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Stochastic three-mode models for mean and
covariance structures

Frans J. Oort*
Leiden University, The Netherlands

With three-mode models, the three modes are analysed simultaneously. Examples
are the analysis of multitrait-m ultimethod data where the modes are traits, methods
and subjects, and the analysis of multivariate longitudinal data where the modes are
variables, occasions and subjects. If we consider the subjects mode as random, and
the other modes as fixed, such data can be analysed using stochastic three-mode
models. Three-mode factor analysis models and composite direct product models
are special cases, but they are models for the covariance structure only. Stochastic
three-mode models for mean and covariance structures are presented, and the
identification, estimation and interpretation of the model parameters are discussed.
Interpretation is facilitated by introducing a new terminology and by considering
various special cases. Analyses of real data from the field of economic psychology
serve as an illustration.

1. Introduction

Three-mode data are collected in many disciplines. Examples are multitrait-multimethod data
where the modes are traits, methods and subjects, and multivariate longitudinal data where
the modes are variables, occasions and subjects. Such data should be analysed with models
that take the three-mode structure into account. In three-mode models components are
defined for each of three modes.

Suppose the first mode has N levels and P components, the second mode has J levels and Q
components, and the third mode has K levels and R components. Tucker’s (1966) three-mode
principal components model is then given by

X = AG(C'®B) +E, (1)

where X is an N XJK matrix of observed scores, A is an N X P matrix of coefficients relating
first mode levels to first mode components, B is a J X Q matrix of coefficients relating second
mode levels to second mode components, C is a K XR matrix of coefficients relating third
mode levels to third mode components, G is a P X OR matrix of coefficients relating the
components of the three different modes to each other, and E is an N XJK matrix of
approximation errors. The symbol ® denotes the (right) Kronecker product or direct product.
The coefficients in matrices A, B and C are called component loadings, which can be
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interpreted as scores or weights of levels on components. The G matrix is called the core
matrix. There are several ways to interpret the G coefficients, but the substantive meaning is
often unclear in practice.

There are several algorithms for obtaining least squares estimates of A, B, C and G.
Some of these algorithms have been implemented in a computer program for carrying out
three-mode principal components analysis (Kroonenberg, 1994).

In Tucker’s principal components model (1) all levels of all modes are considered fixed.
However, in most applications in the social and behavioural sciences, one of the modes refers
to subjects, which are often considered random. Taking the levels of the first mode as random,
we have a three-mode model for the observed scores of a randomly chosen subject:

x =&GC' ®B) + ¢, (2)
where the fixed matrices X, A and E of (1) have been replaced by random vectors X, 5’, and
£:xis aJK X1 random vector of observed scores for an arbitrary subject, & is a P X1 random
vector of unobserved scores of this subject on common factors, and ¢ is a JK X1 random
vector of unobserved scores on residual factors. Model (2) has been described previously by
Bloxom (1968). It can be seen as a stochastic version of the three-mode principal components
model, and so the analysis of (2) is called three-mode factor analysis. As an aside, it
should be noted that Tucker had considered a three-mode factor analysis model as well,
though he estimated the model parameters through a non-stochastic procedure (Tucker, 1966,
pp. 299ff.).

In three-mode factor analysis, as described by Bloxom, the covariance structure of the
observed variables is analysed, but the mean structure is disregarded. Bentler & Lee (1978,
1979), extending Bloxom’s work, present models that do feature intercepts. However, from
their assumption that these intercepts are equal to the population means it follows that they
have implicitly chosen all factor means equal to zero and that the mean structure is not
analysed.

Here we present three-mode models for the analysis of covariance and mean structures.
That is, we investigate three-mode structures not only in the factor loadings, as is done in the
three-mode factor analyses of Bloxom (1968) and Bentler & Lee (1978, 1979), but also in the
intercepts. Moreover, in addition to looking for three-mode structures in the measurement
parameters (factor loadings, intercepts), we look for possible three-mode structures in other
structural parameters: the means, variances and covariances of the common factors, and
residual factors. This increases the flexibility of the model and its usefulness in applications.

Furthermore, we pay special attention to the interpretation of the parameters that feature in
three-mode models. Bentler & Lee (1978, 1979) only consider exploratory use of three-mode
models. Therefore, the only restrictions on the parameter matrices in their models are
minimal identification constraints. As a consequence, the resulting parameter estimates are
difficult to interpret. The understanding of three-mode models and the interpretation of their
parameters are easier when three-mode models have parameter matrices with simple
structures. Further insight may be gained by looking into a few special cases of three-
mode models, such as models for multivariate longitudinal data and Browne’s (1984)
composite direct product models.

The three-mode models presented in this paper are referred to as stochastic three-mode
models (S3MMs). In all S3MMs one of the three-modes is considered random. S3MMs are
described as special cases of the linear latent variable model used in structural equation
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modelling (SEM). This means that the general SEM theory applies to the S3MMs and that, in
principle, S3MMs can be fitted with standard SEM software. Bentler, Poon & Lee (1988)
have already noted that the models described by Bentler & Lee (1978, 1979) are special cases
of the structural equation model of Bentler & Weeks (1980) and have presented one possible
reparameterization of these models as a standard structural equation model.

Compared to the usual linear model in SEM, the S3MM approach to three-mode data has
the advantage that the three-mode structure is taken into account explicitly. As a consequence,
S3MMs are far more parsimonious. The advantage of S3MMs over three-mode principal
components analysis models is that a priori knowledge of the data can be used, and tested, by
fitting confirmatory S3MMs. Moreover, by using hierarchically related S3MMs, all kinds of
specific hypotheses can be tested.

Another advantage of the present approach to modelling three-mode data is that it unifies
three-mode models that have appeared in the literature. The S3MMs are very general, and
various other three-mode models can be described as special cases. Still, the general
interpretation of the S3MM parameters applies to the parameters of the special models as
well. Because of this, our interpretation of S3SMMs may enhance the understanding of these
special cases.

The discussion of S3MMs and their interpretation is facilitated by some new terminology
which is introduced first. In S3MMs, one mode is random and two modes are fixed. Three-
mode data are usually organized in such a way that the levels of the first mode are the
subjects. With multivariate longitudinal data, the second mode is usually associated with
occasions and the third mode with variables. With multitrait-multimethod data, the second
mode is usually associated with methods and the third mode with traits. However, this all
depends on how the data set is organized. To keep things general, and for the sake of clarity,
we will assume the first mode to be the random mode, associated with subjects. The two fixed
modes will be called the ‘fast mode’ and ‘slow mode’. The fast mode is the mode whose
levels change fastest in the data set, and the slow mode is the mode whose levels change
slower. With multivariate longitudinal data sets, the scores of the subjects are usually given
first for all variables on the first occasion, then for all variables on the second occasion, and so
on, thus associating the slow mode with the occasions and the fast mode with the variables.
With multitrait-multimethod data the slow mode and fast mode usually refer to methods and
traits, respectively. Slow and fast modes could also be termed ‘outer’ and ‘inner’ modes (as
suggested by a referee). These latter terms may further clarify the distinction between slow
and fast modes for people who are familiar with nested loops in computer programming
languages.

This paper is organized as follows. First we give a general description of the stochastic
three-mode models for mean and covariance structures, and discuss the identification and the
estimation of the model parameters. Next, we consider the interpretation of the model
parameters, and some special cases of S3MMs. Finally, the models are illustrated by
analysing a data set from the field of economic psychology.

2. Model

Stochastic three-mode models are models for mean and covariance structures. They are
introduced by writing them as special cases of the mean and covariance structures of the
linear latent variable model (LLVM).
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The LLVM for the observed scores of an arbitrary subject is
X =17+ A& + Ag, 3)

where x is a JK X1 random vector of observed scores of an arbitrary subject, & is a P X1
random vector of unobserved scores of this subject on common factors (or latent constructs), &
is a JK X1 random vector of unobserved scores of this subject on residual factors, A is a
JK XP matrix of constants, to be interpreted as factor loadings, 7 is JK X1 vector of
constants, to be interpreted as intercepts, and A is a JK XJK diagonal matrix of constants, to
be interpreted as loadings of the observed variables on the residual factors.

We assume

E(e) =0, 4)
Cov(&,e) = 0, 6)
and write
E@) =« (6)
Cov(¢, &) = @, ©)
Cov(g &) = 0, (8)

where both ® and @ are symmetric. It follows that the mean structure of the LLVM is
EXx) =u=1+Ax ©)]
and the covariance structure equation is
Cov(xx) =% = ADGA + AOA’. (10)

The mean structure and covariance structure in (9) and (10) feature six different parameter
matrices. We distinguish between measurement parameters and other structural parameters.
Measurement parameters, in A, 7 and A, represent characteristics of the variables (loadings,
intercepts). Other structural parameters, given by @, x and O, represent characteristics of the
population of subjects (means, variances, covariances).

2.1. Restrictions

S3MMs are special cases of the LLVM. The LLVM becomes a three-mode model if at least
one of the following six restrictions is imposed. These restrictions concern all parameter
matrices that feature in the mean structure and covariance structure in (9) and (10)—i.e. A, t,
A, ®, k and O. The restrictions are:

A = (Ag ® ApT, (1)
where Ag is a J XQ matrix of coefficients relating slow mode levels to slow mode
components, Ap is a K XR matrix of coefficients relating fast mode levels to fast

mode components, and ' is a QR X P matrix relating combinations of slow and fast mode
components to factors;

T = 15 ® 1, 12)

where g is a J X1 vector of coefficients associated with the slow mode levels, and 7y is a
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K X1 vector of coefficients associated with the fast mode levels;
A =Ag®Ag, (13)

where Ag is a J XJ diagonal matrix of coefficients relating slow mode levels to slow mode
residual components, and A is a K XK diagonal matrix of coefficients relating fast mode
levels to fast mode residual components;

0O =03 Q0 (14)

where Oy is a J XJ symmetric matrix of coefficients relating the slow mode residual
components to each other, and @5 is a K XK symmetric matrix of coefficients relating the
fast mode residual components to each other.

Similar restrictions of ® and x are meaningful only if the transformation matrix I' is chosen
in such a way that each possible combination of slow and fast mode components transforms
into a separate factor. The number of factors then equals the product of the numbers of slow
and fast mode components, P = QOR. In that case, the following restrictions can be imposed:

O = Oy ® Dy, 15)

where ®g is a Q X0 symmetric matrix of coefficients relating the slow mode components to
each other, and ®p is an R XR symmetric matrix of coefficients relating the fast mode
components to each other;

K= K5 ® Kg, 16)

where g is a Q X1 vector of coefficients associated with the slow mode components, and &g
is an R X1 vector of coefficients associated with the fast mode components.

All six restrictions given by (11)—(16) contain the Kronecker product as a distinctive
characteristic, and we refer to them as the Kronecker-product restrictions. If all six
restrictions are imposed, then the mean and covariance structures, given earlier for the
LLVM by (9) and (10), become

EX) =p=13®1p + ((As ® Ap)D)(x5 ® Kir) a7
and
Cov(x,X) = % = ((Ag ® Ap)) (g ® Dp)(I' (Ag ® Ap))
+ (Mg ®AR)(Og ® Op)(Ag ® Ap). (18)

But, typically, not all six restrictions are imposed simultaneously.

What are the minimal requirements of a three-mode model? That is, which of the six
Kronecker-product restrictions have to be imposed on the LLVM, in order to call it a three-
mode model? One may contend that all measurement parameters should conform to a
three-mode structure. This would mean that at least the first three restrictions, concerning A, t
and A, have to be imposed. This requirement is very strict. It is not met by, for example, the
three-mode factor models of Bentler & Lee (1978, 1979), which do not comply with the
restriction. A less strict requirement is that the three-mode model at least comply with the A
restriction. All published three-mode models meet this requirement. If we want to be lenient,
we could limit ourselves to just any one of the six Kronecker-product restrictions. Or, even
more lenient, any LLVM with only a pattern of free and fixed parameters that conforms to the
pattern produced by the A restriction could be called a three-mode model.
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The above description of parameters featuring in S3MMs has been kept neutral. The
interpretation of the S3MM parameters will be discussed at length, after the treatment of their
identification and estimation.

3. Identification

Equations (9) and (10) express all variances, covariances and means of the observed variables
as functions of model parameters. If, conversely, all free (to be estimated) model parameters
can be independently expressed as functions of the variances, covariances or means of the
observed variables, then the model is identified. Bollen (1989) gives general guidelines for
identification. These guidelines yield identification conditions that are either necessary or
sufficient.

Bekker, Merckens & Wansbeek (1994) give an identification rule that is both necessary
and sufficient. If and only if the kernel of the Jacobian matrix for a particular model is empty,
then that model is identified. The Jacobian matrix contains the first-order derivatives of the
equations implied by (9) and (10) with respect to the model parameters that are free to be
estimated. The kernel (or null space) is the set of vectors that maps the linear transformations
defined by the Jacobian matrix onto the zero matrix. If the model is not identified, then the
kernel contains expressions featuring the non-identified model parameters. So, by inspecting the
Jacobian’s kernel, one can learn which parameters need to be (further) restricted for the model to
be identified. Computation of the Jacobian matrix and its kernel is laborious. It can be done with
computer programs for symbolic computation like Maple (Char, Geddes, Gonnet, Leong,
Monagan & Watt, 1991) and Mathematica (Wolfram, 1991). Bekker et al. (1994) also supply
a suite of computer programs to evaluate the identification of various covariance models.

Although the evaluation of the Jacobian’s kernel provides a way of checking a model’s
identification conclusively, general guidelines are still needed for specifying a model in the
first place. A necessary condition for achieving the identification of a model is that all latent
variables have a scale and an origin. Scales and origins can be imposed through the
measurement parameters (in A, r and A), or through the other structural parameters (in @,
x and O).

In the LLVM, latent variables are the common factors & and the residual factors ¢ Scales
for the & factors can be provided either by fixing P factor loadings at a non-zero value, one
element in each column of A, or by fixing the factor variances, that is, the diagonal elements
of the ® matrix. Scales for the ¢ factors can be provided either by fixing the residual factor
loadings (the A diagonal) or by fixing the residual factor variances (the ® diagonal) at a non-
zero value. Origins for the & factors can be provided either by fixing P intercepts, one
intercept per factor (in 7), or by fixing all factor means (in ). There is no need explicitly to
provide origins for the ¢ factors, as they have zero means by assumption ((4)).

In S3MMs one or more Kronecker-product restrictions ((11)—(16)) are imposed. The scale
and origin restrictions must then be applied to the constituent matrices. However, application
of a Kronecker-product restriction to a matrix that is not restricted to provide scales and
origins introduces a new indeterminacy that must be removed by fixing one of the elements of
one of the constituent matrices at a non-zero value.

Table 1 summarizes the different ways of imposing scales and origins on the latent
variables under various combinations of Kronecker-product restrictions. In confirmatory
context, where the A matrix (or the Ag, Ap and I' matrices) has some simple structure, the
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Table 1. Minimum numbers of fixed elements for providing scales and origins of the latent
variables in three-mode models

Providing scales and origins Providing scales and origins
Restrictions through measurement parameters through structural parameters

A [ Scales for & through A Scales for & through @
un un P, one el per column of A P diag els of @
re un 0, one el per column of Ag P diag els of @

R, one el per column of Ag 1 el of either Ag or Ag
un re P, one el per column of A Q diag els of @g

1 diag el of either @g or ®p R diag els of @p
re re 0, one el per column of Ag Q diag els of @g

R, one el per column of Ag R diag els of @p

1 diag el of either ®g or @p 1 el of either Ag or Ag
T K Origins for & through 7 Origins for £ through x
un un P els of 7, one per factor P els of x
re un Q els of zg, one per component P els of x

R els of 7, one per component 1 el of either g or 7
un re P els of 7, one per factor Q els of «g

1 el of either g or kg R els of g
re re Q els of 74, one per component Q els of g

R els of 7, one per component R els of g

1 el of either xg or K 1 el of either 75 or g
A (0] Scales for ¢ through A Scales for ¢ through @
un un JK diag els of A JK diag els of @
re un J diag els of Ag JK diag els of @

K diag els of Ag 1 el of either Ag or Ag
un re JK diag els of A J diag els of Oy

1 diag el of either Og or O K diag els of Op
re re J diag els of Ag J diag els of Oy

K diag els of Ag K diag els of Op

1 diag el of either Og or Op 1 el of either Ag or Ag

Note: re = restricted (as in equations (11)—(16)), un = unrestricted, el = element, diag = diagonal. All elements
mentioned have to be set at some non-zero value (or zero by exception; see text). A is assumed to have some simple
structure, ® is symmetric, A and @ are diagonal. With restricted A, assume all I' columns contain at least one fixed
element. If I' does not contain fixed elements, then both the ‘scales for & through A’ and the ‘scales for & through @’
regulations must be followed.

directions in Table 1 will generally yield identified models. Still, the directions concern
necessary, not sufficient, conditions for identifying all model parameters. Only the Jacobian’s
kernel offers absolute certainty about a model’s identification.

3.1. Identification in exploratory context

The S3MMs presented here are meant for confirmatory model fitting. In exploratory research
it is arguably better to carry out three-mode principal component analyses with models like
Tucker’s (1966) in equation (1). However, it is of course possible to use confirmatory models
in an exploratory way. A problem is that in the exploratory context the Table 1 directions will
generally not yield identified models.
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Bentler & Lee (1978, 1979) considered the exploratory use of their three-mode model.
They only modelled the covariance structure, and only imposed the A restriction of (11)—
matrices A and O are diagonal, one of them an identity matrix. In exploratory research, the
numbers of factors, slow mode components and fast mode components must be determined
through series of trials. The factors are specified as orthogonal, so matrix @ is diagonal.
Matrix I' can then be chosen to be diagonal, or to be of echelon form (e.g. (51) below). With
I' diagonal, Ag and Ag can be of echelon form. With T of echelon form, identification can
be achieved by having Ag and Ap both contain a fixed diagonal top. That is, the top O XQ
part of Ag and the top R XR part of A are both diagonal with fixed non-zero elements (e.g.
(50)).

It should be noted that, although echelon form will generally secure identifiability, it is
theoretically possible that this will not be the case. Identification will not be achieved in the
event of an independent factor (or component) corresponding to a set of variables that all have
zero loadings in one of the echelon columns. Moreover, it is practically possible that, during
the optimization of the discrepancy function, parameter estimates get close to an irregular
point (Shapiro, 1986), which is sometimes called ‘empirical underidentification’. Such
problems can be solved by rearranging the variables, by trial and error, or on substantive
grounds.

3.2. Ways of setting scales and origins are not always arbitrary

In the LLVM, the choice of setting scales and origins through the measurement parameters or
through the other structural parameters is arbitrary. That is, whether scales and origins are
provided by measurement parameters (in A, 7, A) or by other structural parameters (in @, «,
0), models contain the same numbers of parameters to be estimated, the same degrees of
freedom, and yield the same fit. This is not always the case with S3BMMs, as is apparent from
Table 1. For example, with the A restriction imposed ((11)), the scales of the P factors & can
be set either by fixing O elements in Ag and R elements in Ag, or by fixing P elements in
® and one element in Ag or Ag. So, unless accidentally Q + R = P + 1, the two ways of
providing scales for the & factors yield models with different numbers of free parameters,
degrees of freedom and fit. Moreover, three-mode models with equal numbers of parameters
are not always simple reparameterizations of each other either.

Scales of latent variables can only be provided by fixing certain parameters at some non-
zero value. Parameters used to provide origins for the latent variables can be fixed at either
zero or non-zero values. Setting the origins of the & factors by fixing certain parameters at
zero can give more leeway when applying the t or xrestrictions ((12) and (16)). For example,
when the 7 restriction is applied, origins can often be provided by fixing just two elements of
7g (instead of a total of Q + R elements in 7g and 7, as indicated in Table 1): one at zero and
one non-zero. However, if the & factors have been given origins by fixing some 7 coefficients
or all x coefficients at zero, then one has to be careful when applying the = and x restrictions.
For example, if all elements of either xg or xi are fixed at zero, then the elements of the other
vector are not identified, although the resulting x matrix is (viz. ¥ = Ogpy).

There is yet another complication with the analysis of the mean structure of three-mode
models. If the v parameters are unrestricted, then it does not matter how origins are imposed
on the & factors. The choice of the value at which 7 or « parameters are fixed is of no
consequence for the fit of the model. However, with the 7 restriction of (12) imposed, the fit of
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a model does depend on the value at which 7 or k parameters are fixed. Moreover,
models with different scales for the & factors yield different fit as well, when the 7 restriction
is imposed (unless x = 0; compare (9)). In short, if t parameters are restricted, then
models that only differ in the values of the factor means give different fit. Models that
only differ in the values of the factor variances also give different fit, unless the factor means
are zero.

4. Estimation

Assuming a multivariate normal distribution for the observed variables X, and assuming that
the model is identified, maximum likelihood (ML) estimates of all parameters can be
obtained by minimizing the following fit function:

Fm,S, 1,2) = (m — u)'S 7' (m — p) + log [£] — log IS| + trace (S ™') —JK, (19)

where m is the vector of observed sample means of X, and S is the matrix of observed sample
variances and covariances of X. JK is the total number of observed variables (see Bollen,
1989; or Joreskog & So6rbom, 1996).

If the sample contains subjects of different groups, separate parameter estimates can be
obtained for G groups simultaneously, using

- < N,
Fgmy,Si, i, 21, MG, 86,46 26) = Y SEF(My, S, ity Z), 20)
g=1
where the subscripts g refer to group g, N, is the number of subjects in group g, and N is the
total number of subjects in the analysis.

Minimization of the ML function gives estimates for all model parameters, which are
unbiased, scale-invariant and scale-free. The ML function also provides estimates of the
asymptotic standard errors of the model parameters. Finally, a chi-square test of overall
goodness-of-fit is available with ML estimation.

There are weaker assumptions than multivariate normality of x that still justify parameter
estimation through minimization of the ML function (Browne & Shapiro, 1988). Alterna-
tively, parameter estimates can be obtained through other procedures, such as weighted or
unweighted least squares estimation. Not all procedures share all of the useful properties of
ML estimation (see Bollen, 1989; also Browne & Arminger, 1995, for more information on
estimation procedures).

The LLVM can be fitted with standard SEM software. Many computer programs for the
estimation of SEM parameters are available. Most prominent are the commercial programs
LISREL (Joreskog & S6rbom, 1996) and EQS (Bentler, 1995), though neither is as versatile
as Mx (Neale, 1997), which is freely available through the Internet (http://views.vcu.edu/mx).
S3MMs can be fitted straightforwardly with Mx or, with a series of user-specified constraints,
with other standard SEM software. Bentler et al. (1988), for example, have presented one way
to reparameterize their three-mode model as a standard structural equation model.

5. Interpretation

The covariance and mean structure equations (9) and (10) feature six different parameter
matrices, each of which can be restricted to conform to a multiplicative structure ((11)—(16)).
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The six so-called Kronecker-product restrictions involve a total of 13 different parameter
matrices.

When interpreting the parameter matrices, it helps to think of the observed variables x as in
some way composed of Xg and Xg, through

X = fx(Xs, Xp), (21)

with Xg and Xp being J and K vectors of unobserved variables corresponding to the slow and
fast mode levels in the three-mode data. The common factors & can be thought of as
composed of &g and &g, through

g :f§(§S7 éF)7 (22)

with &g and & being Q and R vectors of factors corresponding to the slow and fast mode
components in the three-mode data. In the same way, the residual factors € can be thought of
as composed of & and &, through

&= fS(SS7 SF)7 (23)

with &5 and & being J and K vectors relating to the slow and fast mode levels in the three-mode
data. The composition functions fy, f: and f, are left unspecified.

The S3MMs are models for mean and covariance structures. The observed scores on X are
not explicitly modelled. Note that different underlying score models may yield the same
mean and covariance structures (see Browne, 1984). And, although we will look into one
possible form of the composition functions later (equations (24), (30) and (33)), mean and
covariance models can be studied without knowledge of the underlying score models. For
now, the composition functions and their constituent vectors of variables are abstractions,
established only for ease of interpretation of the parameter matrices.

5.1. Matrix A and vector

The matrix A describes the number of factors and the content or meaning of these factors. The
coefficients in A show which observed variables are indicative of which factors and to what
extent.

In the LLVM (equation (3)), the A coefficients are called ‘factor loadings’. Factor loadings
relate the observed scores on variables to unobserved scores on factors. Factor loadings are
regression weights for the regressions of the observed variables on the factors. The A
restriction features the matrices Ag, Ag and I'. As defined by (11), the coefficients of Ag and
Ag relate ‘levels’ to ‘components’. The Ag and Ap coefficients are therefore often called
‘component loadings’. It follows that the coefficients in I' must then be interpreted as
coefficients that transform products of component loadings into factor loadings. So the most
direct characterization of I is as a transformation matrix.

It is important to note that ‘component loadings’ is just a name used to distinguish Ag and
Ay coefficients from the factor loadings in A. If the A restriction is imposed, we suppose that
factors are in some way composed of components, and factor loadings are in some way
composed of component loadings. Hence the use of the term ‘components’ (which is different
from the use of the same term in ‘principal components analysis’).

Another way of looking at the Ag and Ap coefficients arises from the idea of the
composition functions f; and fé. That is, the supposition of Xg, Xg, &g, and &g variables that
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in some way constitute composite variables X and &. The Ag coefficients can then be seen as
loadings of Xg variables on &g factors, and the Ag coefficients as loadings of Xg variables on &g
factors. So we could just as well call the Ag coefficients ‘slow mode factor loadings’ and the
Ap coefficients ‘fast mode factor loadings’. ' then describes the transformation of combined
slow and fast mode factor loadings into loadings on the composite factors.

The transformation coefficients in I' weight the effects of combinations of slow mode
and fast mode factors on the composite factors in &. The I' coefficients can thus also be
seen as loadings of combinations of slow and fast mode factors & and &g on composite
factors &.

In most applications of three-mode models, I' is used as a selection matrix. By fixing all I’
coefficients at either unity or zero, certain combinations of slow and fast mode factors are
selected to be transformed into factors. Or, by fixing some of the I' coefficients at zero and
leaving the rest free to be estimated, one can fix all elements of the diagonal of @ at unity, so
that ® can be interpreted as a correlation matrix. In this case I is used not only for selection,
but also to absorb scaling.

Most often, the A restriction is imposed with a diagonal I' matrix, so that all combinations
of slow mode components and fast mode components are transformed into separate factors.

The intercepts in vector 7 concern the level of factors in the same way that factor loadings
concern the content of factors. For example, suppose intelligence is measured through a
number of tests, one of which is a verbal test. Then the factor loading for the verbal test shows
to what extent the verbal test is indicative of intelligence, and the intercept indicates how
difficult the verbal test is. If the variables X are test items, then factor loadings and intercepts
can be interpreted as item discrimination and (the reciprocal of) item difficulty, respectively
(Oort, 1996, Chapter 2).

The t restriction of (12) gives a decomposition of the t vector. If the t restriction is
imposed, then 7g and 7y give the contributions to the intercepts for slow and fast mode
components separately. Suppose, for example, that various abilities are measured through
different methods—for example, mental tests and written tests. Then the intercept for a
mental arithmetic test can be composed of two coefficients, one showing how mentally able
one must be, and the other showing how arithmetically able one must be, in order to do well
on the mental arithmetic test.

In many applications of S3MMs the measurement parameters in A and 7 are associated
with only one of the two fixed modes. For example, with multivariate longitudinal data, the
measurement parameters are characteristics of the variables and should be invariant across
occasions.

5.2. Matrices A and ®

A is a diagonal matrix containing the factor loadings of the observed variables on the residual
factors. Of course, there are as many residual factors as observed variables. As the scaling of
the unobserved residual factors is arbitrary, the A coefficients are arbitrary as well, and cannot
usually be interpreted. In fact, because of the identification requirements discussed above, A
is mostly set to identity.

As A will usually be a JK XJK identity matrix, the A restriction of equation (13) is satisfied
as a matter of course with Ag = I,y and Ay = Ig.k. However, in some applications,
researchers may wish to interpret ® as a correlation matrix, so that elements of A have to
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be set free to be estimated. With A containing scale-absorbing coefficients, the A restriction
can be imposed to test for a multiplicative structure.

An attractive interpretation of the Ag and A coefficients is that of factor loadings of x5 and
Xp variables on the & and & factors of composition function f;,.

O contains the variances and covariances of the residual factors. In many applications,
residual factors are assumed to be uncorrelated and O is then diagonal. However, with three-
mode data in particular, it is often appropriate also to consider symmetric ® matrices. With
multitrait-multimethod data, for example, residual factors of variables measuring the same
traits through different methods may be correlated. Or, with multivariate longitudinal data,
the residual factors of the same variables on different occasions may be correlated. Still
assuming that the residual factors of different traits are uncorrelated, ® will be symmetric,
either having a block diagonal (if the traits correspond with slow mode components) or
consisting of diagonal blocks (if the traits correspond with the fast mode components).

If the O restriction (14) is imposed, @g and @ show the separate contributions of the slow
and fast mode components. ®g and O can be viewed as variance-covariance matrices of the
abstract g and g factors that feature in the composition function f..

The decomposition of @ is particularly interesting if one of @ and @y, is non-diagonal. If
we allow the slow mode components of the residual factors to correlate, then the @ restriction
can be applied with a symmetric ®g and a diagonal @, yielding a O structure with diagonal
blocks. Conversely, with @g diagonal and @ symmetric, @g ® Oy yields a block diagonal ©.

With multivariate longitudinal data, slow and fast mode components usually correspond to
occasions and variables respectively. So we are more familiar with a ® matrix consisting of
diagonal blocks than with a block diagonal ® matrix.

5.3. Matrix ® and vector k

@ contains the variances and covariances of the common factors &. Scaling of the unobserved
factors is arbitrary. If scales are imposed by fixing the factor variances at one, then @ can be
interpreted as a correlation matrix.

The « vector contains the factor means. The origins of unobserved factors are arbitrary as
well, and can be set through either « or 7. Because of the arbitrary origins of the common
factors, comparison of factor means across groups or across occasions is meaningful only
after making sure that the measurement parameters are invariant across groups and occasions.

As noted before, the ® and «restrictions ((15) and (16)) can only be meaningfully applied if
all combinations of slow and fast mode components have been transformed into factors (i.e. T’
diagonal, so that P = OR).

If the @ restriction is applied, then ®g and ®p give the separate contributions of slow and
fast mode components. Adopting the idea of the composition function f, ®5 and ®r may be
viewed as variance-covariance matrices of the abstract £g and &g factors. The decomposition
of ® makes it easy to test specific hypotheses such as whether slow mode factors are
uncorrelated. If so, with ®g diagonal, ®g ® ®p would result in a block diagonal matrix.

Vectors kg and ke may be interpreted as the mean vectors of the slow and fast mode factors
&s and &g that feature in the composition function f,. In order to meet identification
requirements discussed above, many researchers automatically set x equal to zero, k = Ogg ;.
In that case, the « restriction is obviously satisfied with either kg = 0gy; or Kz = Ogy;. Yet
there are applications, for example with multivariate longitudinal data, where it is not
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permissible to set all k equal to zero. If may then be interesting to impose the xrestriction to
test for a multiplicative structure (Oort, 1999).

6. Models for observed scores

As noted before, S3MMs are models for mean and covariance structures, not for scores.
Although, for the purpose of interpretation, we did introduce the idea of composition
functions fy, f: and f, (equations (21)—(23)), we have not specified in what way the composite
variables in X, £ and ¢ are composed of their constituent variables. Here we will go into some
possible models for observed scores and their associated mean and covariance structures.

The main reason for introducing these score models is that they may further help the
understanding of three-mode models and the interpretation of their parameters. Additionally,
the score models lead to certain special cases of three-mode models that may be of particular
interest. Still, it is emphasized that there may be score models other than the ones discussed
below, that yield the same mean and covariance structures. Moreover, mean and covariance
models may be utilized without contemplating underlying score models.

First, consider

X = Xg ® xg. 24)

The mean and covariance structure equations for such a model are given by Graybill (1983, p.
368; note Graybill’s use of the left Kronecker product). Writing Egg for Cov (Xg, Xg), g for
Cov (Xg, Xp), g for Cov (Xg, Xp), Tgs for Cov (Xg, Xg), g for E (Xg), and uy for E (Xg), we
can write

E(x) = n = Vec(Zgp) + (us ® ) (25)
and
Cov(x,x’) =3
= (Zgs ® Zpp) + (ushs ® Tpp) + (Tgs ® pppp)
+ Commyg((Zs ® Zgp) + (upps @ Zgp) + (Zps @ psip)), (26)

where Vec (Zgp) is a JK vector consisting of stacked X g columns, and Comm jx is a so-called
commutation matrix (Graybill, 1983, p. 315). If X and Xg are independent, then the mean and
covariance equations simplify to

E(x) = u = (us ® ug), 27
and
Cov(X,X) =2 = (Zgs ® Zpp) + (ugpts ® Tpp) + (Zgs ® ppp). (28)

So an observed score model like (24) does not readily fit into the framework of three-mode
models described by (9)—(16). If, however, the scores on X are deviation scores, measured
from their means, then all X variables have zero means, so we can set ug = 0 and pup = 0,
and (28) simplifies to Swain’s direct product model for the covariance structure (Browne,
1984),

COV(X, X,) =X = ZSS ® ZFF7 (29)
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which is a special case of the three-mode models described above (i.e. if A = Ik k.,
7=k =0y, and @ = 0y k., then the ® restriction can be applied with &g = Xg and
O = Zgg). Still, as our interest is in modelling mean structures as well as covariance
structures, we do not want to assume the scores on the observed variables X to be deviation
scores.

Whether the observed score model given by (24) can be written as a special case of the
LLVM (3) depends on further modelling of xg and Xg. We will not pursue this here.

It should be noted that if normal distributions are assumed for the unobserved variables Xg
and Xg, then the observed variables X will not be normally distributed, and minimization of
the ML function (19) need not yield asymptotically correct standard errors and chi-square
distributed test statistics (Browne, 1984).

We turn to observed score models that result from specifying models for the latent
variables & and ¢. Consider the following model for the common factor scores:

& =& B (30)
If &5 and &g are independent then
E(&) = x = E(&s) ® E(&p), €19)

and the xrestriction applies, with kg = E(&g) and kg = E(&g). If &g and &g are given origins by
setting their means equal to zero, then

Cov(&, &) = @ = Cov(&s, &) ® Cov(&, &), (32)

and the ® restriction applies, with ®g = Cov(&g, &) and ®p = Cov(&g, &). Likewise,
consider the residual factor scores to be modelled

£ = & ® & (33)
Assuming that &g and & are independent and have zero means, then
Cov(g &) = @ = Cov(ss, &) ® Cov(eg, &), (34)

and the O restriction applies, with @g = Cov(es, &5) and O = Cov (g, ).

Substitution of either (30) or (33), or both, into the LLVM of (3) does yield models for
the observed scores that imply mean and covariance structures within the framework of
three-mode models. With such an observed score model, it is again noted that, if the
distributions of &g, &g, & and & are multivariate normal, then the distribution of X cannot be
mutivariate normal. Browne & Shapiro (1988; superseding Browne, 1987) give less strict
conditions for the ML estimation method to retain its usual asymptotic properties, but these
conditions are not met either, as they do not admit restrictions on the covariance matrices ®
and O.

6.1. Some special cases

If all measurement parameter matrices of the LLVM (3) are restricted according to the
Kronecker-product restrictions given by (11)—(13), then the model for observed scores
becomes

X = (75 ® 1) + (Ag ® AR)D)E + (Ag B Ap)e, (35)
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with mean and covariance structure equations
E(x) = pu = (ts @ ) + (As ® Ap)D)x (36)
and
Cov(x,x’) =3
= (As ® ApDD(I (As ® Ap)) + (As ® Ap)O(Ag ® Ap). (37

®, x and O can be further restricted according to models inspired by the content of the
particular applications at hand, such as some psychological theory. For example, imposing a
factor structure on @ turns (37) into a second-order factor model. Imposition of structural
regression relations between factors yields models like the one mentioned by Bentler et al.
(1988, p. 112, eq. 14).

In many applications of three-mode analysis the measurement parameters are associated
with only one of the two fixed modes. For example, with multivariate longitudinal data,
the measurement parameters should be invariant across the occasions mode. Assuming the
occasions to coincide with slow mode levels, measurement invariance can be modelled by
further restricting (35)—(37) by setting Ag = Ijyy, T = Ljpwyr, Ts = Uy, and Ag = I,y
(u (or U) denotes a vector (or a matrix) with all elements equal to unity). These restrictions
yield a longitudinal three-mode model described by Oort (1999). This model can be further
restricted. For example, imposing the ® and « restrictions with ®g = U;; and kg = Uy
yields the invariant factors model of McDonald (1984). Other restrictions on ®, xand O of the
longitudinal three-mode model include restrictions that yield latent curve models and
restrictions that yield autoregressive models for multivariate longitudinal data (Oort,
1999). In these longitudinal three-mode models the slow mode levels are not summarized
by a smaller number of slow mode components (J/ = R).

If neither slow nor fast mode levels are summarized by smaller numbers of components
(and T = Ijg wk), then A can be fixed at identity (as well as A: A = A = Ljgyx). If we
additionally substitute equation (30) into the LLVM (3), we have

X =7+ A ®&p) + & (38)

If we assume &g and & independent and provide origins by setting their means equal to zero,
then we obtain mean and covariance structure equations

Ex)y=pu=r+ 39)
and
Cov(x,X) = £ = (Dg ® Op) + O. (40)

With the mean structure of (39), we could use the 7 restriction to test whether the vector of
observed variables X can be decomposed into two independent Xg and Xy vectors as in (24)
(compare (27), setting g = ug and tz = pp). However, this would imply a covariance
structure that is not adequately described by (40) (compare (28); we might set @5 = Xgqg and
®p = Zpp, leaving a non-diagonal @ for (ugug ® Spp) + (Egs ® ppug), which is not parsi-
monious because ® does not really contain new parameters and should be restricted to equal
0O = (15375 ® Bp) + (Pg ® t17)).

The covariance structure in (40), with diagonal @, is the basic variant of Browne’s (1984)
composite direct product model. If we assume the residual factors ¢ to be modelled as in
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equation (33) (with &g and & independent, and having zero means), then the © restriction can
be imposed as well (Browne, 1984, eq. 5.2):

Cov(x,X) = £ = (dg ® @p) + (O4 ® Op). 1)

Setting ®g = U;,; and Og = I, yields the model for parallel batteries of tests (Browne,
1984, eq. 5.1). Scale-invariant versions of composite direct product models are obtained by
using A and A to absorb scaling, so that ®g and @y can be interpreted as correlation matrices
(additionally setting A = A yields Browne’s Equation 5.7). Subsequent imposition of the A
and A restrictions (11) and (13) cancels the scaling invariance, rendering a reparameterization
of (41).

It is once more stressed that particular mean and covariance structures can be implied by
different underlying score models. This is underlined by Browne (1984, Section 8) who
presents two observed score models, one multiplicative and one additive, that both imply the
covariance structure given by (41).

7. Illustration

As an example, S3MMs are applied to data from the field of economic psychology.
Antonides, Farago, Ranyard & Tyszka (1996) carried out a study of how people from
different countries perceive various economic activities. About 800 males (between 30 and
50 years of age, in full-time employment) were asked to rate 20 economic activities on 12
bipolar 7-point scales. There were two versions of the questionnaire. So, per version, only the
data of about 400 subjects can be used for the analysis of the questionnaire. Each subject
provided scores on 240 (20 X 12) variables. Computational limitations prevent the analysis of
mean and covariance structures of 240 variables. Therefore nine economic activities and
seven perception scales have been selected for our illustrative example; see Table 2. Seven
perceptions of nine activities yield 63 (9 X7) variables. The number of subjects without
missing data is 390.

The data set consists of 63 scores of 390 subjects. The data are arranged as follows: for
each subject, first the scores on the seven perception scales for the first economic activity,
then the scores on the seven perception scales for the second economic activity, and so on,
until the ninth economic activity. So, the first mode is the subjects mode, and can be
considered as random. The economic activities and perception scales are the fixed modes. In
the data set, the levels of the economic activities change more slowly than the levels of the
perception scales, so the economic activities correspond with the slow mode levels and the
perception scales correspond with the fast mode levels.

It follows that there are nine slow mode levels (J = 9), and seven fast mode levels (K = 7).
The idea is that the nine activities can be summarized by four slow mode components
(Q = 4), and the seven perceptions by three fast mode components (R = 3). See Table 2 for a
description of the components.

In the first analyses, we fit a series of hierarchically related models where all (4 X3)
combinations of components are transformed into 12 separate factors. Then, we fit a series of
models with seven factors, four coinciding with the four slow mode components and three
coinciding with the three fast mode components. Finally, we look at the exploratory use of
S3MMs, with varying numbers of factors. But first we consider the choice of a suitable
estimation method.



Stochastic three-mode models 259

Table 2. Economic activities and perception scales

Economic activities Components
1 Being employed as a teacher 1 Being employed (EMPD)
2 Being employed as a house painter
3 Being the owner of a newspaper 2 Being employer (EMPR)
4 Being the owner of a night club
5 Buying life insurance 3 Uncontroversial financial activities (UFIN)
6 Buying government bonds
7 Paying taxes
8 Gambling in the casino 4 Controversial financial activities (CFIN)
9 Receiving bribes
Perception scales Components
1 Moral 1 Social values (SOCV)
2 Beneficial for society
3 Requires great effort 2 Economic values (ECOV)
4 Requires much knowledge
5 Requires a lot of financial resources
6 Well known 3 Expected risk (RISK)
7 Risky

Note: The selected economic activities and perception scales make up 63 items (9 X7). The full
questionnaire of Antonides et al. (1996) has 240 items (20 X12).

7.1. Choice of estimation method and fit statistics

The data of Antonides et al. (1996) are well suited to illustrate the models discussed, but they
are not multivariate normal. Firstly, scores on seven-point scales are not really continuous.
Secondly, supposition of an S3MM makes multivariate normality uncertain, given the multi-
plicative nature of S3MMs and many of the possibly underlying score models. Univariate tests
on the normality of the 63 variables (390 observations) reveal that about half of the variables are
not distributed even approximately normally. This makes the choice of a suitable estimation
method difficult. We could turn to an estimation method that does not require multivariate
normality, such as the weighted least squares method (WLS; see Bollen, 1989). Or we could
retain the ML estimation method but use a corrected (scaled) test statistic (see Bentler &
Dudgeon, 1996). Both options are available in EQS (Bentler, 1995) and recent versions of
LISREL (as of version 8.20; Joreskog, Sorbom, Du Toit & Du Toit, 1999). WLS estimation
requires the calculation of the asymptotic variances and covariances of all elements of the
covariance matrix S. In our case, with 63 observed variables, the weight matrix contains more
than 2 million elements and is unstable when based on only 390 observations.

Given our relatively small sample size we cannot safely use the WLS estimation method.
The use of corrected chi-square statistics may alleviate the problem of non-normality
somewhat. However, the current version of Mx (version 1.44; Neale, 1997), which we
would like to use to estimate our S3MMs, does not provide a chi-square that takes account of
non-normality (besides the WLS chi-square). We will therefore use the normal theory ML
estimation method and accompanying test statistic (i.e. based on the discrepancy function of
equation (19)). As the assumption of multivariate normality is violated, the resulting test
statistic may not have a chi-square distribution and the standard errors may not be correct. Yet
there is little reason to believe that misapplying the ML estimator will result in seriously
biased point estimates of the parameters (Bollen, 1989).
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Mx computes three measures of fit (Neale, 1997): the chi-square measure of overall
goodness of fit (CHISQ), the root mean square error of approximation (RMSEA), and
Akaike’s information criterion (AIC). When the ML discrepancy function is used, the AIC is
linearly related to the expected cross-validation index (ECVI) of Browne & Cudeck (1992).
We prefer the ECVI to the AIC because of its attractive interpretation, and because Browne &
Cudeck (1992) provide formulae to calculate confidence intervals for both the ECVI and the
RMSEA. They also provide a rule of thumb: RMSEA values smaller than 0.05 are indicative
of close fit, but values smaller than 0.08 are still considered reasonable. (For the personal
computer, small computer programs for computing the confidence intervals for RMSEA and
ECVI are freely available through the Internet. M. W. Browne’s FITMOD.EXE can be
obtained at http://quantrm?2.psy.ohio-state.edu/browne (included in the MUTMUM.ZIP
package), and P. Dudgeon’s RMSEA.ZIP can be obtained at http://www.mhri.edu.au/~pld.)

Although we cannot use the chi-square distribution to interpret the (non-central) chi-square
statistic, and although the derived statistics RMSEA and ECVI depend on normality
assumptions as well, we can still use the RMSEA and ECVI to compare the fit of different
models to the same data. Simulation studies show that under non-normality, CHISQ values
will be overestimated (Curran, West & Finch, 1996), so that RMSEA values will turn out too
high. We will apply the rule of thumb conservatively. For comparison we will also present the
ECVI values, but for judging the fit of the models we will focus mainly on the RMSEA.
Tables 3-5 give the fit indices for all models to be discussed below.

7.2. Models with 12 factors

We first consider a model (model 1.0) without the imposition of any of the Kronecker-product
restrictions (11)—(16). Next, we consider models with only one of the restrictions imposed.
Finally, we consider models with combinations of several restrictions.

Model 1.0 imposes none of the Kronecker-product restrictions, but its pattern of fixed and
free parameters does conform to a three-mode model. It has the mean and covariance
structures of the LLVM given by (9) and (10), with J =9, K =7, Q =4, R =3 and
P = QR = 12. The 12 factors are named ‘social value (SOCV) of being employed (EMPD)’,
‘economic value (ECOV) of EMPD’, ‘expected risk (RISK) of EMPD’, ‘SOCV of being
employer (EMPR)’, ‘ECOV of EMPR’, ‘RISK of EMPR’, ‘SOCV of uncontroversial
financial activities (UFIN)’, ‘ECOV of UFIN’, ‘RISK of UFIN’, ‘SOCV of controversial
financial activities (CFIN)’, ‘ECOV of CFIN’ and ‘RISK of CFIN’ (compare Table 2). A has
a simple structure. Each variable loads on one factor only. Fitting this LLVM, with
identification restrictions

Al = Asp T Ae3 T Aisa T Azs T Aoos = Ao = Azig = Azap

= As0,10 = Asaq1 = Ass,i2 = 1, 42)

TIT T3 T T T Ts T T T Ty T Ty T T3 T Ty T 50 = T = Tss = 0, (43)
A = Lk k. and O diagonal, yields CHISQ(1824) = 5474.0 and RMSEA = 0.072. Accord-
ing to the RMSEA rule of thumb, the fit of model 1.0 is not unreasonable. For illustrative

purposes we continue to investigate the various Kronecker-product restrictions.
Models 1.1-1.5 all have one of the Kronecker-product restrictions imposed. Model 1.1 has
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Table 3. Fit results for three-mode models with twelve factors
Model Restrictions df CHISQ RMSEA ECVI
1.0 none 1824 5474.0 0.072 15.38
(0.070-0.074) (14.82-15.96)
1.1 A 1866 5678.3 0.073 15.69
(0.070-0.075) (15.12-16.28)
1.2 T 1866 5989.2 0.075 16.49
(0.073-0.078) (15.90—17.10)
1.3 [} 1887 5824.8 0.073 15.96
(0.071-0.075) (15.38—16.56)
1.4 K 1830 5924.5 0.076 16.51
(0.074-0.078) (15.92-17.12)
1.5 () 1872 6114.8 0.076 16.78
(0.074-0.079) (16.19—-17.40)
1.6 A, T 1908 6710.8 0.080 18.13
(0.078—-0.083) (17.50—18.78)
1.7 A, 7, ® 1971 7020.7 0.081 18.60
(0.079-0.083) (17.96-19.27)
1,8 A, 7, D, K 1977 7169.2 0.082 18.95
(0.080—-0.084) (18.30-19.63)
1.9 AT, D, K O 2025 7797.9 0.086 20.32
(0.084-0.088) (19.64-21.03)
1.10 A, 1,0 1956 7373.1 0.084 19.59
(0.082—-0.086) (18.92-20.27)
1.11 A, © 1929 5984.6 0.074 16.16
(0.071-0.076) (15.57-16.77)
1.12 A, @, 0 1977 6659.5 0.078 17.64
(0.076-0.080) (17.02-18.29)
1.13 T, K 1872 6386.3 0.079 17.48
(0.077-0.081) (16.87—18.12)
1.14 O, k 1893 6321.9 0.078 17.21
(0.075-0.080) (16.60—17.84)
1.15 D, x, O 1941 6962.3 0.082 18.61

(0.080-0.084)

(17.96-19.27)

Note: N =390,J =9, K =7,P =12, Q =4, R = 3; A restriction n.a.; RMSEA and ECVI values in parentheses

denote 90% confidence intervals.

the A restriction (equation (11)) imposed with

Asii

Asai
0

S O © © o O

0 0 0

0 0 0
Asz2 0 0
Asep O 0

0 Asss O |,

0 Ases O

0 Ag;3 O

0 0 Agy

0 0 Ago

Apr 0

gt O
0 Apn
0 App
0 Aps;
0 0
0 0

S ©O o o

Z‘F63

AF73

(44)
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Table 4. Fit results for three-mode models with seven factors

Model Restrictions df CHISQ RMSEA ECVI
2.0 none 1818 5210.0 0.069 14.74
(0.067-0.071) (14.19-15.30)
2.1 A 1911 5964.3 0.074 16.20
(0.072-0.076) (15.61-16.80)
2.2 T 1866 6240.3 0.078 17.14
(0.076-0.080) (16.53-17.76)
2.3 (0] 1866 5979.2 0.075 16.47
(0.073-0.077) (15.88-17.08)
2.4 AT 1959 7081.3 0.082 18.82
(0.080-0.084) (18.17-19.49)
2.5 A, 7,0 2007 7756.4 0.086 20.31

(0.084-0.088)

(19.62-21.01)

Note: N =390, J =9, K=7,P=17,Q=4, R=3; A, ® and « restrictions n.a.; RMSEA and ECVI values in
parenthesis denote 90% confidence intervals.

Table 5. Fit results for exploratory three-mode models with varying numbers of factors; after
Bentler & Lee (1978; 1979)

Model No. of factors df CHISQ RMSEA ECVI
Ag, Ag, T echelon
3.1 24+2=4 1919 6648.0 0.080 17.91
(0.078-0.082) (17.28-18.56)
32 3+42=5 1905 6226.7 0.076 16.90
(0.074-0.079) (16.30-17.53)
33 3+43=6 1884 5659.9 0.072 15.55
(0.070-0.074) (14.98-16.14)
34 4+3=7 1858 5521.7 0.071 15.33
(0.069-0.073) (14.77-15.91)
3.5 4+4=8 1821 4924.9 0.066 13.99
(0.064-0.068) (13.46-14.53)
3.6 5+44=9 1777 4639.4 0.064 13.48
(0.062-0.067) (12.97-14.01)
Ag, Ag echelon, T" diag.
4.1 2X2 =4 1924 6713.8 0.080 18.06
(0.078-0.082) (17.42-18.71)
4.2 3X2=6 1917 6285.8 0.077 16.99
(0.074-0.079) (16.38-17.62)
4.3 3X3=9 1912 5792.9 0.072 15.75
(0.070-0.074) (15.17-16.35)
4.4 4 %3 =12 1906 5496.2 0.070 15.02
(0.067-0.072) (14.46-15.60)
4.5 4 x4 =16 1902 4937.8 0.064 13.60
(0.062-0.066) (13.08-14.15)
4.6 5 X4 =20 1897 4824.5 0.063 13.34

(0.061-0.065)

(12.82-13.87)

Note: N = 390; only the A restriction is applied.
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and T' = Ipg - This model, with the identification restrictions of (42) replaced by

Asii = Aszp = Agszs = Asga = Api1 = Az = Apes = L, 45)

gives a fit of CHISQ(1866) = 5678.3 and RMSEA = 0.073.

Model 1.1 is more parsimonious than model 1.0. In model 1.0, A is a 63 X12 matrix,
containing 63 non-zero factor loadings, 12 of which are fixed to provide scales for the factors
(42). This leaves 51 factor loadings free to be estimated. In model 1.1, where the A restriction
is applied, we have only 16 non-zero factor loadings (equation (44)), 7 of which are fixed to
provide scales (45), leaving only 9 parameters free to be estimated. Hence, we gain 42
degrees of freedom. Actually, it turns out that the higher CHISQ value of model 1.1 is almost
made up for by the gain in degrees of freedom, so that the relative fit of models 1.0 and 1.1 is
about the same, as indicated by the almost coincident 90% confidence intervals for the
RMSEA.

Table 6 gives the parameter estimates for Ag and Ag in model 1.1. The parameters can be
interpreted as a kind of overall factor loadings for the economic activities and perception
scales on the slow and fast mode factors (see Table 2). That is, although, for instance the
economic activity ‘being employed as a teacher’ was evaluated seven times, on seven
different perception scales, there is just one loading for that item on the EMPD factor. From
the parameter estimates in Table 6 it appears that most constituent factors are measured
evenly by their different indicators. An exception is the RISK factor, where the factor
loadings show (Agg3 = 1.00 and Ap;3 = 0.28) that one perception scale (‘Well known’) is
three times more indicative than the other (‘Risky’).

Model 1.2 includes the 7 restriction (12). In this model the identification restrictions of (43)
are replaced by

Tgp T Tg3 T Tss T~ Tgy — Tpl TRz~ Tpe L. (46)

These intercepts have been fixed at unity rather than zero, because the use of zeros would
restrict the composite vector 7 more than is necessary for identification. Model 1.2 has the
same number of parameters to be estimated as model 1.1, but its fit is worse (Table 3).

In model 1.0 separate intercepts have been estimated for each combination of economic
activities and perception scales. In model 1.2 slow and fast mode contributions to these
separate intercepts are estimated. The estimates of parameters in 75 and ty are given in Table
6. They can be interpreted as the (reversed) difficulty of the abstract Xg and Xg variables of the
Jx function (21). For example, looking at the rp parameter estimates, it appears that,
regardless of the economic activity, it is easier to agree with something being ‘Beneficial
for society’ (g, = 2.06) than with something being ‘Moral’ (zz; = 1.00). Or, looking at 7g, it
appears that it is easier to agree with questions about gambling (rgg = 1.00) than with
questions about bribes (tgg = —0.31), regardless of the perception scales.

Here all QR combinations of slow and fast mode components transform into separate
factors, so we can check whether the variances, covariances and means of these factors
conform to a multiplicative structure. Imposing the @ restriction (equation (15)) with
¢@g;; = 1 gives CHISQ(1887) = 5824.8 (model 1.3). Imposing the « restriction (equation
(16)) instead, with kg, = 1, yields CHISQ(1830) = 5924.5 (model 1.4). The RMSEA values
in Table 3 indicate that model 1.3 fits about as well as model 1.0. Yet the point estimate of the
ECVI for model 1.3 only just falls within the 90% confidence interval estimate of the ECVI
for model 1.0. Model 1.4 fits worse than model 1.0.
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Table 6. Selected parameter estimates

Model Selected parameter estimates
H 1.00
1.18 1.00
1.00 0.68
1.02 1.00
Ag 1.00 Ap = 1.00
1.22 0.63
1.25 1.00
1.00 0.28
1.72
1.2 ,
tg =[1.00 039 1.00 092 100 050 087 1.00 —0.31|
w =]1.00 206 1.00 141 3.57 100 3.16]
13 1.00
0.95
0.69 124
D5 = . @ =[036 081
043 042 0.68
045 026 1.68
0.09 030 027 0.64
1.4 kg =[1.00 093 078 050|, K =[477 473 265/
L5 diag(®s) = (1.00, 1.20, 1.01, 1.17, 1.36, 1.78, 1.37, 1.78, 1.48)

diag(®p) = (0.95, 1.26, 1.35, 1.26, 1.61, 1.73, 2.23)

Note: Coefficients in italics are fixed parameters; diag ( ) designates the diagonal elements of the matrix concerned.

Table 6 gives the parameter estimates for ®g and ®p in model 1.3 and xg and xg in
model 1.4. One possible interpretation of these parameters is that they are the variances,
covariances and means of the constituent factors &g and &g of composite function fé (22).
@y and Pp are easier to interpret if the scales of &g and &g are set by fixing their variances
to unity. However, the ® restriction would then only involve correlations and not the
variances. Still, we can infer from ®g, for example, that the EMDP and CFIN factors
hardly co-vary. The x estimates are not very interesting in a single-group single-occasion
model like the present model. We could just as well have provided origins for the & factors
by fixing their means at zero (x = (). But that would have prevented the illustration of the
K restriction.

As A is an identity matrix here, the A restriction (13) is not applicable. However, the ©
restriction (14) can be tested. By imposing the © restriction, we test the hypothesis of a
multiplicative structure of the residual variances. In model 1.5 the O restriction is imposed
with matrices @¢ and O both diagonal, with 6g;; = 1. The fit of model 1.5 is not good (Table
3). Parameter estimates for @g and @ in model 1.5 are given in Table 6. They can be
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interpreted as the variances of the & and & variables that feature in the composite function f,
(23). The values of the residual variances cannot be interpreted relative to each other as the
variances of the observed variables have not been standardized.

In models 1.1-1.5 we have imposed the Kronecker-product restrictions one at a time. In
models 1.6—1.9 we have added restrictions to model 1.1. In model 1.1 only the A restriction is
imposed. In model 1.6 the 7 restriction is added, so that all measurement parameters are
restricted (as in (35)—(37)). The fit of model 1.6 is poor (Table 3). Nevertheless, for the sole
purpose of illustration, we have fitted three more models. In models 1.7, 1.8 and 1.9, the
Kronecker-product restrictions on matrices @, x and ® are added. The fit of model 1.9, where
all applicable restrictions are imposed, serves as a test of the mean and covariance structures
given by (17) and (18). Not surprisingly, the fit of models 1.7—1.9 is poor. The same goes for
model 1.10, with Kronecker-product restrictions on all measurement parameter matrices (A
and 7), and the matrix of residual variances ().

Other models that were fitted are model 1.11, with the common covariance structure
parameters restricted (A and ©); model 1.12, with all covariance structure parameters
restricted (A, ® and ©); model 1.13, with all mean structure parameters restricted (z and );
model 1.14, with all common mean and covariance structure parameters restricted (® and «);
and model 1.15, with all structural parameters restricted (®, x and ®). Model 1.15 can be seen
as the counterpart of model 1.6 where all measurement parameters are restricted.

Comparing the fit results of all models, it appears that, in this example, there is perhaps a
three-mode structure in the common covariance structure (A, @), but not in the mean structure
(7, k) or in the residual covariance structure (®); see Table 3.

7.3. Models with seven factors

In the models discussed above all 12 combinations of slow and fast mode components were
transformed into 12 separate factors. In the models with the A restriction this was done by
choosing T' = Ipr«or- An alternative choice for I is

V1,1 0 0 0 Y15 0 0

72,1 0 0 0 7y O

Y31 0 0 0 0 Y37
0 740 O 0 745 O 0
0 s, O 0 0 ys6 O

r= 0 7en 0 0 0 0 V6,7 (47)

0 0 773 0 Y75 0 0
0 0 7g5 O 0 g6 O
0 0 795 O 0 0 797
0 0 0 74 7i0s 0 0
0 0 0 vusa 0 vpe O
0 0 0 74 O 0 7y

Retaining the Ag and Ag specifications of (44), this I' transforms the 12 combinations of slow
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and fast mode components into seven factors. They are named after the components EMPD,
EMPR, UFIN, CFIN, SOCV, ECOV, RISK (see Table 2). The factor & can be conceived as

Ss
Sk
We get a A matrix where each variable loads on two factors: one factor associated with a slow
mode component and one associated with a fast mode component. Consequently, not all

parameters representing covariations between these two types of factors are identified (as
checked by evaluating the Jacobian’s kernel). Therefore, part of the ® matrix is fixed at zero:

&= - (48)

1
¢y 1
P31 P32 1

D =104 Qa4 943 1 (49)
0 0 0o o0 1

0 0 0 0 g |1

0 0 0 0 o5 ¢4 1

As indicated, the diagonal elements of ® are fixed at unity, so that ® can be interpreted as a
correlation matrix. In addition, the scale-setting restrictions of (45) on Ag and Ap (44) are
imposed as well, so that all " elements (47) can be left free to be estimated. Origins are
imposed by fixing the factor means, by setting all k elements at zero. This model is referred to
as model 2.1. Note that, with the non-diagonal I" matrix, the Kronecker-product restrictions
are not applicable to matrix @ and vector . So providing scales and origins through @ and «
does not limit us in looking for multiplicative structures in ® and k, whereas it should give
some leeway in investigating the Kronecker-product restrictions on A and 7.

Model 2.0 is the unrestricted version of model 2.1. It is similar to Jéreskog’s (1971) factor
model for multitrait-multimethod data (Wothke, 1996). The A matrices of models 2.0 and 2.1
have the same pattern of fixed zeros, but in model 2.0 there are no other restrictions on the
factor loadings; all non-zero A elements are set free to be estimated.

The fit of model 2.1, with only the A restriction imposed (with Ag;; = 1), may be
considered reasonable (CHISQ(1911) = 5964.3, RMSEA = 0.074), but is much worse
than the fit of model 2.0, since the point estimate of the RMSEA for model 2.1 does not
fall within the 90% confidence interval for model 2.0’s RMSEA (0.067-0.071; see Table 4).
In models 2.2 and 2.3 the = and O restrictions are imposed instead of the A restriction, but
these models do not give a better fit (Table 4). The fit deteriorates substantially if we combine
restrictions, as in models 2.4 and 2.5 (Table 4).

It should be noted that the interpretation of the parameter estimates of the models with the
A restriction is clearer than that of the models without the A restriction. For example, the
composed factor loadings in the restricted A matrix of model 2.1 all have positive values,
whereas the estimated factor loadings in model 2.0 show more variation, undermining the
interpretation of some of the common factors. So, in spite of worse fit, model 2.1 may still be
preferred to model 2.0 on account of better interpretability.

Comparison of the results in Tables 3 and 4 reveals that, although the unrestricted seven-
factor model (model 2.0) fits better than the unrestricted 12-factor model (model 1.0), the
S3MMs with 12 factors generally fit a little better than their counterparts with seven factors.
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7.4. Models for exploratory analysis

If little is known about a data set, it is perhaps better to turn to real exploratory analysis, like
the three-mode principal components analysis mentioned before (equation (1)). In fact,
Veldscholte, Kroonenberg & Antonides (1998) have already carried out such analyses with
the Antonides ef al. (1996) data. However, Bentler & Lee (1978, 1979) show how stochastic
three-mode models can be used in an exploratory way.

In exploratory research neither the number nor the content (meaning) of factors is known.
Therefore, we investigate model fit when increasing numbers of slow and fast mode
components are specified. In the first series Ag, Ag, and T are all of echelon form, with
some necessary identification restrictions in Ag and Ag:

1 0 0 0
0 1 0 0 1 0 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1
As = |Ass1 Assa Asss Assa |[sAR T |Apar ARz Apas (50)
Ase1  Asez  Ases  Ased Apsi Aps2  Apss
As71 Asta Asrs Asyg Ap61  Are2  Ares
Asgl  Assa  Asgs Assd Apt Arn AEn
Asor  Asgy  Asos  Asoq
and
Y11 0 0 0 0 0 0
Y21 Y22 0 0 0 0 0
731 Y32 733 0 0 0 0
Ya1 Va2 V43 Vas 0 0 0
Ysi  Vs2 V53 Vsa Vss 0 0
r= Ve,1 Ye2 Y63 Y64 V65 V66 0 (51)
Y11 Y12 Y13 V14 Y15 Y16 Y11
V8,1 Y82 V83 Y84 V85 V86 V87
Vo1 Yoo Y93 Y94 Vo5 Voe Vo7
Yioog Y102 Y103 Yio4 Y105 Y106 Y107
Yig Yz Yuz Vs Yus Yie Y17
Yiog Y122 Y123 Y124 Y125 Y126 Yi2g

In the second series of models, only Ag and Ap are of echelon form, without further
restrictions (apart from fixing one element of either Ag or Ag to remove the indeterminacy
introduced by the Kronecker-product restriction), and I' is an identity matrix, so that all QR
combinations of slow mode components and fast mode components are transformed into
separate factors. In this case it suffices to fix just one element of either Ag or Ay (e.g.
As11 = 1). In both cases the factors are assumed orthogonal, and the factor variances are fixed
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at unity, so that @ is an identity matrix. The diagonal matrix ® and vector 7 are free, and «is a
zero matrix (i.e. the mean structure is not modelled).

The fit results are reported in Table 5. As expected, the fit improves with increasing
numbers of components. In fact, it is not clear how many slow and fast mode components are
required. It appears that with higher numbers of factors, the stricter models 4.4, 4.5 and 4.6 fit
relatively better than their counterparts, models 3.4, 3.5 and 3.6.

Models 3.4 and 4.4 have confirmatory counterparts in models 2.1 and 1.1. It appears that
the exploratory models, with their greater numbers of parameters, do fit better. However, it is
impossible to interpret the parameter estimates of models like model 4.4 and especially model
3.4.

Concerning the interpretation of parameter estimates in an exploratory context, Bloxom
(1968) proposes a simple structure rotation of I'. Bentler & Lee (1979) deem interpretation of
I unjustified, because of its arbitrary identification position. They go on to note that matrices
Ag and A are also subject to arbitrary transformations. To ease interpretation, they suggest
first rotating A into a simple interpretable form, and subsequently transforming Ag and Ag.
However, we do not pursue that here.

7.5. Model evaluation

The preceding analyses were carried out for illustration only, to demonstrate various
modelling aspects. It was not our goal to arrive at a ‘best’” model. Still, inspecting the fit
results in Tables 3—5 combined, it appears that model 4.6 has by far the best fit, especially if
judged by the ECVI index, which seems to be more sensitive than the RMSEA index.
However, the parameter estimates for the exploratory S3MMs are difficult to interpret, and
Model 4.6 is no exception. Following Browne (1984), we believe that model selection should
be based not only on goodness of fit, but also on interpretability of the parameter estimates.
Confirmatory S3MMs, with their simply structured matrices of factor loadings, are much
easier to interpret.

Considering the fit of the confirmatory S3MMs, as reported in Tables 3 and 4, it appears
that the unrestricted models 1.0 and 2.0 do fit better than models with one or more of the
Kronecker-product restrictions imposed. Yet imposing such restrictions makes the models
much more parsimonious. Generally, the fewer parameters a model has, the better the model
will do in a cross-validation procedure. Cross-validation is probably the best method to
evaluate the fit of competing models. However, we do not have a second sample here, neither
have we split the present sample in two in view of the small sample size and large number of
variables.

7.6. Practical considerations

As mentioned earlier, all analyses reported were carried out with the computer program Mx
(Neale, 1997). Fitting a single S3MM with Mx to data sets like the one used in our illustration
took between 2 and 12 hours on personal computers with Intel Pentium processors (166 MHz
and 266 MHz), and sometimes even longer. Alternatively the same analyses could be done
with standard SEM programs, which generally converge faster. However, in order to apply
one of the Kronecker-product restrictions, the user must specify restrictions for almost all
elements in the matrix concerned. For example, using LISREL to fit model 1.2, application of
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the 7 restriction involves 48 restrictions of the form 7y = 7q * 7, * 7, .. Even then, one often
encounters non-convergence or improper solutions. The main advantage of Mx over other
SEM programs is that restrictions such as the Kronecker-product restrictions can be applied
by just typing the matrix equation involved on a single line. The ease of preparing Mx scripts
compensates for the long running times.

8. Conclusion

In conclusion, we line up various models that are related to the stochastic three-mode models
for mean and covariance structures described here.

Bloxom (1968) and Bentler & Lee (1978, 1979) have described the three-mode factor
analysis model. Bentler ef al. (1988) showed how this model can be extended with scale-
absorbing parameters (after Lee & Fong, 1983), with more than three modes, and with
structural relations between factors. These models are for the covariance structure only,
which means that either deviation scores are analysed (i.e. X — u instead of X), or the factor
means are assumed zero (x = 0) and the means of the observed variables disappear in the
unrestricted intercepts (¢ = ). The three-mode factor analysis model can then be described
in terms of our S3MMs as including only the A restriction.

The composite direct product models of Browne (1984) are also for covariance structures
only. They are special cases of S3MMs with A diagonal, with the @ restriction and optionally
the O restriction imposed. Browne (1984) shows that the parallel batteries model is a special
case of a direct product model, and he discusses the relationships with three-mode factor
analysis models. Wothke & Browne (1990) demonstrate that composite direct product
models can be parameterized as second-order factor models. Browne (1989) also shows
that direct product models are difficult to distinguish from the covariance component analysis
models of Bock (1960), as they give approximately the same fit—although Wothke (1996)
mentions counterexamples.

The longitudinal three-mode model is an S3MM for multivariate longitudinal data. It has
the A and 7 restrictions imposed, with Ag = I;; and 75 = ;. Oort (1999) describes how
further modelling of the ®, kand @ matrices leads to special cases such as second-order factor
analysis models, McDonald’s (1984) invariant factors model, latent growth-curve models,
and autoregressive models for mean and covariance structures.

Other special cases of S3MMs like the one given by (36) and (37) originate from further
modelling of @, x and @, with or without the Kronecker-product restrictions.

Tucker’s (1966) three-mode principal components model of (1) is not a special case of the
S3MMs. In Tucker’s model the levels of all three modes are fixed. Bloxom’s (1968) model of
equation (2), which is a special case of the S3MMs, is obtained by taking the levels of the first
mode as random. That is why Bloxom’s three-mode factor analysis model is called a
stochastic version of Tucker’s three-mode principal components model. Kroonenberg (1983)
and Kiers (1991) describe several special cases of the principal components model, such as
the parallel factor analysis model of Harshman (1970) and Carroll & Chang (1970). Of
course, stochastic versions of special cases of three-mode principal components models are
themselves special cases of the S3MMs discussed here.

Tucker’s three-mode principal components model is a model for the observed scores.
However, it can be applied to cross-product (or variance-covariance) matrices as well
(Tucker, 1972). It is then known as the three-mode scaling model (Kroonenberg, 1983).
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Kroonenberg (1983) and Kiers (1991) also mention several special cases of the three-mode
scaling model, such as the INDSCAL model of Carroll & Chang (1970). Again, stochastic
versions of the three-mode scaling model and its special cases are special cases of the S3MM:s
presented here. Apart from that, it should be noted that S3MMs can also be used in a non-
stochastic way, yielding results that are comparable with the results of a three-mode scaling
analysis of the variance-covariance matrix. This can be achieved by using the S3MM with the
A restriction, setting the residual variances and covariances equal to zero (@ = 0k k),
analysing the covariance structure only, thereby imposing a minimal number of constraints,
for identification only, and estimating the model parameters through the unweighted least
squares method.

Two obvious extensions of the S3MMs should be mentioned. Firstly, by using the fit
function of (20), S3MMs can be used in multiple group analysis. If the measurement
parameters (in A and 7) are constrained to be equal across groups, then the other structural
parameters can be used to investigate differences in means, variances and covariances across
groups. Secondly, S3MMs are easily extended to multi-mode models. For example, the A
restriction in a stochastic #n-mode model, where the levels of the first mode are considered
random, becomes A = (A, ® A; ® ... ® A )T, where A,, A5, and A, contain the component
loadings for the second mode, third mode and nth mode, respectively (see Bentler et al., 1988,
p- 111, eq. 7). The other Kronecker-product restrictions ((12)—(16)) can be modified
similarly. Extending the model given by (29) in the same way yields the multi-mode direct
product model discussed by Verhees & Wansbeek (1990).

Finally, note that the meaning of the parameters in the special cases of S3SMM is always the
same as the meaning of the same parameters in more general S3MMs. Thus, irrespective of
whether the S3MM parameters in special models are fixed at zero, fixed at unity, fixed at
another value, or free to be estimated, their meaning is determined by their function in the
model. Therefore our description and interpretation of S3MMs facilitates the understanding
of special cases of S3MMs.
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