressions
have been shown to offer many benefits, e.g., they
- are highly convenient for estimating detection and discrimination limits,
- give fundamental insight into the statistical properties of modeling procedures [77,78],
- provide the rationale for spectral pretreatment, i.e., “desensitizing” calibration models for

artifacts in the data such as wavelength instability or baseline shifts [79],
- motivate calibration sample selection procedures, such as “local centering” [80], and
- enable an in-depth discussion of the utility of sensor selection [81].

By contrast, resampling is essentially a “black box” approach, which, however, is often more ac-
curate because fewer assumptions and approximations are made. Consequently, resampling can be ex-
tremely useful for testing the adequacy of formulas resulting from error propagation. A literature sur-
vey shows that deriving formulas using the method of error propagation has been a major research topic.
When employing first-order multivariate data, most publications are concerned with standard (i.e., lin-
ear) PLSR [22,23,82–101] (the parameter results derived in refs. [102–104] lead directly to a formula
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Fig. 8 The limit of detection is the analyte level that with sufficiently high probability (1 – β) will lead to a correct
positive detection decision. The detection decision amounts to comparing the prediction ĉ with the critical level
(Lc). This level is estimated to allow for a positive detection decision with probability α when, in reality, the analyte
is absent. The critical level is only determined by the distribution of the prediction under the null hypothesis (H0:
not present). By contrast, the limit of detection is also determined by the distribution of ĉ under the alternative
hypothesis (HA: present at certain level). The probabilities of false positive and false negative detection decisions
are obtained by integrating the probability density function of ĉ found under the null-hypothesis H0 (right tail) and 
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for standard error of prediction), although some work deals with alternative methods such as PCR
[22,56,87,90,105,106], ILS [22], ANNs [107], nonlinear PLSR [108], CLS [18,27,109], and GSAM
[110,111]. Considerable progress has been achieved for some higher-order methods, namely, rank an-
nihilation factor analysis (RAFA) [112–114], GRAM [109,115–120], BLLS with calibration using pure
standards [50] and mixtures (as well as some alternatives) [44,45], N-PLS [56,121,122], and PARAFAC
[123,124]. It is noted that the expressions proposed for N-PLS and PARAFAC are rather crude approx-
imations that can likely be refined using the parameter results derived in [125,126].

A general mathematical expression which has been employed to estimate standard errors s(c) in
predicted concentrations by several first- [90] and second-order [124] multivariate models is

(8)

where h is the leverage, a quantity which places the test sample relative to the calibration space [21], sc
is the standard error in calibration concentrations, Sn is the multivariate sensitivity appropriate for ana-
lyte n (see below) and sr is the instrumental noise level. Equation 8 generalizes the univariate expres-
sion to the multivariate context, and concisely describes the error propagated from three uncertainty
sources to the concentration standard error: calibration concentration errors (first term on the right-hand
side), errors in calibration instrumental signals (second term), and errors in test sample signals (third
term). However, for certain methodologies, eq. 8 is only an approximation (see above), although it is
likely that analogous, both sample- and analyte-specific expressions will be derived in the future.

• Prediction interval. As in univariate calibration, prediction intervals can be constructed from the
estimated standard error of prediction (square root of a variance estimate) and the relevant t sta-
tistics. However, an important issue should be dealt with in the multivariate case. In the official
literature concerning univariate calibration, it is usually assumed that only the instrument signal
carries an uncertainty, although a number of works have emphasized the importance of taking into
account the errors in both axes when studying a single component [72,127–131]. This leads to
exact variance expressions and exact t statistics. By contrast, multivariate models are often con-
structed using calibration concentrations that are not error-free (see eq. 8). As a result, the vari-
ance expressions obtained using the method of error propagation are only approximate, not exact,
likewise the assumed distributional properties of the test statistic, i.e., the ratio of prediction error
and estimated standard error of prediction

(9)

where the symbols are defined as in eq. 6. However, an appeal to the central limit theorem helps
to justify the required normality assumption for the prediction error (numerator) when the num-
ber of spectral values (J) is large: For large J, the prediction ĉ, hence its error, will be approxi-
mately normally distributed no matter the distribution of the individual rjb̂j values in eq. 1.
Furthermore, the multivariate standard error of prediction (denominator) may have contributions
from different sources. A direct consequence of this is that the required χ2-distribution is only ap-
proximately obeyed and the number of degrees of freedom should be established as a compro-
mise between the degrees of freedom corresponding to each error source. It has been proposed in
ref. [90] to calculate an overall number of degrees of freedom using the well-known procedure of
Satterthwaite [132].

• Figures of merit. Figures of merit have become very important in order to characterize, compare,
and develop new multivariate methods. Many of them are closely related to the concept of multi-
variate net analyte signal (NAS), as introduced by Lorber [18]. (Very recently, Brown [32] has
noted that “Although rarely cited, Morgan [133] had actually discussed a similar concept some
years earlier, giving expressions similar to those provided by Lorber, although readers should note
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that Morgan’s work contains some errors.”) The NAS concept arises quite naturally in multi-
variate calibration from the fact that a prediction sample spectrum may have varying contributions
from other sample components. Hence, it is logical to decompose the spectrum in two orthogonal
parts: a part that can be uniquely assigned to the analyte of interest (the NAS), and the remaining
part that contains the (possibly varying) contribution from other components (Fig. 9). This de-
composition is carried out by the various regression algorithms in such a way that the NAS is pro-
portional to the concentration of the analyte of interest. Since the NAS is the only part of the spec-
trum that is employed for prediction, no information is lost when transforming the vector NAS
into a scalar. The natural choice is to take the Euclidean norm (i.e., its length), so that the scalar
NAS is obtained as r* = ||r*||. In the remainder of the paper, if not otherwise mentioned, the term
“NAS” will refer to the scalar quantity. Using the NAS, a multivariate calibration model can be
represented in a pseudo-univariate plot [134,135]. It is important to note that this representation
is exact, not approximate. (For refinements of the original calculation method, see refs.
[136–138].) In other words, the calibration curve is obtained by replacing the measured instru-
mental signal used in univariate calibration (e.g., absorbance at a single wavelength) by the NAS
(r*). An additional distinction can be made between the classical model, i.e., r* = f(c), and the in-
verse model, i.e., c = f(r*). These models lead to two different regression graphs, which are il-
lustrated in Fig. 10. The figures of merit discussed above for univariate calibration can be derived,
often in a very similar way, for multivariate calibration:
- Sensitivity. This parameter is defined as the NAS generated by an analyte concentration

equal to unity [18]. For a classical model, sensitivity is the slope of the (pseudo-univariate)
calibration graph. Conversely, sensitivity is the inverse of the slope of this graph for an in-
verse model. Hence, in terms of the vector of regression coefficients, the sensitivity is given
by 1/ ||b||. For the consistent generalization to higher-order data, see refs. [124,133,140].

- Selectivity. In univariate calibration, selectivity coefficients (ξa,i) are fundamental to know
how variable amounts of interferences in the sample can bias the predictions, for example,
in the application of ion-selective electrodes. By contrast, interferences can be adequately
modeled using multivariate data. This essential difference explains why the numerical as-
sessment of multivariate calibration selectivity has always been approached differently.
Numerous criteria have been published in the past. It has been explained in the Introduction
that the criterion independently proposed by Lorber [18,19] and Bergmann, von Oepen, and
Zinn [20] is (currently considered to be) the most suitable one. The LBOZ selectivity crite-
rion focuses on describing what part of the measured signal remains for quantitation, i.e.,
the NAS. In the absence of interferences, the NAS would just equal the length of the total
analyte signal. A natural criterion for assessing the impact of all spectral interferences
simultaneously follows as

(10)

where sa denotes the pure analyte spectrum and sa
* is the associated non-overlapping part,

cf. Fig. 9. Since the NAS is only a part of the total analyte signal, it follows that the selec-
tivity is a dimensionless parameter ranging from 0 to 1, and that a lower selectivity is asso-
ciated with a higher degree of spectral overlap between the analyte and other sample con-
stituents. In Fig. 2, the multivariate measurement at λ1 and λ2 yields sa

* = 1/||b|| = 3 

and consequently      (see the caption to Fig. 2), hence, the LBOZ selectivity 

criterion has the simple interpretation that 39 % of the analyte signal is lost due to overlap.
Compared to the ideal case without overlap (ξa =def 1), increased b-coefficients are required
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in eq. 1 to extract the useful signal from the prediction sample spectrum (r). Increased b-co-
efficients, however, lead to more spectral error propagation (compared to the ideal case).
Specifically, assuming a spectral error variance V(rj) for wavelength j (j = 1,…,J), yields a 

contribution to prediction uncertainty. The overlap-induced increase of b-co-

efficients is further illustrated in Fig. 4: Clearly, component A, which corresponds to the
ideal case, will experience much less spectral error propagation than the heavily overlapped
components B and C.

It is important to note that in inverse calibration, a problem arises because the pure
spectrum for the analyte is usually not available. In that case, a pessimistic selectivity esti-
mate is obtained by replacing the total analyte signal in eq. 10 by the length of the mixture
spectrum [139]. For the consistent generalization of eq. 10 to higher-order data, see refs.
[124,133,140].

Finally, it is reiterated that the LBOZ selectivity criterion (ξa) simultaneously ac-
counts for all interferences in the mixture (just like the model itself). A variance-decompo-
sition has been developed as an approach to test for the presence of spectral overlap in a
multicomponent system (degree of component-wise selectivity) and simultaneously assess
the extent to which concentration estimates may degrade [141]. A result of the process is
also identification of which chemical species are involved in respective spectral overlaps.
The process can be implemented pairwise as well. Only very recently has larger focus been
directed toward quantifying the impact of individual interferences on multivariate analyte
predictions, leading to a definition of (pairwise) multivariate selectivity coefficients ξa,i
[142–144]. The radically different standpoint taken in that work may lead to a critical re-
examination of multivariate selectivity assessment.

- Signal-to-noise ratio. It is defined for first-order data as the ratio between NAS and the
background noise [18]. For the consistent generalization to higher-order data, see refs.
[124,133,136].

- Analytical sensitivity. It is defined for first-order [145–147] and for second-order bilinear
calibration [148], using a direct analogy with the univariate parameter.

- Limit of detection. Garner and Davidson [149] note in 1988 that “There is currently no gen-
erally accepted multivariate model of instrumental signals incorporating detection limit es-
timators but there are no major reasons why such models cannot now be developed.” They
continue their discussion of multivariate models with some suggestions and further state
that “It is highly recommended that multivariate models and estimators be developed and
used. Until this is done, decision and detection limits for multiple-signal instruments may
be inappropriately estimated.” Boqué and Rius [150] have reviewed the progress made in
the multivariate area until 1996. (For a general review of more recent date, see ref. [71].)
For considerations of space, we will only list the various contributions. Three illustrative
types of estimators are discussed to some detail in Section 4. Several approaches have been
advanced in the literature for the first-order classical [18,28,151,152] and inverse models
[19,153,154]. (The proposal of [154] is directly applicable to higher-order data.) Typical
method-specific approaches for higher-order data can be found in [124,155–162]. (It is
noted that the method presented in [155,156] is only applicable for multiple signals that are
fully selective for the analyte of interest.) A generally applicable nonparametric approach
is to train a neural classifier to optimize the false positive and false negative error rates
[163].

- Limit of discrimination. The consistent multivariate generalization is developed in ref.
[164].

© 2006 IUPAC, Pure and Applied Chemistry 78, 633–661

Figures of merit for multivariate calibration 649

ˆ ( )b V rj
j

J

j
2

1=
∑



• Results reporting. Analyte concentrations predicted by multivariate methods should be reported
together with the corresponding estimated standard error.

3.3 Specific guidelines for estimating prediction errors

When a multivariate model is employed to predict analyte concentrations or reference properties, the
estimation of uncertainties in prediction by using analytical expressions requires the knowledge of sev-
eral parameters. Usually, these expressions reflect the combined effect of the propagation of uncertain-
ties in instrumental signals for the test sample, and also in the model parameters, stemming, in turn,
from uncertainties in calibration values (see ref. [90] and refs. therein). 

The crudest approximation only involves effects arising from the test sample signals, which are
given by the ratio between instrumental noise and sensitivity [90]. The latter parameter is provided by
the model as the inverse of the length of the regression coefficients (see above), and thus it is model-
dependent. Instrumental noise can be estimated, in turn, in two ways: (1) by sample replication exper-
iments, and (2) from the inspection of the residuals of the prediction step. In the second case, two dif-
ferent scenarios can be envisaged. In the first-order multivariate domain, residuals are comparable to
the instrumental noise level if the calibration set of samples is sufficiently representative of the test
sample, and can then be inserted in uncertainty formulas. However, if the test sample presents uncali-
brated components or spectral artifacts, the residuals will be abnormally large in comparison with the
instrumental noise. In this latter case, the sample is classified as an outlier, and the analyte concentra-
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Fig. 9 Representation of the NAS concept. The NAS vector is the part of the sample spectrum that is used for
prediction. Hence, it is orthogonal to the space spanned by the spectra of the interferences.

Fig. 10 Pseudo-univariate plot of (a) classical calibration and (b) inverse calibration. The arrow indicates how
prediction is calculated from the NAS of a test sample.



tion cannot be predicted by the current model [14]. This constitutes the basis of the excellent outlier de-
tection capabilities of first-order multivariate methodologies. 

When second- and higher-order multivariate calibrations exploiting the second-order advantage
are employed, interferences that are not present in the calibration standards can in principle be modeled,
and prediction residuals will in general reflect the instrumental noise level [44,45,50,56,109,115–126].
This is true provided the data follow the required bi- or tri-linear structure. For methods not showing
this advantage, such as unfold-PCR, unfold-PLSR, and multi-way N-PLS regressions, the situation is
similar to that discussed above for first-order calibrations, even if the data follow the required structure
[54,55].

In any case, the estimated uncertainty in predicted concentrations using the above crude approach
provides an idea of the expected standard error for low-leverage samples, i.e., those which are close to
the center of the calibration, since the leverage serves to place the test sample relative to the calibration
space [21].

The values provided by this simple approach ignore the model uncertainties, and are thus
overoptimistic. In order to obtain more realistic values, it is necessary to consider the effect of cali-
bration errors, which stem from two error sources: (1) calibration concentrations, and (2) calibration
instrumental signals. Several analytical expressions are known, both for first-order and second-order
multivariate methods, which include these model effects (see Section 3.2). In general, they strongly
depend on the sample leverage, which should be calculated for each particular model. Concentration
errors are also required, which are usually available to experienced analysts from the details in the
preparation of the calibration samples, or from the uncertainty in the method employed to determine
the reference concentrations or property values. They can also be estimated as the RMSEP on a test
set of samples of known analyte concentration. In some cases, the calibration set is split into two sub-
sets, one for calibration and the remaining one for prediction. In this latter case, since calibration sam-
ples are sometimes extreme relative to the center of the calibration space, a pessimistic estimate of the
concentration error is obtained, and the prediction uncertainty is overestimated. Consequently, it is ad-
visable to build several models, one for prediction and the other one(s) to estimate ingredients of pre-
diction uncertainty [99].

It should be noticed that the presence of unsuspected interferences may constitute an additional
source of uncertainty. Usually, a prediction sample with unsuspected interferences will have a predic-
tion uncertainty that is larger than that expected for normal samples, unless a multivariate methodology
achieving the second-order advantage is employed. This source of uncertainty should not play a role for
normal samples that pass the check on spectral residuals. 

4. ILLUSTRATIVE EXAMPLES FROM THE LITERATURE

In this section, we present selected examples of multivariate detection limit estimators. Limit of detec-
tion is directly tied to uncertainty estimation, but at very low concentration levels. Concretely, at a con-
centration level that can be differentiated, statistically, from zero concentration, with preselected prob-
abilities of false detection decisions. Limit of detection estimation therefore constitutes a severe test for
any developed uncertainty estimation methodology.

4.1 Formula-based

A rather straightforward approach to estimate the limit of detection is to apply an error propagation-
based formula for standard error of prediction to zero concentration level. This was the approach taken
by Boqué et al. [153] in the determination of the aromatic content of gasolines by NIR spectroscopy.
The selected formula accounts for all sources of errors in the data (signals and concentrations) of cali-
bration and prediction samples [87]. Figure 6 shows the NIR spectra recorded for the calibration set of
samples. No part in the spectra is selective of the analyte of interest. Not even trends in the spectra can
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be related to an increase/decrease of the analyte concentration. A multivariate limit of detection esti-
mator is clearly justified for this type of data. The limit of detection estimator applied to these data was
sample-specific (i.e., dependent on the level of interferences in the sample). The validation with real
samples gave promising results; see Table 1 in ref. [153].

Additional selected examples involving the use of error-propagation for estimating concentration
uncertainties and limit of detection are the spectrofluorometric determination of the antibiotic tetra-
cycline in human serum [98,145] and the spectrophotometric analysis of bromhexine in a decongestant
syrup [98,165]. In the former case, the analyte signal is completely overlapped by the stronger and in-
trinsically variable fluorescence bands of human serum, see Fig. 11. Therefore, several first-order multi-
variate models based on PLS regression were employed. A detailed analysis of the various uncertainty
sources present in this system led to the conclusion that the dominating factor in estimating prediction
uncertainties was the instrumental uncertainty for unknown samples, rather than the calibration model-
ing parameters [98]. The error propagation approach was compared with Monte Carlo simulations
based on noise addition, and also with an empirical approach involving replicate analysis of spiked
samples. The concentration uncertainties, estimated by the formula-based error propagation approach,
by statistical analysis of Monte Carlo noise addition, and by the empirical model were all in mutual
agreement. These three approaches were also successfully applied to the estimation of the limit of de-
tection. The empirical approach included the analysis of samples of progressively decreasing analyte
concentration [98,145].

In the analysis of bromhexine in pharmaceutical syrups [165], the strong absorption of the back-
ground syrup does also seriously overlap with the analyte signal, see Fig. 12. In contrast to the previ-
ous case, here the factor, which dominates the concentration variance, is the uncertainty in analyte cal-
ibration concentrations [98]. Analogous to the univariate case, error-propagation expressions indicate
that in the latter case the concentration uncertainty is strongly dependent on the sample leverage. (The
leverage quantifies the distance of the unknown sample to the calibration center, measured in the multi-
variate calibration space.) Therefore, since blank samples present varying amounts of background com-
ponents, leverages for unknown samples differ from sample to sample, making the limit of detection
become sample-specific.
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Fig. 11 Fluorescence emission spectra, recorded in the synchronous scanning mode with ∆λ = 100 nm, for the set
of 50 calibration human sera spiked with concentrations of the antibiotic tetracycline in the range 0–4 ppm (solid
lines). The spectrum of the pure analyte at a concentration of 1 ppm is shown with a dotted line. The vertical scale
is in arbitrary fluorescence intensity units (FU).



Recently, sample-specific standard errors for the concentrations predicted by a three-way
PARAFAC model exploiting the second-order advantage have been estimated [166]. A simple error
propagation equation based on NAS theory was shown to be useful for this purpose. The results were
supported by noise addition Monte Carlo calculations of variance inflation factors and also by experi-
mental data concerning the determination of a therapeutic drug in human urine samples by fluorescence
excitation–emission matrices. 

4.2 Transforming multivariate models to univariate

An approach that has been suggested by several authors is to perform standard univariate regression
using a “surrogate” signal variable, obtained from the sample multivariate signal and directly related to
the concentration of the analyte. From this univariate regression line (signal vs. analyte concentration)
it is possible to derive figures of merit such as accuracy, sensitivity, and limit of detection. The approach
will work well provided the multivariate model is able to efficiently extract the signal corresponding to
the selected analyte. In the context of MCR, Saurina et al. [159] have proposed to use the areas of the
recovered pure signal profiles of the analyte, which do not depend on the signal of interferents. The au-
thors applied this methodology to calculate the limit of detection, among other figures of merit, for the
analysis of triphenyltin, SnPh3(1+) (IUPAC name triphenylstannylium), in seawater samples by excita-
tion–emission fluorescence, see Fig. 7 for a fluorescence “landscape” of a real sample. The pure emis-
sion profile of the analyte is resolved by MCR–ALS, see Fig. 13. The area of the resolved emission pro-
files is then used as “surrogate” signal. Ortiz et al. [154] have applied a similar approach for multivariate
(and multiway) PLS calibration. In this case, the surrogate variable is the concentration of analyte in the
calibration samples predicted by the optimal PLS model.
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Fig. 12 UV–vis absorption spectra, recorded for the set of 12 calibration syrups spiked with concentrations of
bromhexine in the range 1.55 × 10–4 to 2.66 × 10–4 mol dm–3 (solid lines). The spectrum of the pure analyte at a
concentration of 1 mol dm–3 is shown with a dotted line.



4.3 Neural classifier

Sarabia et al. [163] have advanced a nonparametric approach that consists of training a neural network
to simultaneously optimize the α and β probabilities of giving false detects and false non-detects, re-
spectively, for a fixed threshold concentration. This approach can be extended to any concentration
level, and it requires a representative training set of samples with concentration levels well selected
above and below the threshold limit. The authors applied this procedure to the polarographic determi-
nation of TlI/PbII mixtures and tenoxicam/indomethacin mixtures. Figure 14 shows the polarograms
recorded for the TlI/PbII mixtures. The signals show two peaks and a severe overlap between the two
analytes, so a classical univariate approach to estimate the capability of detection cannot be applied
here. The results with validation samples showed that the four analytes could be detected at less than
10 % of the threshold level with α and β probabilities of error of around 5 %.
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Fig. 13. Resolution of an augmented data matrix with MCR–ALS: (a) emission spectra for the unknown sea water
sample; (b) emission spectra for an analyte standard; (c) emission spectra for flavonol [3-hydroxy-2-phenyl-4H-
chromen-4-one]; (d) emission spectra for the sea water background matrix; (e) excitation spectra. Species
assignment: (1) SnPh3(1+)-flavonol complex; (2) flavonol; (3) sea water background. Triphenyltin reference
samples supplied as triphenyltin chloride. (Reproduced by permission of Elsevier.)



5. CONCLUSIONS AND OUTLOOK

To the best of our knowledge, this paper presents the first comprehensive overview of uncertainty esti-
mation and figures of merit for multivariate calibration. The reader should be aware that we have treated
the subject from a chemometrics perspective. The reason for this is that most contributions originate
from the chemometrics-oriented literature. Three types of multivariate limit of detection estimators il-
lustrate the potential utility of these contributions. In short, the results are as good as might be expected
when applying a common univariate procedure to highly selective data. In other words, multivariate
methods may allow one to extract truly quantitative information from highly unselective data. We hope
that this observation will stimulate further testing and application of the methodology covered in this
review.
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Fig. 14 Polarograms recorded for raw data sets consisting of mixtures of thallium and lead. The peaks
corresponding to thallium appears on the right of the overlapping signal, and that for lead on its left. The
concentrations of the metal ions are such that (a) contains thallium below and (b) above the threshold values.
Likewise, the concentration of lead is below the threshold value in (c) and above in (d). (Reproduced by permission
of Elsevier.)



LIST OF SYMBOLS, ACRONYMS, AND ABBREVIATIONS 

ANN artificial neural network
ASTM American Society for Testing and Materials
b regression coefficient
b vector of regression coefficients
BLLS bilinear least-squares
BLS bivariate least-squares
c concentration
c concentration vector
CLS classical least-squares
e residual value
e vector of residuals
EEM excitation–emission matrix
F number of scores
GC gas chromatography
GRAM generalized rank annihilation method
GSAM generalized standard addition method
I number of samples
i running index for samples
ICP–OES inductively coupled plasma–optical emission spectrometry
ILS inverse least-squares
ISO International Organization for Standardization
IUPAC International Union of Pure and Applied Chemistry
J number of wavelengths
j running index for wavelengths
K number of analytes
k running index for analytes
LBOZ Lorber, Bergmann, von Oepen, and Zinn
M matrix of second-order signals
MCR–ALS multivariate curve resolution–alternating least-squares
MS mass spectrometry
NAS net analyte signal
NIR near-infrared
N-PLS multiway partial least-squares
OLS ordinary least-squares
PARAFAC parallel factor analysis
PCR principal component regression
PLSR partial least-squares regression
R matrix of first-order calibration signals
r instrumental signal 
r vector of instrumental signals
RAFA rank annihilation factor analysis
RMSEP root-mean-square error of prediction
S matrix of pure analyte spectra
s sensitivity
s pure analyte spectrum
t percentage point of the t-distribution
UV ultraviolet
V variance
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WLS weighted least-squares
x profile in the first dimension of second-order signals
y profile in the second dimension of second-order signals
α nominal coverage of statistical interval or probability of false positive detection

decision
β probability of false negative detection decision
χ2 statistical χ2-distribution
λ wavelength
ν degrees of freedom
ρ test statistic
σ standard error of prediction
ξ pairwise selectivity index
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