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Four-way fluorescence data recorded by following the
kinetic evolution of excitation-emission fluorescence
matrices (EEMs) have been analyzed by parallel factor
analysis and trilinear least-squares algorithms. These
methodologies exploit the second-order advantage of the
studied data, allowing analyte concentrations to be esti-
mated even in the presence of an uncalibrated fluorescent
background. They were applied to the simultaneous
determination of the components of the anticancer com-
bination of methotrexate and leucovorin in human urine
samples. Both analytes were converted into highly fluo-
rescent compounds by oxidation with potassium perman-
ganate, and the kinetics of the reaction was continuously
monitored by recording full EEM of the samples at
different reaction times. A commercial fast scanning
spectrofluorometer has been used for the first time to
measure the four-way EEM kinetic data. The rapid scan-
ning instrument allows the acquisition of a complete EEM
in 12 s at a wavelength scanning speed of 24 000 nm/
min. The emission spectra were recorded from 335 to
490 nm at 5-nm intervals, exciting from 255 to 315 nm
at 6-nm intervals. Ten successive EEMs were measured
at 72-s intervals, to follow the fluorescence kinetic evolu-
tion of the mixture components. Good recoveries were
obtained in synthetic binary samples and also in spiked
urine samples. The excitation, emission, and kinetic time
profiles recovered by both chemometric techniques are
in good agreement with experimental observations.

In recent years, multiway chemometric techniques have been
introduced for the analysis of complex samples.1 They are
appealing to analytical chemists because they allow for a direct
separation of the measured signals into the underlying contribu-

tions from individual analytes. Furthermore, instruments that
easily generate multidimensional arrays of experimental data per
sample are presently available to chemists. One example is a high-
performance liquid chromatograph coupled to a diode array
detector (HPLC-DAD).2 A spectrofluorometer provides a particu-
larly interesting possibility, because it allows, in a very straight-
forward manner, the acquisition of multiway information on a
single instrument by recording excitation-emission matrices
(EEMs).3 Both HPLC-DAD and EEM data are considered as
second-order arrays per sample, leading to three-way arrays when
data for a group of samples are joined.

Several second-order calibration methods have been recently
described for EEM analysis, to resolve mixture components or
to determine single components in complex samples, even in the
presence of uncalibrated interferents. Bro et al. published a review
on multiway spectroscopic analysis, covering the known proce-
dures until 1995.4 Recent examples are the determination of
polyciclic aromatic hydrocarbons,5 carbamate pesticides,6 ternary
mixtures of naphthyl derivatives,7 triphenyltin in seawater,8,9

chlorophylls and pheopigments,10 verapamil in tablets,11 propra-
nolol, amiloride, and dipyridamole,12 naproxen-salicylic acid in
serum and naproxen-salicylic acid-salicyluric acid in urine,13

norfloxacin, enoxacin, and ofloxacin fluoroquinolones in serum,14
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doxorubicin in plasma,15 piroxicam in serum,16 carbendazin,
fuberidazole, and thiabendazole pesticides,17 ibuprofen in phar-
maceutical preparations and serum,18 carbamazepine in serum and
pharmaceutical preparations,19 and ciprofloxacin in urine.20 The
list gives an idea of the variety of analytes and samples that are
being explored within this rapidly expanding field.

The different multiway methods used to resolve multicompo-
nent mixtures belong to three main groups: (1) direct solution,
(2) iterative, and (3) least-squares methods. The first group
includes the generalized rank annihilation method (GRAM)21 and
direct trilinear decomposition (DTLD).22 Examples of iterative
methods are parallel factor analysis (PARAFAC),23 self-weighted
alternating trilinear decomposition (SWATLD),24 multivariate
curve resolution coupled to alternating least squares (MCR-ALS)25

and N-way partial least squares (N-PLS).26 Bilinear least squares
(BLLS) is a recently introduced technique, based on a direct least-
squares procedure.27,28 Iterative algorithms have been most widely
employed, as they are considered to be less sensitive to instru-
mental noise and model deviations. Especially useful are PARAFAC
and SWATLD, particularly when the data follow the so-called
trilinear model.26 This is due to the fact that decomposition of a
three-way data array built with response matrices measured for a
number of samples is often unique, allowing spectral profiles as
well as relative concentrations of individual sample components
to be extracted directly. This property has been named the second-
order advantage29 and is fully exploited by both PARAFAC and
SWATLD. It should be noticed that BLLS coupled to a separate
procedure called residual bilinearization (RBL) has been shown
to be useful in this regard.20 Among all the methods listed above,
N-PLS is the only one that is not able to exploit the second-order
advantage, because it cannot model interferences that are not
present in the training sample set.

Kinetic experiments provide the opportunity of introducing an
additional temporal dimension in the measured data set, allowing
one to increase the selectivity of spectroscopic-based determina-
tions. Three-way kinetic measurements have been reported in the
literature, by following the time evolution of absorption or emission
spectra.30,31 However, only in a few cases have four-way data been
recorded by measuring the time evolution of EEMs and used to

build quantitative calibration models. Kinetic fluorescence detec-
tion was employed by Gui et al.32 to determine glycine and
glutamine after thin-layer chromatographic separation, using
DTLD to analyze the resulting four-way data. Tau et al. resolved
four-way data arrays by PARAFAC in a kinetic system that involved
the simultaneous degradation of spinach-extracted chlorophylls
a and b, initiated by treatment with an acid buffer.33 Nikolajsen et
al. described the determination of adrenaline and noradrenaline
by EEM measurements of the fluorescing 3,5,6-trihydroxyindole
derivatives of the catecholamines as a function of time34 and used
PARAFAC and N-PLS to resolve the mixture components. To
acquire EEMs as a function of time, a laboratory-constructed
charge-coupling device fluorometer was used, as previously
described by Muroski et al.35

In the present report, we analyze four-way kinetic fluorescence
data for a system composed of the antineoplastic combination
methotrexate/leucovorin embedded in a human urine back-
ground. This type of data should in principle exhibit the same
advantage shown by three-way data as regards the presence of
uncalibrated components, i.e., the second-order advantage, while
providing additional selectivity. It may be noticed that Booksh and
Kowalski, when referring to third-order data, suggested the term
third-order advantage, although they stated that “the complete
third-order advantage, or the Nth-order advantage for that matter,
is unknown”.29 For the purpose of investigating the analytical
properties of third-order data, we compare the performances of
PARAFAC and a new technique, which we call trilinear least
squares (TLLS), developed as an extension of BLLS for quadri-
linear data and presented for the first time in this paper. Particular
attention is focused on the ability of these techniques in achieving
the second-order advantage. To the best of our knowledge, this
is the first report on the achievement of the second-order
advantage using four-way data for analytes embedded in truly
complex biological samples.

Methotrexate (MTX, 2,4-diamino-N10-methylpteroylglutamic
acid, amethoptherin, Figure 1) is a prototype folate-antagonist
cytotoxic drug employed in the therapy of solid tumors and
leukaemias. Recently, it has also been used as an immunosup-
pressive agent in organ transplantation, in the treatment of some
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Figure 1. Chemical structures of leucovorin (LV) and methotrexate
(MTX).
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autoimmune diseases, and in the therapy of severe asthma and
rheumatoid arthritis.36 The inherent risk of toxicity from high-
dose therapy requires MTX monitoring in plasma or serum and
the coadministration of folinic acid (LV; leucovorin, N5-formyltet-
rahydrofolate, Figure 1), which is used as rescue agent. High-
dose methotrexate (>500 mg/m2) combined with leucovorin has
been found to improve the outcome in acute lymphatic leukemia,
lymphoma, and osteosarcoma.37

MTX is present in several biological samples, such as plasma,
serum, urine, or saliva, and can be extracted, separated, and
detected under a variety of chromatographic conditions. Few
papers have reported fluorescence methodologies for analyzing
these compounds, because most studies are guided by HPLC.
Rubino published a review where more than 70 papers describing
chromatographic assays for MTX and its metabolites are dis-
cussed,38 some of which involve fluorescence detection. On the
other hand, the use of HPLC for the determination of folates is
well documented: there are several liquid chromatography
methods for the determination of LV in mixed folates and
antifolates by a combination of UV and fluorometric detection.39-41

The simultaneous determination of both MTX and LV presents
several difficulties.39,40 HPLC using on-line postcolumn UV irradia-
tion and fluorescence detection,40 capillary electrophoresis,42 and
net analyte-based multivariate calibration of spectrophotometric
data (developed in our laboratory)43 have been proposed for this
purpose. Interestingly, both analytes can be transformed into
highly fluorescent derivatives by reaction with hydrogen peroxide
or potassium permanganate. The fluorescence properties of the
products generated by the latter reagent have been established,
and two separate kinetic-fluorometric methods have been previ-
ously proposed, based on analyte oxidation at different pH
values.44,45 These kinetic reactions, previously investigated in our
laboratory, form the basis of the present methodology for
generating four-way data, which are adequate for the simultaneous
determination of methotrexate and leucovorin in urine samples.
The kinetics of the permanganate reaction was followed by
measuring the EEM evolution with time, using for the first time
a fast-scanning commercial spectrofluorometer, and both PARAFAC
and TLLS models were applied to resolve the mixtures.

EXPERIMENTAL SECTION
Apparatus. Fluorescence spectral measurements were per-

formed on a Varian Cary Eclipse fluorescence spectrophotometer,
equipped with two Czerny-Turner monochromators and a xenon

flash lamp. The fluorometer was connected to a PC microcomputer
via an IEEE 488 (GPIB) serial interface. The Cary Eclipse software
was used for data acquisition, data interpretation, and graphical
display. Excitation-emission matrices were recorded in a 10-mm
quartz cell at 30 °C, by use of a thermostatic cell holder and a
Selecta thermostatic bath. The instrument is able to scan at 24.000
nm/min without peak shifts due to the design of the monochro-
mator drive mechanism. The grating is moved only when the lamp
is off, resulting in a go-to-flash method of taking a measurement.
The wavelength does not change while measurements are being
made. According to the manufacturer specifications of the instru-
ment, the wavelength accuracy is (1.5 nm and the wavelength
reproducibility is (0.2 nm.

Reagents. All experiments were performed with analytical
reagent grade chemicals. LV (as the calcium salt pentahydrate)
was prepared by dissolving 0.0100 g of reagent (Acros Organics)
in 100 mL of ultrapure water obtained using Water Pro PS
equipment (Labconco, Kansas City, MO). MTX was prepared by
dissolving 0.0100 g of the compound (Sigma, St. Louis, MO) in
100 mL of alkalinized ultrapure-grade water. Appropriate MTX and
LV solutions of different concentrations were prepared by dilution
in ultrapure-grade water. A 0.1000 M KMnO4 stock solution
(standardized by titration with sodium oxalate) was prepared in
doubly distilled water. A Borax 0.065 M buffer of pH 9.4 was also
used.

Calibration and Test Sets. In this work, the method of
external calibration was employed. For this purpose, a calibration
set of nine samples was constructed, using a central composite
design with five levels of MTX and LV. The levels correspond to
values in the range 0.00-0.98 mg L-1 for MTX and 0.00-0.68 mg
L-1 for LV. The procedure consisted in placing an aliquot of 3
mL of each solution containing adequate quantities of both MTX
and LV and Borax buffer of pH 9.4 in the quartz cell, adding 50
µL of 0.028 M KMnO4, and mixing. The kinetic evolution of
excitation-emission fluorescence matrices of these solutions was
then recorded, and the obtained data were subjected to four-way
analysis, as described below.

In principle, exploratory excitation and emission wavelength
ranges were 240-350 nm for excitation and 330-520 nm for
emission, but in order to avoid the presence of Rayleigh scattering
and diffraction grating harmonics, the EEMs were then recorded
in restricted ranges. The latter were as follows: emission from
335 to 490 nm at 5-nm intervals (J ) 32 data points) and excitation
from 255 to 315 nm at 6-nm intervals (K ) 11 data points), making
a total of 352 spectral points per sample matrix. The rapid-scanning
instrument allows the acquisition of a complete EEM in 12 s at a
wavelength scanning speed of 24 000 nm/min. In the time
dimension, the EEMs were obtained at intervals of 72 s, for a
reaction time ranging from 0 to 10.8 min. Since 10 data points
were collected in the latter mode, each three-way array consisted
of a total of 3520 data points. It should be noticed that, if reaction
significantly evolves during spectral acquisition, the data sample
would not be strictly trilinear. In our case, we did not find this
problem to be important. However, we have to note that the
proposed approach, using total EEM spectra acquisition, will not
be appropriated, in general, for fast kinetic studies.

The binary test set was composed of 10 samples, prepared in
the same form as those for calibration, but using a random design,
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i.e., selecting the target concentrations of both analytes at random
from the calibration range for each analyte (see below for details
on the composition of these samples).

Urine Samples. Volumes of 40 µL of six different urine
samples (taken from different healthy individuals), also containing
2 mL of Borax buffer of pH 9.4, were spiked with concentrations
of both analytes, selected at random from their corresponding
calibration ranges, and diluted to 10.00 mL with water in volu-
metric flasks. Then 3 mL of these solutions were placed in the
quartz cell and treated with potassium permanganate as described
for the calibration and test set. Three additional urine samples
were treated in the same manner but were left as blanks; i.e.,
they were not spiked with the analytes. The evolutions of the
EEMs with time were subsequently read for all these samples in
the same manner as described above. Each urine sample was
prepared in duplicate (details on the nominal analyte concentra-
tions for these samples are provided below). The level of urine
dilution (1:250) implies that the present calibration scheme covers
concentration ranges up to 245 mg L-1 for MTX and 170 mg L-1

for LV, values which are comparable to those found in patients.
38,46

THEORY
PARAFAC. A given sample produces third-order data when

a J × K × L data array (or third-order array) is experimentally
obtained, where J, K, and L denote the number of data points in
each of the three dimensions (in kinetic-EEM fluorescence
measurements, J is the number of digitized emission wavelengths,
K is the number of excitation wavelengths, and L is the number
of time data points). One way of analyzing this type of data is to
join the I training arrays Xi,cal and the unknown sample array Xu

into a four-way data array X, whose dimensions are [(I + 1) × J
× K × L]. Provided X follows a multilinear PARAFAC model, it
can be mathematically written in terms of four vectors for each
responsive component. These are designated as an, bn, cn, and dn

and collect the relative concentrations [(I + 1) × 1], emission
profiles (J×1), excitation profiles (K×1), and time profiles (L ×
1) for component n, respectively. The specific expression is thus47

where N is the total number of responsive components, ain is the
relative concentration of component n in the ith sample, and bjn,
ckn, and dln are the normalized intensities at the emission
wavelength j, excitation wavelength k, and time l, respectively.
The values of Eijkl are the elements of the array E, which is a
residual error term of the same dimensions as X. The column
vectors an, bn, cn, and dn are collected into the corresponding
loading matrices A, B, C, and D (bn, cn, and dn are usually
normalized to unit length).

The model described by eq 1 defines a decomposition of X,
which provides access to spectral profiles (B and C), time profiles
(D), and relative concentrations (A) of individual components in

the (I + 1) mixtures, whether they are chemically known or not.
This constitutes the basis of the second-order advantage. The
decomposition is usually accomplished through an alternating
least-squares (ALS) minimization scheme.23,48 It should be noted
that kinetic-spectral data of the type presently discussed may
present the phenomenon of rank deficiency, meaning that the data
rank is smaller than the number of the intervening chemical
species. In these cases, it is sometimes preferable to apply
nonnegativity constraints in PARAFAC modes during the least-
squares minimization.31 In the present analytical problem, how-
ever, two basically nonfluorescent analytes occur that develop
intense fluorescence upon oxidation, while urine is degraded to
nonfluorescent products with time. Therefore, there is no rank
deficiency, because a single fluorescent species occurs for each
chemical reaction. As expected, calculations run by imposing
nonnegativity to PARAFAC do not significantly change the
prediction results.

Issues relevant to the application of the PARAFAC model to
four-way kinetic-fluorescent data are as follows: (1) establishing
the number of fluorophores and the reliability of the model, (2)
identifying specific fluorescent components from the information
provided by the model, and (3) calibrating the model in order to
obtain absolute concentrations for a particular component in an
unknown sample.

The number of responsive components (N) can be estimated
by several methods. A useful technique is the consideration of
the PARAFAC internal parameter known as core consistency (see
below).49 A PARAFAC model constructed with the correct number
of components is considered to be correct if reasonably low least-
squares errors are obtained in comparison with the instrumental
noise level.

Identification of the chemical constituent under investigation
is done with the aid of the spectral and time profiles, as extracted
by PARAFAC, and comparing them with those for a standard
solution of the analyte of interest. This is required since the
components obtained by decomposition of X are sorted according
to their contribution to the overall spectral variance, and this order
is not necessarily maintained when the unknown sample is
changed.

Absolute analyte concentrations are obtained after calibration,
because the four-way array decomposition only provides relative
values (A). Calibration is done by means of the set of standards
with known analyte concentrations (contained in an I × 1 vector
y) and regression of the first I elements of column an against y:

where “+” implies taking the pseudoinverse. Conversion of relative
to absolute concentration of n in the unknown proceeds by division
of the last element of column an [a(I+1)n] by the slope of the
calibration graph k:

In summary, the PARAFAC model first joins the I calibration
data matrices together with the unknown sample matrix and then
introduces concentration information in a separate pseudounivari-
ate regression step.
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TLLS. TLLS can be regarded as an extension of BLLS, whose
formulation is discussed in detail in the relevant literature.27,28 As
in the case of PARAFAC, a training set is required composed of
I mixtures of the Ncal analytes (see below). However, in contrast
to PARAFAC, analyte concentration information is introduced in
the training step, without including data for the unknown sample.
As in BLLS, the trilinear extension TLLS assumes that the data
follow a trilinear structure and that the contribution of each analyte
to the overall signal is given by the product of a unit-concentration
pure analyte array Sn (of size J × K × L) by its concentration.
The least-squares TLLS model is best understood in terms of
vectorized arrays, as shown in eq 4,50 where vec(‚) indicates the

vectorization operator, Y is an I × Ncal matrix containing the
concentrations of the Ncal calibrated analytes in the I mixtures,
and E is a residual term of appropriate dimensions (JKL × I). To
obtain least-squares approximations to the pure analyte three-way
arrays at unit concentration Sn, a procedure analogous to the
estimation of unit-concentration pure analyte spectra in first-order
classical least-squares analysis is applied. The concentration
product matrix D (size Ncal × Ncal) and Ncal concentration-weighted
Tn three-way arrays (size J×K×L) are first obtained, starting from
the matrix Y and the I training three-way Xi,cal arrays:

Analogously to BLLS, the Sn arrays are then given by

Notice that the Y matrix in TLLS contains all calibrated
analytes, in our case MTX and LV. The latter should be present
in the training samples in either their pure forms or as mixtures;
the latter possibility is usually better and follows a proper statistical
design. It is also possible to have training samples that contain
mixtures of the analytes with other constituents, as long as the
analyst knows the concentrations of the analytes of interest in
the training samples. In this sense, the requirements for designing
Y are the same as those for PARAFAC.

The obtained J × K × L arrays Sn allow one to estimate the
calibrated three-mode profiles for the calibrated analytes. The
procedure already discussed for BLLS, and known as SVD profile
estimation (SVD implies singular value decomposition) can be
extended one further dimension by constructing a single-
component Tucker3 model for each Sn,27,28 which is analogous to

a single-component three-way PARAFAC model for each Sn:

where Sn,jkl is a (j,k,l) element of Sn, gn is the normalization core,
bjn, ckn, and dln are elements of bn, cn, and dn, the emission (J ×
1), excitation (K × 1), and time (L × 1) profiles for component n,
respectively, and En,jkl is an element of the residual term En (of
the same dimensions as Sn). The profiles provided by eq 8 should
be similar to those described above for PARAFAC (notice,
however, that they do not include uncalibrated components, which
may occur in the unknown sample). One difference with PARAFAC
is that TLLS does not require the identification of calibrated
components, an operation that is automatically performed by the
algorithm.

If the calibration model is exact, the pure analyte arrays Sn

allow one to estimate the analyte concentrations in the unknown.
As previously shown,50 BLLS employs a prediction equation which
is equivalent to that derived in first-order classical least-squares
analysis, except that data for the pure analytes and for the
unknown sample are vectorized. Analogously to BLLS, therefore,
a pure analyte matrix Scal (of dimensions JKL × Ncal) can be
defined in TLLS by

where X implies the well-known Kronecker product.
The concentration of analytes in the unknown sample is then

simply predicted as

where yu is a vector (size Ncal × 1) containing the predicted
concentrations of the Ncal analytes in the test sample.

Uncalibrated compounds occurring in an unknown sample are
analyzed by comparing the residuals of the prediction least-squares
fit with the instrumental noise level (assessed by blank replication
instrumental measurements). If additional components than those
calibrated are required by the unknown sample, a separate
iterative procedure called residual trilinearization (RTL), analogous
to RBL,27,28 can be carried out. The latter is summarized in the
following steps:

(1) Set Nint ) 1 as a trial number of interfering components
occurring in the unknown sample.

(2) Calculate an expanded version of yu with eq 11 and the
positive residuals for the prediction step with eq 12 (the first time
this RTL procedure is used, consider Sexp ) Scal, in which case yu

only predicts the calibrated analytes)

where Sexp is an expanded version of Scal (see eq 9), which includes
the interference profiles.

(48) Paatero, P. Chemom. Intell. Lab. Syst. 1997, 38, 223-242.
(49) Bro, R. Multi-way analysis in the food industry. Doctoral Thesis, University

of Amsterdam, Amsterdam, The Netherlands, 1998.
(50) Faber, N. M.; Ferré, J.; Boqué, R.; Kalivas, J. H. Chemom. Intell. Lab. Syst.

2002, 63, 107-116.

Sn,jkl ) gnbjnckndln + En,jkl (8)

Scal ) [g1 (d1 X c1 X b1)|g2(d2 X c2 X b2)| ... |
(gNcal dNcal X cNcal X bNcal)] (9)

yu ) Scal
+ vec(Xu) (10)

yu ) Sexp
+ vec(Xu) (11)

Eu ) |Xu - ∑
n′)1

Ncal

Sn′ yn′,u| (12)

[vec(X1,cal)|vec(X2,cal)| ... |vec(XI,cal)] )

[vec(S1)|vec(S2)| ... |vec(SNcal)]YT + E (4)

T ) ∑
i)1

I

Yin Xi,cal (5)

D ) YT Y (6)

Sn ) ∑
n′)1

Ncal

(D-1)nn′Tn′ (7)
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(3) Build a Tucker3 model with Nint components in each of
the three modes for the three-way array Eu and obtain the profiles
for the interference(s),

where Aint is the core array.
(4) Expand Scal by including the interference profiles.
(5) Return to step 2 and continue until convergence.
(6) If the residuals are still significantly larger than the noise

level, return to step 1 and increase the number of interferences
by one. Notice that the final value of N in TLLS is given by Ncal +
Nint.

As can be seen, the TLLS philosophy involves a two-step
calibration-prediction mode. The second-order advantage is left
for a postcalibration stage, in which the residuals are trilinearized
for estimating interference profiles. The latter are useful for
correctly estimating the analyte concentrations, even in the
presence of unexpected constituents.

Figures of Merit. Figures of merit are analytical parameters
used for the comparison of methods. Different approaches have
been discussed in the literature for computing figures of merit
for higher order methodologies.51-54

As regards the sensitivity, the following equation seems to
apply to the presently studied case:53,55,56

where “/” is the element-wise product operator and k is an
appropriate scaling factor. In PARAFAC, k is identified with the
proportionality constant between scores and concentrations (eq
2), while in TLLS it can be obtained by regressing the gn values
(eq 8) against y. Note that when urine is included in the samples,
B, C, and D include interference profiles and hence a decrease
in sensitivity is expected. When the second-order advantage is
achieved, eq 14 implies a SEN value that is sample-specific and
that cannot be defined for the multivariate method as a whole.
We thus report average values for a set of representative samples.

A further figure of merit is the standard error in the predicted
concentrations, an area of active research in the multivariate
calibration field. Mathematical expressions for sample-specific
prediction uncertainties take proper account of the propagation
of different error sources but are unavailable for cases exploiting
the second-order advantage.57 A useful alternative is to resort to
mean prediction errors for a set of test samples, to obtain an
average concentration error, useful for method comparison (see
below).

The limit of detection (LOD) has been recently discussed for
higher-order multivariate techniques by means of a rigorous

approach that considers the presence of both false positive and
false negative errors.58,59 A recent work has discussed the
estimation of the PARAFAC LOD, but only when all sample
components present are calibrated.57 This latter approach is
therefore not applicable to the analyte determination in urine
samples. The LOD can still be estimated using the expression57

where sr is the instrumental noise level and the appropriate SEN
value is employed. Equation 15 does not account for calibration
uncertainties, and hence, it generally provides overoptimistic
values. In the case of urine samples, because the value of SEN is
given as an average value over a test sample set, LOD is also
reported as an average figure.

Software. All calculations were done using MATLAB 6.0,60

using the PARAFAC routines developed by Bro and available on
the Internet.61 We have developed a MATLAB graphical interface,
similar to that already described for first-order multivariate
calibration.62 It implements PARAFAC and also TLLS and offers
a simple graphical means in which data can be loaded into the
working space, spectral and time regions can be selected, and
three-mode profiles and pseudounivariate calibration graphs can
be plotted. Analytically relevant results, i.e., predicted concentra-
tion and figures of merit, are conveniently shown.

RESULTS AND DISCUSSION
Kinetic Behavior of the Analytes. In previous papers,44,45 the

oxidation reactions of MTX and LV in the presence of potassium
permanganate were described. The oxidation of MTX takes place
in acid media (pH at ∼5), while LV is readily oxidized in strongly
alkaline solutions (0.17 M NaOH). In the present paper, we
selected a pH value (9.4) where the oxidation of both analytes
occurs at measurable rates. Under these conditions, kinetic
excitation-emission matrices have been recorded that contain
relevant information concerning the fluorescent reaction products
of both MTX and LV.

On the other hand, urine is a complex biological mixture
exhibiting strong native fluorescence and whose behavior under
the presently studied oxidizing conditions was not known in
advance. Our results suggest that the main phenomenon occurring
when a diluted urine sample is subjected to alkaline oxidation with
permangante is a decrease in the initial fluorescence emission,
with a time scale comparable to those of the analytes. This allowed
us to probe the success of the different chemometric approaches
in recovering not only the fluorescence spectral profiles of the
different sample components but also the corresponding behaviors
as time evolves.

Spectral Properties of Analytes. Figure 2 shows the super-
imposed contour plots corresponding to the EEM for one of the
training samples (containing MTX 0.39 mg L-1 and LV 0.38 mg(51) Messick, N. J.; Kalivas J. H.; Lang, P. M. Anal. Chem. 1996, 68, 1572-

1579.
(52) Wang, Y.; Borgen, O. S.; Kowalski, B. R.; Gu M.; Turecek, F. J. Chemom.

1993, 7, 117-130.
(53) Faber, K.; Lorber, A.; Kowalski B. R. J. Chemom. 1997, 11, 419-461.
(54) Ho, C.-N.; Christian G. D.; Davidson, E. R. Anal. Chem. 1980, 52, 1071-

1079.
(55) Faber, N. M. J. Chemom. 2001, 15, 743-748.
(56) Olivieri, A. C. J. Chemom., submitted for publication.
(57) Olivieri, A. C.; Faber, N. M. Chemom. Intell. Lab. Syst. 2004, 70, 75-82.

(58) Boqué, R.; Larrechi, M. S.; Rius, F. X. Chemom. Intell. Lab. Syst. 1999, 45,
397-408.

(59) Boqué, R.; Ferré, J.; Faber, N. M.; Rius, F. X. Anal. Chim. Acta 2002, 451,
313-321.

(60) MATLAB 6.0, The MathWorks Inc., Natick, MA, 2000.
(61) http://www.models.kvl.dk/source/.
(62) Goicoechea, H. C.; Iñon, F. A.; Olivieri, A. C. Chemom. Intell. Lab. Syst., in

press.

LOD ) 3sr/SEN (15)

(Aint X Bint X Cint X Dint) ) Tucker3(Eu) (13)

SEN ) k {[[(BTB)*(CTC)*(DTD)]-1]nn}-1/2 (14)

5662 Analytical Chemistry, Vol. 76, No. 19, October 1, 2004



L-1) and for a typical human urine, in all cases after reaction with
potassium permangante at a reaction time of 4.8 min. They were
recorded in wide spectral excitation and emission ranges, 240-
350 and 330-520 nm, respectively, and show Rayleigh scattering
and a second harmonic from the diffraction grating (Figure 2).
These latter signals are undesired because they are not correlated
with the target concentrations of the studied analytes. Therefore,
for calibration and prediction purposes, the EEMs were subse-
quently recorded, as a function of time, in the sensibly restricted
excitation and emission ranges shown as a gray rectangle in
Figure 2, which includes the analytes’ fluorescence peaks of
highest intensity. This range corresponds to emission from 335
to 490 nm at 5-nm intervals (J ) 32 data points) and excitation
from 255 to 315 nm at 6-nm intervals (K ) 11 data points), making
a total of 352 spectral points per sample matrix. Figure 2 also
highlights the fact that a significant overlapping occurs between
the analytes and the urine background of this particular sample
across the examined spectral ranges. Furthermore, the absolute
intensity of urine components is, on the average, comparable to
those stemming from the analytes in the investigated concentra-
tion ranges. It should also be noted that the intensity and spectral
shapes of urine vary among different individuals, making it difficult
to employ first-order multivariate techniques for MTX and LV
monitoring, because they are sensitive to unmodeled components.

Figure 3 shows the four-way data array structure used in this
work, following the time evolution of the EEM of one of the
calibration mixtures in the selected spectral ranges and in the
presence of potassium permanganate. It can be appreciated that
the fluorescence intensity of the analytes increases considerably
as a function of reaction time. This provides a sensitivity for the
determination which is significantly larger than that achieved in
the absence of oxidant. Furthermore, the emission intensity of
urine fluorescent components decreases with time (see below),

providing additional selectivity when this complex biological fluid
is analyzed.

Binary MTX/LV Samples. The set of 10 test binary samples
was investigated with the aid of PARAFAC. Initialization was
performed using the default PARAFAC option (which employs
SVD vectors), and an unconstrained least-squares fit was then
carried out. Although in principle two fluorophores are expected
for these samples, the selection of the number of spectral
components has been independently checked by the method
known as core consistency diagnostic,63 especially useful for
spiked urine samples (see below). It is based on examining the
model based on the data and the estimated parameters of
gradually augmented models. The model is called appropriate if
adding other combinations of the same components does not
improve the fit considerably. When the core consistency drops
from a high value, above ∼60%, to a low value, this indicates that
an appropriately number of components has been attained. For
PARAFAC, in all cases the core consistency dropped to a very
low value when using three spectral components to model the
data, suggesting that N ) 2 is a sensible choice, as expected from
the composition of these samples. The PARAFAC emission,
excitation, and time profiles of the two-component model match
those expected for pure analyte standards. In all cases, the residual
least-squares errors were comparable to the instrumental noise,
indicating a good fit to the proposed model.

When TLLS was applied to the same set, the study of the
prediction residuals led to the conclusion that two components
were sufficient to obtain a good least-squares fit for all unknown
samples. In this set of binary samples, achieving reasonably low
residuals implies that components additional to those considered
during calibration are not necessary. The TLLS profiles for the

(63) Bro, R.; Kiers, H. A. L. J. Chemom. 2003, 17, 274-286.

Figure 2. Contour plot of the EEM for an aqueous solution (pH
9.4) containing methotrexate 0.39 mg L-1 and leucovorin 0.38 mg
L-1 (thick lines, analyte maximums are indicated for MTX and LV,
respectively) and a typical human urine sample diluted 1:250 (narrow
lines), showing the presence of a diffraction grating harmonics (H)
and Rayleigh (R) scatterings, as indicated. The gray rectangle
illustrates the spectral excitation and emission ranges selected for
calibration with PARAFAC and TLLS.

Table 1. Predicted Concentrations in a Binary Test Set
of Samples, Using Both PARAFAC and TLLS

LV/mg L-1 MTX/mg L-1

nominal PARAFAC TLLS nominal PARAFAC TLLS

0.25 0.27 0.28 0.60 0.46 0.48
0.44 0.44 0.47 0.18 0.14 0.09
0.14 0.09 0.14 0.14 0.01 0.08
0.51 0.53 0.51 0.74 0.65 0.59
0.31 0.30 0.31 0.49 0.38 0.39
0.38 0.34 0.38 0.05 0.03 0.01
0.17 0.12 0.18 0.00 -0.05 -0.04
0.55 0.50 0.55 0.00 0.04 -0.03
0.00 -0.02 0.00 0.39 0.20 0.33
0.27 0.24 0.25 0.40 0.37 0.40

LV MTX

figures
of merita PARAFAC TLLS PARAFAC TLLS

RMSEP/
mg L-1

0.03 0.02 0.10 0.08

SEN/
AFU l mg-1

8 × 103 8 × 103 1 × 104 1 × 104

LOD/
mg L-1

0.01 0.01 0.01 0.01

a RMSEP, root-mean-square error of prediction. AFU, arbitrary
fluorescence units. The value of SEN was computed using eq 14.
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three modes were found to be comparable to those found by
PARAFAC (see below for a full comparison in the presence of
urine background).

Prediction results for the binary test set are presented in Table
1. All predictions and figures of merit are seen to be good,
indicating that the present methodology may constitute the basis
for a simultaneous determination of the presently studied analytes
in the absence of serious interferences, for example, in pharma-
ceutical quality control. However, the most interesting results
concern the achievement of the second-order advantage, to be
applied to complex biological samples such as urine, where
uncalibrated components occur.

Spiked Urine Samples. The set of urine samples (six of them
spiked with both analytes and three blanks) was first investigated
with the aid of PARAFAC. In this case, core consistency analysis
was applied for each newly analyzed sample, since there is no
guarantee that each unknown urine sample will behave in the
same manner as the previously studied ones. The result was that
all urine samples required the consideration of three fluorophores
(see Figure 4 for the analysis of the first test sample in Table 2):

two for the analytes and the remaining one for the urine
background. The fact that urine is modeled in all cases with a
single component by the algorithm implies the presence of a major
fluorescent component in this biological fluid, which dominates
the urine background as well as the fluorescence time decay.
Increasing the number of fluorophores did not improve the model
fit, leading to poorly defined profiles for the extra components.

The obtained emission and excitation profiles for the three-
component model (Figure 5A and B, respectively) are in good
agreement with the expectations based on pure analyte standards.
Furthermore, the kinetic analyte profiles (Figure 5C) are also
coincident with those previously reported.44,45 In the case of urine,
the emission and excitation profiles correspond to those known
for unspiked urine samples, while the kinetic profile indicates that
the major reaction in the presence of permanganate leads to
degradation and slow fluorescence decay.

TLLS was then applied to the same set. In all samples, the
study of the prediction residuals led to the conclusion that more
than two components were required to improve the fit. Thus, to
apply the RTL procedure, replication of blank samples was

Figure 3. Contour plots of the EEMs for an aqueous solution (pH 9.4) containing methotrexate 0.68 mg L-1 and leucovorin 0.49 mg L-1 as
a function of the time of permangante oxidation. Times selected for illustrating the kinetic evolution of the EEMs (in min): (A) 0, (B) 2.4, (C) 4.8,
(D) 7.2, (E) 9.6, and (F) 10.8. Fluorescence intensity has been coded in colors, with deep blue indicating the lowest value and deep red the
largest one.
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performed to obtain an average instrumental noise level of ∼15
(arbitrary fluorescence units). Figure 4 shows that the TLLS error
fit in the case of the first test sample of Table 2 stabilizes at three
constituents, in agreement with the PARAFAC results. Further-
more, the spectral and time profiles provided by RTL for the urine
background (Figure 5) are also similar to those furnished by
PARAFAC. This result allows one to conclude that TLLS is
successful in obtaining profiles for exploiting the second-order
advantage.

Prediction results for the spiked urine set are presented in
Table 2. All predictions are seen to be reasonable for samples of

the complexity of human urine. Note that both algorithms are
also successful in what concerns urine blanks, where analyte
concentrations on the order of the limit of detection are found.
The figures of merit are, however, poorer than for the binary test
set described in the previous section. This is understandable on
the basis of the increasing overlap in the three modes caused by
the presence of urine components. The analyte concentration
ranges have been chosen as representative of the expected ones
in real samples; although they are somewhat narrow, they allow
for estimation of sensitivity and LOD as is standard practice in
the multivariate literature.51-59 In comparing the root-mean-square
errors of prediction values provided by both algorithms, it seems
that PARAFAC performs somewhat better than TLLS in the case
of MTX, but the overall prediction ability of both methods appears
to be comparable. It should be noted that even when the figures
of merit are of inferior quality to those obtained for the binary
test set, the present methodology provides a simple means of
modeling serious overlapping interferences not contained in the
calibration set of samples. Systems of this type constitute a
significant challenge for multivariate methods.

Figure 4. PARAFAC core consistency values (squares) and TLLS
least-squares error (circles) as a function of the trial number of
components for the analysis of the first spiked urine test sample of
Table 2. The solid and dotted lines connecting the points (PARAFAC
and TLLS, respectively) are a guide for the eye. The horizontal dashed
line indicates the average instrumental noise level. AFU, arbitrary
fluorescence units.

Table 2. Predicted Concentrations in Spiked and Blank
Urine Samples Using Both PARAFAC and TLLS

LV/mg L-1 MTX/mg L-1

nominal
spiked PARAFAC TLLS

nominal
spiked PARAFAC TLLS

0.49 0.40 0.28 0.43 0.43 0.35
0.45 0.38 0.21 0.46 0.41 0.35
0.38 0.34 0.21 0.39 0.36 0.30
0.32 0.26 0.15 0.37 0.29 0.26
0.43 0.38 0.24 0.41 0.41 0.34
0.38 0.15 0.13 0.45 0.24 0.30
0.43 0.41 0.29 0.41 0.47 0.38
0.38 0.35 0.25 0.45 0.43 0.39
0.00 0.03 -0.05 0.00 -0.06 0.01
0.00 0.01 -0.05 0.00 -0.03 0.01
0.00 0.03 -0.04 0.00 -0.04 -0.01

LV MTX

figures
of merita PARAFAC TLLS PARAFAC TLLS

RMSEP/
mg L-1

0.10 0.17 0.08 0.08

SEN/
AFU l mg-1

4 × 103 4 × 103 6 × 103 6 × 103

LOD/
mg L-1

0.02 0.02 0.02 0.02

a RMSEP, root-mean-square error of prediction. AFU, arbitrary
fluorescence units. The value of SEN was computed using eq 14.

Figure 5. guideA) Fluorescence emission profiles, normalized to
unit length, as found by PARAFAC (s) and by TLLS (- - -), after
processing the first spiked urine test sample of Table 2. guideB)
Excitation profiles. guideC) Kinetic time profiles. In all cases, the
analyte profiles were identified by comparison with standards, with
the remaining ones corresponding to the urine background (as
indicated).
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Method Comparison. Since direct methods such as GRAM
or DTLD cannot be used for analyzing four-way data, N-PLS,
PARAFAC, and TLLS are left for this purpose. From these latter
methodologies, only PARAFAC and TLLS are able to achieve the
second-order advantage. These multiway chemometric method-
ologies might be compared on the basis of (1) analytical
performance, (2) model interpretability, and (3) ease and speed
of program operation. Both TLLS and PARAFAC are able to
handle the occurrence of interferences not contained in the
training sample set, a property of immense utility in the analytical
context. They also yield multimode profiles of useful physical
meaning, which for the presently studied example are in mutual
pleasant agreement. As regards computer operation, the methods
can be programmed in MATLAB and introduced into a friendly,
user-interface mode, and hence, no significant differences can be
established in this respect.

CONCLUSIONS
PARAFAC and TLLS as chemometric assisting techniques have

been applied for the determination of methotrexate and leucovorin
in human urine samples, despite the serious interference from
the urine background components. This is possible thanks to the
third-order advantage, achieved when using four-way kinetic-
EEMs arrays, because the data allow for the determination of
mixture components in very complex samples containing uncali-
brated interferences.

Kinetic-spectrofluorometric methods of this kind require a
strict time control. Because a commercially available spectrofluo-

rometer is fast enough to allow the recording of the EEMs, in
the excitation and emission ranges indicated, in a time as short
as 12 s, data acquisition is possible in the time domain, easily
generating the required four-way data arrays.

The use of four-way arrays of data, particularly exploiting the
information contained in a full fluorescence EEM spectrum, in
combination with kinetic methods and advanced third-order
chemometric modeling methods, merits further investigation. We
have provided a new algorithm, trilinear least squares, which can
be employed in a complementary way to PARAFAC to explore
the analytical characteristics of these higher-order data. Further
work is required in order to fully understand the properties of
the newly introduced algorithm, but the results presented here
indicate that it is a promising alternative to existing chemometric
tools.

ACKNOWLEDGMENT
Financial support from CONICET (Consejo Nacional de In-

vestigaciones Cientı́ficas y Técnicas), Universidad Nacional de
Rosario, Agencia Nacional de Promoción Cientı́fica y Tecnológica
(Project PICT 99, 06-06078) and the Ministerio de Ciencia y
Tecnologı́a of Spain (Project BQU2002-00918) is acknowledged.
J.A.A. thanks CONICET for a fellowship.

Received for review May 11, 2004. Accepted July 29,
2004.

AC0493065

5666 Analytical Chemistry, Vol. 76, No. 19, October 1, 2004


