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Multivariate longitudinal data are characterized by three modes: variables, occa-
sions and subjects. Three-mode models are described as special cases of a linear
latent variable model. The assumption of measurement invariance across occasions
yields three-mode models that are suited for the analysis of multivariate long-
itudinal data. These so-called longitudinal three-mode models include autoregres-
sive models and latent curve models as special cases. Empirical data from the ®eld
of industrial psychology are used in an example of how to test substantive
hypotheses with the longitudinal, autoregressive and latent curve three-mode
models.

1. Introduction

Multivariate longitudinal data consist of participants’ (subjects’) scores on multiple variables

(tests or test items) on different occasions. Here we only consider the case where scores on

the same variables are obtained on many occasions. Three-mode models are models for sets

of data that are characterized by three modes. Multivariate longitudinal data are of this

form, the modes being variables, occasions and subjects.

Three-mode models originate from Tucker’s (1966) three-mode principal components

analysis. In principal components analysis all modes are considered ®xed. Considering the

subjects mode random, Bloxom (1968) developed three-mode factor analysis. Bentler, Poon

and Lee (1988) extended this work to what may be called three-mode covariance structure

analysis, or three-mode structural equation modelling. Oort (1999) proposed investigating the

three-mode structure of all parameters that feature in structural equation models, including

the parameters of the mean structures. He also mentioned a special class of three-mode

models, geared to multivariate longitudinal data. The purpose of the present paper is to

examine these so-called longitudinal three-mode models further.

First, we describe the general mean and covariance structures for multivariate longitudinal

data (after Tisak & Meredith, 1990, who gave the covariance structure only). These mean and

covariance structures ®t into Oort’s (1999) framework of stochastic three-mode models

(S3MMs). We then discuss the requirement of measurement invariance. Imposition of

measurement invariance yields the longitudinal three-mode models (L3MMs) mentioned
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above. So L3MMs are special cases of S3MMs, which themselves are special cases of

the linear latent variable model commonly used in structural equation modelling. Further

special cases of L3MMs are autoregressive three-mode models (AR3MMs) and latent curve

three-mode models (LC3MMs).

AR3MMs result from imposing autoregressive structures on the mean and covariance

structures of the L3MM. Autoregressive models have a long history that goes back to

descriptions of simplex models by Guttman (1954) and JoÈreskog (1970). Yet these models

are for univariate longitudinal data, that is, the case of the repeated measurement of just

a single variable. JoÈreskog (1979) and Swaminathan (1984) describe autoregressive

models for the repeated measurement of multiple variables, though they model variances

and covariances only, and not the means. Mandys, Dolan and Molenaar (1994) give an

autoregressive model for the mean structure in addition to the covariance structure, but

restrict themselves to the univariate case. Here we describe AR3MMs for the mean and

covariance structures of multivariate longitudinal data.

LC3MMs result from imposing a latent curves structure on the L3MM. Meredith and Tisak

(1990) are often mentioned as the originators of latent curve analysis. Latent (growth) curve

modelling has now become very popular, as can be judged from the textbook of Duncan,

Duncan, Strycker, Li and Alpert (1999). However, in most applications of latent curve models

only polynomial functions are considered to describe the development of subjects’ scores.

The LC3MMs described below are developed by extending Browne’s (1993) structured

latent curve models for the repeated measurement of a single observed variable to the case of

multiple latent variables. Imposition of such latent curve models on the mean and covariance

structure of the common factors of the L3MM produces LC3MMs.

In practice, multivariate longitudinal data are gathered to answer speci®c research

questions. These questions often concern the development of some trait or ability, rather

than the structure of data. So, after deciding on an appropriate longitudinal structure,

researchers may want to test, for example, whether the factor means are equal across

occasions, or whether the factor means can be described by some trend. Therefore, we give

some examples of how to test such hypotheses within the framework of L3MMs, AR3MMs

and LC3MMs. All models discussed are illustrated by ®tting them to some empirical data

from the ®eld of industrial psychology.

2. Mean and covariance structures for multivariate longitudinal data

Suppose R latent traits are measured with K observed variables on J occasions. For a single

occasion j, the observed scores are modelled by

xj 5 tj 1 Ljyj 1 Dj«j, (1)

where xj is a random K-vector of observed scores for an arbitrary subject on occasion j, yj is a

random R-vector of scores on the latent traits or common factors, «j is a random K-vector of

scores on the residual factors, tj is a K-vector of intercepts, Lj is a K 3 R matrix of (common)

factor loadings, and Dj is a K 3 K diagonal matrix of (residual) factor loadings. (Hereinafter,

the terms `common factor loadings’ (Lj) and `residual factor loadings’ (Dj) are used as

shorthand to refer to the regression coef®cients of the observed variables on the common

factors and residual factors, respectively.) The residual factors are not correlated with each

other, are not correlated with the common factors, and have zero means. It follows that the
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means and covariances of the observed variables, on occasion j, are given by

E(xj) 5 mj 5 tj 1 Ljkj (2)

and

Cov (xj, x 9
j) 5 Sjj 5 LjFjjL 9

j 1 DjQjjD 9
j, (3)

where kj is an R-vector of common factor means, Fjj is an R 3 R symmetric matrix containing

the variances and covariances of the common factors, and Qjj is a K 3 K diagonal matrix

containing the variances of the residual factors.

For J occasions, the single occasion matrices are collected in larger matrices:

x 5 t 1 Ly 1 D«, (4)

where x, t, L, y, D and « are partitioned vectors and matrices. Vectors x, t, y and « consist of

stacked xj, tj, yj and «j vectors. Vectors x, t and « are JK 3 1, and vector y is JR 3 1. Matrix L

is a JK 3 JR block diagonal matrix,

L 5

L1 0 … 0

0 L2 0

..

.
` ..

.

0 0 … LJ

££££££££££

££££££££££

, (5)

and matrix D, having the same structure but consisting of diagonal Dj matrices, is a JK 3 JK
diagonal matrix. Means and covariances of the K scores on J occasions are given by

E(x) 5 m 5 t 1 Lk (6)

and

Cov(x, x9 ) 5 S 5 LFL 9 1 DQD 9 , (7)

where k is a JR-vector consisting of stacked kj vectors, F is a JR 3 JR symmetric matrix

consisting of Fjj 9 matrices, and Q is a JK 3 JK symmetric matrix consisting of Qjj matrices

(Fjj 9 5 Fj 9 j; Qjj 9 5 Qj 9 j; j, j 9 5 1, . . ., J), That is,

F 5

F11 F12
… F1J

F21 F22
… F2J

..

. ..
.

` ..
.

FJ1 FJ2
… FJJ

££££££££££

££££££££££

, (8)

where a Fjj 9 matrix contains the covariances of the common factors on occasion j with the

common factors on occasion j 9 . Residual factors of different observed variables are

uncorrelated, but residual factors of the same observed variables on different occasions are

allowed to correlate. Therefore all Qjj 9 matrices are diagonal.

2.1. Measurement invariance

As it is our goal to test substantive hypotheses about the common factors, we have to make

sure that the content (meaning) of these factors is the same across occasions. We therefore
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require that all measurement parameters are invariant across occasions. Measurement

parameters are the factor loadings in the L matrix, the intercepts in the t vector, and the

residual factor loadings in the D matrix. The factor loadings represent the degree to which

the xj variables are indicative of the yj factors, and thus concern the content of the factors. The

intercepts in vector t relate to the level of factors. If the observed variables are test items,

then the factor loadings and intercepts can be interpreted as item discrimination and (the

reciprocal of) item dif®culty, respectively (Oort, 1996).

Common factor means and variances can only be compared across occasions if common

factor loadings and intercepts are invariant across occasions. That is, L1 5 L2 5 … 5 LJ ,

and t1 5 t2 5 … 5 tJ , or

L 5 (IJ 3 J Ä L0) (9)

and

t 5 (u Ä t0), (10)

where L0 is a K 3 R matrix of factor loadings, t0 is a K 3 1 vector of intercepts, IJ 3 J is a J 3 J
identity matrix, u is a J 3 1 vector of ones, and the Ä symbol denotes the Kronecker product

(or direct product). The remaining measurement parameters, the residual factor loadings in

the D matrix, do not concern the common factors. The invariance of these parameters is

therefore not required for testing hypotheses about common factors. However, in most cases

the across-occasion invariance of the Dj matrices,

D 5 (IJ 3 J Ä D0), (11)

is satis®ed as a matter of the model identi®cation requirements to be discussed below.

The measurement invariance restrictions of equations (9) and (10) are a prerequisite for

the analysis of the mean and covariance structures of repeatedly measured common factors.

Therefore, the most general model for the analysis of multivariate longitudinal data to be

presented here is the linear latent variable model (LLVM) of equation (4), with mean and

covariance structures given by (6) and (7), and with the measurement invariance restric-

tions of (9) and (10). We call this model the longitudinal three-mode model (L3MM), as it is

a special case of the general three-mode models described by Oort (1999).

2.2. Three-mode models

The general three-mode models discussed by Oort (1999) are called stochastic three-mode

models (S3MMs), to contrast them with the (non-stochastic) three-mode principal compo-

nents models that originate from the work of Tucker (1966; see Kroonenberg, 1983; Kiers,

1991). The S3MMs are an extension of the three-mode factor analysis models of Bloxom

(1968) and Bentler and Lee (1978, 1979), and the composite direct product models of Browne

(1984).

S3MMs can be applied to three-mode data if one of the modes can be considered random.

One example is the analysis of multitrait±multimethod data where the modes are traits,

methods and subjects, where the subjects are generally taken to be random. With multivariate

longitudinal data the modes are variables, occasions and subjects.

The S3MMs are models for mean and covariance structures. They can be described by

restrictions on the parameter matrices that feature in the mean and covariance structures
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of the LLVM, given by (6) and (7). The LLVM becomes a three-mode model after imposing

at least one of the following constraints:

L 5 (LS Ä LF)G, (12)

t 5 (tS Ä tF), (13)

D 5 (DS Ä DF), (14)

Q 5 (QS Ä QF), (15)

where LS is J 3 Q, LF is K 3 R, G is QR 3 P, tS is J 3 1, tF is K 3 1, DS is J 3 J, DF is K 3 K,

QS is J 3 J, and QF is K 3 K . If G is diagonal, then P 5 QR, and the following constraints

may be imposed as well:

F 5 (FS Ä FF), (16)

k 5 (kS Ä kF), (17)

where FS is Q 3 Q, FF is R 3 R, kS is Q 3 1, and kF is R 3 1.

The subscripts S and F stand for slow mode and fast mode, referring to how the data are

organized. The fast mode is the mode whose levels change fastest in the data set, and the slow

mode is the mode whose levels change slowest. With multivariate longitudinal data sets, the

scores of the subjects are usually given ®rst for all variables on the ®rst occasion, then for all

variables on the second occasion, and so on. Such an organization would associate the slow

mode with the occasions, and the fast mode with the variables. Alternative terms for slow and

fast modes are outer and inner modes.

For the meaning of the restrictions of (12)±(17), and the interpretation of the coef®cients

of the matrices and vectors that feature in these restrictions, the reader is referred to Oort

(1999). Here we only point out that the L3MM is a special case of the S3MM, since the

measurement invariance constraints of (9) and (10) are special cases of the Kronecker-

product constraints of (12) and (13) (that is, LS 5 I, LF 5 L0, G 5 IJK 3 JK , tS 5 u, tF 5 t0,

DS 5 I and DF 5 D0). This is useful for the discussion of the identi®cation and estimation

of the L3MM parameters.

2.3. Identi� cation and estimation

As the L3MM and S3MM are special cases of the LLVM, the general guidelines for the

identi®cation of structural equation models apply (Bollen, 1989). These guidelines yield

identi®cation conditions that are either necessary or suf®cient. To evaluate the identi®cation

of a particular model the procedure of Bekker, Merckens & Wansbeek (1994) can be used: if

and only if the kernel of the Jacobian matrix for a particular model is empty, then that model

is identi®ed. This rule is both necessary and suf®cient for global identi®cation. It can be

evaluated symbolically with computer programs for symbolic computation like Maple (Char

et al., 1991) and Mathematica (Wolfram, 1991)Ðsee Bekker et al. (1994) or the book review

by Rigdon (1997) for a summary of the identi®cation procedure.

One necessary identi®cation condition is that all latent variables have a scale and an

origin. In the L3MM, latent variables are the common factors y and the residual factors «.

Scales and origins can be imposed through the measurement parameters (in L, t and D), or

through the other structural parameters (in F, k and Q). In the L3MM the L and t matrices are

restricted as in (9) and (10). Consequently, scales for the y factors can be provided either by
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®xing one factor loading per factor at a non-zero value (that is, one element in each column of

L0), or by ®xing the R factor variances on one occasion at a non-zero value (the diagonal

elements of one of the Fjj matrices). Origins for the y factors can be provided either by ®xing

R intercepts, one intercept per factor (in t0), or by ®xing the R factor means on one occasion

(in kj). Scales for the « factors can be provided either by ®xing the residual factor loadings

(the D diagonal) or by ®xing the residual factor variances (the Q diagonal) at a non-zero

value. As there are as many residual factors as observed variables, the D coef®cients cannot

be interpreted relative to each other. In practice the D matrix is mostly set to identity,

satisfying the invariance restriction of (11) as a matter of course. See Oort (1999) for a more

detailed discussion of the identi®cation of S3MMs.

Assuming a multivariate normal distribution for the observed variables x, and assuming

that the model is identi®ed, maximum likelihood (ML) estimates of all parameters can be

obtained by minimizing the following ®t function:

F(m, S, m, S) 5 (m 2 m) 9 S 2 1(m 2 m) 1 log | S | 2 log | S | 1 trace (SS 2 1) 2 JK , (18)

where m is the vector of observed sample means of x, and S is the matrix of observed sample

variances and covariances of x (see Bollen, 1989; or JoÈreskog & SoÈrbom, 1996). Minimiza-

tion of the ML function gives parameter estimates that are unbiased, scale-invariant, and

scale-free. Note that the latter properties do not generally hold for models that include

(non)linear equality or inequality constraints, such as some of the models discussed later. The

ML estimation method also provides estimates of the asymptotic standard errors of the model

parameters, and a chi-square test of overall goodness of ®t of the model.

There are weaker assumptions than multivariate normality of x that still justify parameter

estimation through minimization of the ML function (Browne & Shapiro, 1988).Alternatively,

parameter estimates can be obtained through other procedures, but not all procedures share all

of the useful properties of ML estimation (see Bollen, 1989; Browne & Arminger, 1995).

The basic L3MM can be ®tted with standard software for structural equation modelling

such as LISREL (JoÈreskog & SoÈrbom, 1996) and EQS (Bentler, 1995). However, neither of

these computer programs is as versatile as Mx (Neale, Boker, Xie & Maes, 1999), which is

freely available through the Internet (http://views.vcu.edu/mx). Some special cases of the

L3MM that will be discussed below involve complicated constraints and cannot be ®tted with

LISREL or EQS.

3. Longitudinal three-mode models

As explained above, substitution of the measurement invariance equations (9) and (10) into

the mean and covariance structures of (6) and (7) yields the mean and covariance structures

of the L3MM:

E(x) 5 m 5 (u Ä t0) 1 (I Ä L0)k (19)

and

Cov(x, x9 ) 5 S 5 (I Ä L0) F (I Ä L9
0) 1 DQD. (20)

Sometimes it is convenient to write the F matrix as

F 5 GF G, (21)
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where diag (F ) 5 IJR 3 JR, and G is diagonal and free. The F coef®cients can then be

interpreted as correlation coef®cients.

3.1. Hypothesis testing with the L3MM

Hypotheses about the common factors can be tested by further restricting (19) and (20), and

comparing the ®t of the restricted models with the ®t of the unrestricted model through the

likelihood-ratio or chi-square difference test (Bollen, 1989). For example, the hypothesis of

equal variances across occasions can be investigated by writing the F matrix as in (21),

imposing

G 5 IJ 3 J Ä G0 (22)

and allowing F to be free. G0 is then a diagonal R 3 R matrix containing the invariant

standard deviations of the common factors.

The hypothesis of equal correlations across occasions can be investigated by imposing

F 5 FS Ä FF (23)

instead, allow the diagonal matrix G to be free, and imposing a banded structure on FS. A

banded structure is a structure of a symmetric matrix where all elements on the same diagonal

have the same value. That is, covariances (or correlations) of the same lag are equal to each

other: all JSjj 9 with equal | j 2 j 9 | are equal ( j, j 9 5 1, . . . , J).

If neither the equal variances hypothesis of (21) nor the equal correlations hypothesis of

(22) is rejected, the hypothesis of equal covariances can be investigated by imposing

F 5 FS Ä FF, (24)

with FS banded. Unless one of the FS and FF matrices has already been restricted to provide

scales for the common factors, the Kronecker-product restriction introduces a new indeter-

minacy that must be removed by ®xing one of the elements of either of the constituent

matrices FS and FF at a non-zero value.

Substantive hypotheses generally concern the means of the common factor, rather than

variances, covariances or correlations. The hypothesis of equal factor means is investigated

by imposing

k 5 u Ä kF. (25)

Another hypothesis that may be interesting in practical applications of the L3MM is whether

the common factor means can be described by a linear trend:

k 5 u Ä a 1 t Ä b, (26)

where a is an R-vector of intercepts, b is an R-vector of slope parameters, and t is a J-vector

with some coding for the time of the occasion, for example, t 9 5 | 1 2 . . . J | . With equation

(26), the equality of factor means across occasions can be investigated by ®xing the slopes

at zero (b 5 0), which then reduces (26) to (25).

The hypotheses of (22)±(25) all are special cases of the Kronecker-product constraints of

the S3MM ((12)±(17)). The linear mean trend hypothesis of (26) can also be written as a

special case of the Kronecker-product constraint of (17). If origins for the common factors

are provided by ®xing the factor means of the ®rst occasion at zero (k1 5 0, t0 free), and the

time of the occasion is coded tj 5 j 2 1, then (26) simpli®es to (17) with kS 5 t and kF 5 b.
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Of course it is also possible to test hypotheses about the residual variances, covariances

or correlations. If we write

Q 5 DQ D, (27)

where diag (F ) 5 I, then the hypothesis of equal residual variances across occasions is

investigated by imposing the constraint of equation (11). The hypothesis of equal residual

correlations can be investigated by imposing

Q 5 QS Ä QF, (28)

allow the diagonal matrix D to be free, and imposing a banded structure on QS. The

hypothesis of equal residual covariances is investigated by imposing

Q 5 QS Ä QF, (29)

where QS is banded and QF is diagonal.

In the L3MM the longitudinal nature of the data is only taken into account to the extent of

assuming measurement invariance. The hypotheses that have subsequently been discussed

only concern the equality of factor means, variances and covariances. Later we test

hypotheses of some well-known longitudinal structures. The hypothesis that the common

factors conform to an autoregressive model is tested by imposing an autoregressive structure

on the F and k matrices of the L3MM, thus yielding an autoregressive three-mode model

(AR3MM). Likewise, the hypothesis that the common factors conform to a latent (growth)

curve model is tested by imposing a latent curve structure on the F and k matrices of the

L3MM, yielding a latent curve three-mode model (LC3MM).

4. Autoregressive three-mode models

An AR3MM is an L3MM with restrictions on the k and F matrices that conform to an

autoregressive structure for means and covariances of the common factors (equations (35)

and (36) below).

In describing the autoregressive model for the common factors, we build on the work of

JoÈreskog (1979), Dwyer (1983, Chapter 11), Swaminathan (1984), and Mandys et al. (1994).

Mandys et al. only model the repeated measurement of a single observed variable, and the

other authors do not model mean structures. However, the accumulated work of these authors

is easily extended to models for mean and covariance structures of multiple latent variables.

4.1. Autoregressive model for the common factors

In the basic AR3MM, a ®rst-order autoregressive model is assumed for the common factors.

On occasion j, an arbitrary individual’s scores on the R common factors are given by:

y1 5 z1 and yj 5 Bj, j 2 1yj 2 1 1 z j, j 5 2, . . . , J, (30)

where Bj, j 2 1 is an R 3 R diagonal matrix of regression coef®cients, and z j is a random

R-vector of scores on the innovation factors. Innovation factors z j represent everything that

happened between occasions j and j 2 1, uncorrelated with yj 2 1. At the ®rst occasion the

innovation factor scores and the common factor scores coincide. One could say that the ®rst

occasion innovation factors z1 represent everything that happened before the ®rst occasion.
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Assuming that the innovation factors are correlated neither with the common factors

nor with each other, the within-occasion means and covariances of the common factors are

E(y1) 5 k1 5 a1,

E(yj) 5 kj 5 aj 1 Bj, j 2 1kj 2 1,
(31)

Cov(y1, y9
1) 5 F11 5 W11,

Cov(yj, y 9
j) 5 Fjj 5 (I 2 Bj, j 2 1) 2 1Wjj(I 2 B 9

j, j 2 1)
2 1,

(32)

for j 5 2, . . . , J. aj is an R-vector containing the means of the innovation factors, and Wjj is a

diagonal R 3 R matrix containing the variances of the innovation factors within occasion j
(symmetric Wjj matrices will be discussed below). On the ®rst occasion, the factors are

allowed to correlate, so that W11 is a symmetric matrix of variances and covariances of the

exogenous factors.

Equation (30) gives the model for the common factor scores on occasion j. For J occasions,

the single occasion matrices are collected in partitioned matrices:

y 5 By 1 z , y 5 (I 2 B) 2 1(a 1 z), (33)

where y is de®ned as before, I is a JR 3 JR identity matrix, z is a partitioned vector consisting

of stacked z j vectors, and B is a square JR 3 JR matrix,

B 5

0 0 … 0

B21 0 ..
.

` ` 0

0 BJ, J 2 1 0

££££££££££

££££££££££

. (34)

Note that, in this basic autoregressive model, the B matrix contains Bj, j 2 1 matrices only, and

that all Bj, j 2 1 matrices are diagonal. Other B structures will be discussed below.

Across occasions, the innovation factors are correlated with neither common factors

nor innovation factors. The means and covariances of the common factors thus are

E(y) 5 k 5 (I 2 B) 2 1a, (35)

Cov(y, y 9 ) 5 F 5 (I 2 B) 2 1W(I 2 B 9 ) 2 1, (36)

where W is a block diagonal JR 3 JR matrix,

W 5

W11 0 … 0

0 W22
… 0

..

. ..
.

` ..
.

0 0 … WJJ

££££££££££

££££££££££

, (37)

with, as explained above, W11 symmetric, and the other Wjj diagonal ( j 5 2, . . . , J). Other

forms of the W matrix will be discussed below.
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4.2. AR3MM variations

The autoregressive model with the B and W matrices as presented above is viewed as the

basic autoregressive model. It can be extended to include synchronous correlations,

synchronous effects, cross-lagged effects, and higher-order effects. The basic autoregressive

model only features ®rst-order autoregressive effects, represented in the B matrix (equation

(34)) by the diagonal elements of the Bj, j 2 1 matrices ( j 5 2, . . . , J). These effects are

interpreted as `causal’ or `explanatory’ effects of one common factor on the same common

factor at the next occasion.

Covariances (or correlations) between different common factors on the ®rst occasion

are given by the coef®cients in W11 (equation (32)). Through the autoregression coef®-

cients, these ®rst occasion correlations also explain the correlations between the different

common factors at later occasions. However, if the ®rst occasion correlations do not

provide suf®cient explanation of the correlations at later occasions, then this may be due

to correlations between different innovation factors. These correlations are called synchro-

nous correlations. Synchronous correlations are within-occasion correlations between

different innovation factors. Synchronous correlations are represented in the partitioned

matrix W (equation (37)) by the off-diagonal elements of the symmetric Wjj matrices

( j 5 2, . . . , J).

Instead of assuming that the common factors are merely correlated within occasions, one

may assume causal relations among particular common factors. Causal effects within

occasions are called synchronous effects, represented in the partitioned matrix B (equation

(34)) by the off-diagonal elements of the Bjj matrices ( j 5 1, . . . , J). Of course, if

synchronous effects (in the Bjj matrices) are modelled, then corresponding synchronous

correlations (in Wjj) have to be ®xed at zero.

If we assume that one common factor is the cause of another common factor, then it

is reasonable to assume that it takes some time for common factor r to affect common

factor r 9 . Therefore, it is perhaps more appropriate to model lagged effects instead of

synchronous effects. To distinguish between these lagged effects and autoregressive

effects, which can be characterized as lagged effects between the same common factors,

lagged effects between different factors are often called cross-lagged effects. Cross-

lagged effects are causal effects between different common factors, across occasions.

Cross-lagged effects are represented in the B (34) by the off-diagonal elements of Bj, j 2 1

( j 5 2, . . . , J).

With ®rst-order autoregressive effects and ®rst-order cross-lagged effects, we assume

that only common factor scores of the previous occasion j 2 1 have a direct effect on common

factor scores of occasion j. Yet it may be that common factor scores from earlier

occasions also have direct effects. Second-order autoregressive effects are represented

in B (34) by the diagonal elements of Bj, j 2 2, and second-order cross-lagged effects

are represented by the off-diagonal elements of Bj, j 2 2 ( j 5 3, . . . , J). Autoregres-

sive and cross-lagged effects of order n are represented by the elements of Bj, j 2 n

( j 5 n 1 1, . . . , J).

Of course, many of the effects discussed here can be combined to produce more AR3MM

variations, although not all combinations make sense. Moreover, some of the extensions are

incompatible, such as synchronous effects and synchronous correlations between the same

pairs of factors.
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4.3. Hypothesis testing with AR3MMs

Within the framework of the AR3MM, hypotheses can be tested by further restricting (35)

and (36), and carrying out chi-square difference tests. For example, the hypothesis of equal

regression coef®cients across occasions can be investigated by restricting B by setting

B21 5 … 5 BJ, J 2 1, (38)

the hypothesis that the variances (and possibly covariances) of the innovation factors are

equal across occasions can be investigated by restricting W by setting

W22 5 … 5 WJ, J , (39)

and the hypothesis that the average amount of innovation is equal across occasions can be

investigated by restricting a by setting

a2 5 … 5 aJ . (40)

Hypotheses about the innovation factors are perhaps less interesting than hypotheses about

the common factors. In the AR3MM the testing of such hypotheses is less straightforward

than in the L3MM, as the k vector of common factor means and the F matrix of common

factor variances and covariances have been substituted by (35) and (36). However, although k

does not feature in the AR3MM, hypotheses about the common factor means can still be

tested by imposing restrictions on the innovation factor means in a. In the AR3MM, the

hypothesis of equal common factor means can be investigated by imposing

a 5 (I 2 B) (u Ä kF), (41)

and the hypothesis of a linear mean trend can be investigated by imposing

a 5 (I 2 B) (u Ä a 1 t Ä b). (42)

Equations (41) and (42) are the result of rewriting (35) in terms of a and substituting k by

(25) and (26). The same could be done to test the L3MM hypotheses about the common

factor variances and covariances in F. However, rewriting (36) in terms of W, and restricting

F according to the hypothesis to be tested, results in symmetric W matrices that do not

conform to the assumption that innovation factors are not correlated across occasions. The

hypothesis of equal common factor variances across occasions can nevertheless be investi-

gated, but only by adding (22) as a separate constraint under which the AR3MM parameters

are estimated.

Hypotheses about the residual factors can be tested within the AR3MM in the same way

as has been described for the L3MM (equations (27)±(29)). Thus far we have assumed that

residual factors of the same variables are merely correlated across occasions. However,

analogously to (36), we could assume an autoregressive structure for the residual variances

and covariances,

Cov(«, « 9 ) 5 Q 5 (I 2 B«) 2 1W«(I 2 B 9
«)

2 1, (43)

where B« and W« are partitioned matrices. B« is a square JK 3 JK matrix, consisting of

diagonal B«, j, j 2 1 matrices and zero matrices, all K 3 K, in a structure similar to the one given

by (34). W« is a diagonal JK 3 JK matrix, consisting of J diagonal K 3 K matrices. An

autoregressive model for the means of the residual factors is not applicable because of the

assumption that the residual factor means are zero (compare (6)).
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5. Latent curve three-mode models

An LC3MM is an L3MM with restrictions on k and F that conform to a latent curve structure

for the means and covariances of the common factors (equation (49) and (50) below).

The topic of latent (growth) curve modelling has recently become very popularÐsee, for

example, Willet and Sayer (1994) or Duncan et al. (1999), the latter providing a compre-

hensive introduction to latent curve modelling. Here we build on the work of Browne (1993),

who himself acknowledges Meredith and Tisak (1990) as the originators of the latent curve

analysis as we use it. Most researchers only consider linear or quadratic curves, but Browne

shows how any curve can be used in a latent curve model. Although Browne only models

the repeated measurement of a single observed variable, his work is easily extended to

modelling mean and covariance structures of multiple latent variables.

5.1. Latent curve model for the common factor scores

Suppose the J scores on common factor r can be described by a target function, fr (tj, cr),

where tj is a code for the time of occasion j (e.g., tj 5 j ), and cr is an Mr-vector of function

parameters. We assume that

E(yr) 5 kr 5 fr(tj, cr), (44)

and that all elements of the target function are differentiable with respect to cr. Browne

(1993) gives a detailed description of the development of latent curve models for observed

scores. These models are for repeated observations of a single observed variable. Here we

summarize Browne’s exposition, at the same time transforming it to the case of repeated

measurements of multiple latent variables. Following Browne, the latent curve model for the

scores of an arbitrary subject on common factor r is written as

yr 5 Pr hr 1 ur , (45)

where yr is a J-vector of the scores on common factor r on J occasions, Pr is a J 3 Mr matrix

of coef®cients dependent of the target function, and hr is a random Mr-vector of random

coef®cients, sometimes interpreted as learning factors or growth factors. We will refer to the

hr factors as curve factors. ur is a random J-vector of residual factors, representing deviations

of the latent curve, possibly because of measurement error. The Pr elements, rrjm, are given

by so-called `basis functions’, which are the partial derivatives of the target function with

respect to the function parameters cr (terminology after Meredith & Tisak, 1990):

rrjm 5 grm(tj, cr) 5 f 9
r (tj, cr) 5

­ fr(tj, cr)
­ crm

. (46)

Equation (45) gives the latent curve model for a single common factor r, but we have R
common factors. For R common factors, the latent curve model is

y 5 Ph 1 u, (47)

where the random vectors y and u are partitioned JR-vectors consisting of stacked yj and uj

vectors. The h vector consists of stacked hr vectors. The length of the h vector is

M1 1 M2 1 … 1 MR. Because of the way the y and h vectors are organized, the structure

of the partitioned P matrix is a little complicated. The P matrix is JR 3 (M1 1 M2 1 … 1 MR)
and consists of stacked Pj matrices. A Pj matrix is R 3 (M1 1 M2 1 … 1 MR). For example,
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with R 5 3, a Pj matrix has the form

Pj 5

r1 j1
… r1jM(1) 0 … 0 0 … 0

0 … 0 r2 j1
… r2 jM(2) 0 … 0

0 … 0 0 … 0 r3j1
… r3jM(3)

£££££££

£££££££
, (48)

where rrjm are obtained through the basis functions of (46). Assuming that the residual factors

u have zero means, and are correlated neither with each other nor with the curve factors h, it

follows that the means and covariances of the common factors y are given by

E(y) 5 k 5 Pn, (49)

Cov(y, y 9 ) 5 F 5 PPP9 1 Q, (50)

where n is a (M1 1 M2 1 … 1 MR) vector of curve factor means, P is a symmetric matrix

containing the variances and covariances of the curve factors, and Q is a JR 3 JR diagonal

matrix containing the variances of the residual factors u. As both P and k are fully dependent

on the latent curve function parameters (equations (44) and (46), it follows from (49) that n

can be worked out from these parameters as well, and does not contain any free parameters

either. When ®tting a LC3MM this can be taken care of by adding

fr(t, cr) 5 Prnr (51)

as a separate constraint under which the LC3MM parameters are estimated (where fr (t, cr)

is a J-vector of fr (tj, cr) values).

Since the LC3MM is the result of substitution of equations (49) and (50) into (19) and (20),

it is clear that the LC3MM is an ordinary second-order factor model, albeit with certain

restrictions on the parameter matrices.

5.2. LC3MM examples

If we assume that the subject scores on common factor k on different occasions lie on a

linear curve, then the target function is

fr(tj, cr) 5 cr1 1 cr2tj, (52)

where cr1 and cr2 are the intercept and slope parameters. Following Browne’s procedure,

summarized above, we obtain an LC3MM with

Pr 5

1 t1
1 t2

..

. ..
.

1 tJ

££££££££££

££££££££££

(53)

and

nr 5
cr1

cr2

££££

££££. (54)

Note that, in order to build the complete P matrix, the Pr matrices must ®rst be trans-

formed to Pj matrices in the way shown by equation (48). With a quadratic curve, the target
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function is

fr(tj, cr) 5 cr1 1 cr2tj 1 cr3t2
j , (55)

the Pr matrix is

Pr 5

1 t1 t2
1

1 t2 t2
2

..

. ..
. ..

.

1 tJ t2
J

££££££££££

££££££££££

, (56)

and the nr vector is

nr 5

cr1

cr2

cr3

£££££££

£££££££
. (57)

Usually some simple time coding is imposed on Pr, such as tj 5 j or tj 5 j 2 1. Sometimes

a time coding is chosen that accounts for different lags of time between successive occasions.

P then contains ®xed parameters only. However, since the LC3MM is a special case of a

second-order factor model, it is clear that the tj can be estimated. To identify the LC3MM,

only one element in each P column has to be ®xed at a non-zero value. In this way it is

possible to check whether all

tj > tj 9 if j > j 9 , (58)

for j, j 9 5 1, . . ., J, and j Þ j 9 . If this does not hold, then apparently an inappropriate curve

has been chosen to model the subjects’ common factor scores.

Latent curve modelling with linear and quadratic curves is well known, and we do not

really need Browne’s procedure to work out the P and n matrices. We therefore give yet

another example, presenting a target function that perhaps is appropriate for the data set that

will be used in our illustrative example below. This target function describes `bell-shaped’

curves

fr(tj, cr) 5 cr1 1 cr4 exp 2
(tj 2 cr2)2

c2
r3

Á !

, (59)

where cr1 and cr2 are parameters for the vertical and horizontal location of the curve, and

cr3 and cr4 are parameters for the width and height of the curve (with cr1 5 0, cr3 5 s Ö2,

and cr4 5 (s Ö(2p)) 2 1, (59) equals the density function of the normal distribution with mean

cr2 and standard deviation s). With this target function, the basis functions are

gr1(tj, cr) 5
­ fr(tj, cr)

­ cr1
5 1, (60)

gr2(tj, cr) 5
­ fr(tj, cr)

­ cr2
5

2cr4(tj 2 cr2)

c2
r3

exp 2
(tj 2 cr2)2

c2
r3

Á !

, (61)
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gr3(tj, cr) 5
­ fr(tj, cr)

­ cr3
5

2cr4(tj 2 cr2)
2

c3
r3

exp 2 1
(tj 2 cr2)2

c2
r3

Á !

, (62)

gr4(tj, cr) 5
­ fr(tj, cr)

­ cr4
5 exp 2

(tj 2 cr2)2

c2
r3

Á !

, (63)

and Pr is a J 3 4 matrix,

Pr 5

gr1(t1, cr) gr2(t1, cr) gr3(t1, cr) gr4(t1, cr)

gr1(t2, cr) gr2(t2, cr) gr3(t2, cr) gr4(t2, cr)

..

. ..
. ..

. ..
.

gr1(tJ , cr) gr2(tJ , cr) gr3(tJ , cr) gr4(tJ , cr)

££££££££££

££££££££££

. (64)

From (44), (46) and (49) it follows that nr does not contain free parameters. However, with

the target function of (59), nr does not have a clear interpretation like the nr associated with

the linear and quadratic curves ((54) and (57)). Still, nr can be solved by adding (51) as an

additional constraint to the optimization of the ®tting function when estimating the LC3MM

parameters (for example, by using the constraint facility of the computer program Mx (Neale

et al., 1999).

Note that there are an in®nite number of target functions that can be used in the LC3MM.

Equations (52), (55) and (59) are just three examples. For some other examples, see Browne

(1993), who gives the target and basis functions for exponential, logistic and Gompertz

curves.

5.3. Hypothesis testing with LC3MMs

Hypotheses that are speci®c to the LC3MM involve the target functions that make up Pr and

nr. Which hypotheses can be tested, and how, depends on the target functions that are used

in the LC3MM. For example, with the simple linear curve of (52), the hypothesis of equal

common factor means across occasions is investigated by ®xing the mean of the hr2 factor

at zero. Note that this does not mean that the individuals do not change over time, only that on

average there is no change.

If we want to test whether there are indeed individual differences between subjects on a

particular curve factor, then we have to ®x the associated variances and covariances in P. For

example, with the linear curve of (52), we can test whether the subjects have different starting

levels by ®xing the variances (and covariances) of the hr1 factor at zero (or by removing that

curve factor altogether).

We now turn to hypotheses about the residual factors in u in (47). Following the

mainstream of the literature on the topic, we have assumed that all residual factors in u are

uncorrelated, so that the JR 3 JR covariance matrix Q in (50) is diagonal. However, there is

no reason why the same residual factors should not be correlated across occasions, so that Q

has a structure of diagonal R 3 R blocks, just like the JK 3 JK covariance matrix Q of residual

factors «, which consists of diagonal K 3 K blocks (see the text below equation (8)). Browne

(1993) suggests an autoregressive structure for the covariance matrix of the u factors. So,
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analogously to (36) and (43), Q can be subject to the restriction

Cov(u, u 9 ) 5 Q 5 (I 2 Bu)
2 1Wu(I 2 B 9

u)
2 1, (65)

where Bu and Wu are partitioned JR 3 JR matrices, with the same structures as described for

the JK 3 JK Bu and W« matrices (see the text below (43)).

6. Illustration

As an example, L3MMs are applied to data from the ®eld of industrial psychology. We use

a small part of the data collected within the framework of an extensive study of work attitude

in turnover situations by Frese and his co-workers (see Frese, Garst & Fay, 1998, and the

references therein). This study is known as the AHUS study, after the German acronym for

`Active Actions in a Radical Change Situation’. The part of the AHUS study that we are

concerned with involves the development of personal initiative and some of its predictors.

Among other things, Frese et al. (1998) wanted to know to what extent people from East

Germany showed initiative in ®nding a (better) job after German reuni®cation in July 1990.

In Frese’s theory of occupational socialization, the effects of various work characteristics on

personal initiative are mediated by various control cognitions. Here, in our limited example,

we will consider the effects of just two variables, control aspiration and self-ef®cacy, on

the showing of initiative.

6.1. Data and method

The part of the sample that is used here consists of 271 participants, 146 men and 125 women.

`Personal initiative’ (PINI), `control aspiration’ (CASP) and `self-ef®cacy’ (SEFF) were

measured in 1990, 1991, 1992 and 1993. There are three observed indicator variables for

PINI, two for CASP, and three for SEFF (indicator variables were created through item

parcelling). So we have eight different observed variables (K 5 8), three different common

factors (R 5 3), all measured on four occasions (J 5 4). We consequently have 32 (4 3 8)

observed variables and 12 (4 3 3) common factors.

The scores on the 32 observed variables are not multivariate normally distributed.

Univariate tests reveal that the distributions are skewed for almost half of the variables,

and platykurtic for four variables. Tests of multivariate normality turn out highly signi®cant

(Mardia, 1980; skewness 5 174.3, Z 5 15.7; kurtosis 5 1175.6, Z 5 11.0; relative multi-

variate kurtosis 5 1.08).

Non-normality poses a problem for choosing a suitable estimation method. We cannot

use the weighted least squares estimation method (Bollen, 1989) because our sample size of

271 is too small. We could retain the ML estimation method, but use a corrected (scaled) test

statistic (Bentler & Dudgeon, 1996; Yuan & Bentler, 1998), which alleviates the problem of

non-normality somewhat. This is, however, not an option in the current version of Mx

(version 1.50; Neale et al., 1999), that we use for ®tting L3MMs. We therefore retain the

normal-theory ML estimation method and report the accompanying test statistic. As the

assumption of multivariate normality is violated, the resulting test statistic need not have a

chi-square distribution, and the standard errors need not be correct. However, the point

estimates of model parameters are probably not seriously biased (Bollen, 1989).

Thus all the models discussed below are ®tted using the normal-theory ML estimation
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method (based on the discrepancy function of equation (18)). In Table 1 we report three

measures of ®t: the chi-square measure of overall goodness of ®t (CHISQ), the root mean

square error of approximation (RMSEA), and the expected cross-validation index (ECVI).

Browne & Cudeck (1992) provide formulae to calculate con®dence intervals for both the

RMSEA and the ECVI. These calculations can be done with freely available computer

programs such as FITMOD.EXE of M. W. Browne (http://quantrm2.psy.ohio-state.edu/

browne, included in the MUTMUM.ZIP package) and RMSEA.EXE of P. Dudgeon (http://

www.mhri.edu.au/~pld). Although we may not use the chi-square distribution to interpret

the (non-central) chi-square statistic, and although the derived statistics RMSEA and ECVI

depend on normality and assumptions as well, we can still use RMSEA and ECVI to compare

the ®t of different models to the same data. Simulation studies (Curran, West & Finch, 1996)

suggest that under non-normalilty, our ®t measures will turn out too high rather than too low.

It is, of course, well known that no single measure of overall ®t should be relied on

exclusively. Moreover, the ®t of the components of a model should also be evaluated (Bollen

& Long, 1993). When a model does not ®t suf®ciently well, standardized discrepancies

between the observed and estimated means, variances and covariances may give valuable

information about non-trivial further structure (e.g. JoÈreskog, 1993). Notwithstanding these

cautionary remarks, our prime purpose is not to ®nd a `best’ model for the AHUS data, but to

illustrate various modelling aspects. To that end a large number of models are ®tted, and

to ease our presentation we limit our consideration of ®t to the RMSEA.

6.2. Testing measurement invariance

First consider the L3MM with the mean and covariance structures of (19) and (20). We ®t

the L3MM with K 5 8, R 5 3 and J 5 4. So the L0 matrix is 8 3 3, and the t0 vector is 8 3 1.

Scales and origins for the common factors are provided by setting

l0(11) 5 l0(42) 5 l0(63) 5 1, (66)

t0(1) 5 t0(4) 5 t0(6) 5 0. (67)

The actual patterns of ®xed and free parameters in L0 and t0 can be gathered from Table 2.

The parameters in the 12 3 12 symmetrix F matrix and the 12 3 1 k vector are all free to be

estimated, and the 32 3 32 symmetric Q matrix has 80 free parameters, as all covariances

between residual factors of the same variables are free to be estimated (that is, the partitioned

Q matrix is made up of diagonal K 3 K blocks, as the residual factors of the same variables

are allowed to correlate across occasions). The total number of parameters to be estimated

is 180 and the sample size is 271.

Although the chi-square goodness of ®t test is signi®cant, the ®t of the L3MM appears

good according to RMSEA (CHISQ (380) 5 546.6, RMSEA 5 0.040; the L3MM is model

1.4 in Table 1). The resulting parameter estimates are given in Table 2.

Browne & Cudeck (1992) explain why the chi-square measure is not always appropriate to

evaluate the ®t of structural equation models. They prefer using indices like the RMSEA and

the ECVI, and have provided the following rule of thumb: RMSEA values smaller than 0.05

are indicative of close ®t, but values smaller than 0.08 are still considered reasonable. So the

®t of the L3MM may be considered `close’. To allow a better appreciation of the ®t of the

L3MM, we also ®t model 1.1 which is identical to the L3MM except for the measurement
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Table 1. Fit results

Model df CHISQ RMSEA ECVI

Measurement invariance
1.1 no restrictions 350 455.0 0.033 3.241

(0.022±0.043) (3.018±3.504)
1.2 Lj invariant 365 466.3 0.032 3.171

(0.020±0.042) (2.947±3.436)
1.3 tj invariant 365 466.0 0.032 3.171

(0.020±0.042) (2.946±3.435)
1.4 L3MM: Lj, tj invariant 380 546.6 0.040 3.358

(0.031±0.049) (3.103±3.652)

L3MMs
2.1 equal y variances 389 561.4 0.041 3.346

(0.031±0.049) (3.088±3.644)
2.2 equal y correlations 440 775.5 0.053 3.761

(0.046±0.060) (3.438±4.123)
2.3 equal y covariances 449 792.6 0.053 3.758

(0.046±0.060) (3.431±4.123)
2.4 equal « variances 404 626.8 0.045 3.477

(0.037±0.053) (3.197±3.796)
2.5 equal « correlations 425 651.6 0.044 3.413

(0.036±0.052) (3.129±3.737)
2.6 equal « covariances 449 733.7 0.049 3.540

(0.041±0.056) (3.231±3.887)
2.7 equal y means 389 608.4 0.046 3.520

(0.037±0.054) (3.244±3.835)
2.8 linear trend y means 386 595.4 0.045 3.494

(0.036±0.053) (3.222±3.805)
2.9 2.8, estimated time coding 384 558.6 0.041 3.373

(0.032±0.050) (3.114±3.670)
2.10 equal y means and variances 398 624.8 0.046 3.514

(0.038±0.054) (3.234±3.834)

AR3MMs
3.1 AR1 434 831.7 0.058 4.014

(0.051±0.065) (3.673±4.393)
3.2 AR1, SC 425 800.1 0.057 3.963

(0.050±0.064) (3.631±4.334)
3.3 AR1, SE 425 751.7 0.053 3.784

(0.046±0.061) (3.466±4.141)
3.4 AR1, CLE 425 761.3 0.054 3.820

(0.047±0.062) (3.499±4.180)
3.5 AR1, AR2 428 689.7 0.048 3.532

(0.040±0.055) (3.235±3.868)
3.6 AR1, AR2, SC 419 664.4 0.047 3.505

(0.038±0.054) (3.215±3.835)
3.7 AR1, AR2, SE 419 628.6 0.043 3.373

(0.035±0.051) (3.095±3.690)
3.8 AR1, AR2, CLE 419 638.4 0.044 3.409

(0.036±0.052) (3.128±3.729)
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Table 1. continued

Model df CHISQ RMSEA ECVI

4.1 3.8 with equal AR1, AR2, CLE 434 688.7 0.047 3.484
(0.039±0.054) (3.188±3.819)

4.2 3.8 with equal z j variances 425 658.6 0.045 3.439
(0.037±0.053) (3.152±3.766)

4.3 3.8 with equal z j means 425 643.1 0.044 3.382
(0.035±0.052) (3.100±3.703)

4.4 3.8, equal z j var’s and means 431 662.2 0.045 3.408
(0.036±0.052) (3.121±3.735)

4.5 4.1 with equal z j var’s, means 446 821.3 0.056 3.886
(0.049±0.063) (3.550±4.260)

4.6 3.8, linear trend yj means 425 692.3 0.048 3.564
(0.040±0.056) (3.266±3.902)

4.7 3.8, equal yj means 428 705.2 0.049 3.590
(0.041±0.057) (3.288±3.931)

4.8 3.8, equal yj variances 428 652.3 0.044 3.394
(0.036±0.052) (3.109±3.717)

4.9 3.8, equal yj means and var’s 437 720.5 0.049 3.580
(0.041±0.057) (3.274±3.925)

4.10 3.8 with AR1 in Q structure 443 724.0 0.049 3.548
(0.041±0.056) (3.242±3.893)

4.11 3.8 with AR1, AR2 in Q 427 671.6 0.046 3.473
(0.038±0.054) (3.181±3.803)

4.12 4.11 with equal AR1, AR2 in Q 451 699.4 0.045 3.398
(0.037±0.053) (3.101±3.734)

LC3MMs
5.1 linear trend for all 431 655.7 0.045 3.421

(0.037±0.053) (3.133±3.749)
5.2 stationary trend for all 449 727.8 0.048 3.518

(0.040±0.055) (3.133±3.749)
5.3 quadratic trend for r 5 1 423 616.0 0.041 3.296

(0.032±0.049) (3.024±3.608)
5.4 bell trend for r 5 1 416 618.2 0.042 3.356

(0.034±0.051) (3.082±3.670)
5.5 Model 5.1 with AR1 struct. Q 422 651.0 0.045 3.433

(0.037±0.053) (3.148±3.757)
5.6 Model 5.2 with AR1 struct. Q 440 700.6 0.047 3.484

(0.039±0.054) (3.185±3.821)
5.7 Model 5.3 with AR1 struct. Q 414 604.4 0.041 3.320

(0.032±0.050) (3.050±3.629)
5.8 Model 5.2 with diag. block Q 431 690.9 0.047 3.514

(0.039±0.055) (3.217±3.850)

Note: N 5 271; RMSEA and ECVI values in parentheses denote 95% con®dence intervals; AR1 5 ®rst-order
autoregressive effects, AR2 5 second-order autoregressive effects, SC 5 synchronous correlations, SE 5
synchronous effects, CLE 5 cross-lagged effects.



invariance constraints of equations (9) and (10), and 18 additional identi®cation restrictions

in L and t. This model, with 210 free parameters, ®ts even better: CHISQ (350) 5 455.0 and

RMSEA 5 0.033 (Table 1).

Comparison of the ®t of model 1.1 and the L3MM provides a test of measurement

invariance. If the more restricted L3MM ®ts signi®cantly worse than model 1.1 then the

measurement invariance hypothesis must be rejected. According to the difference in chi-

square values the hypothesis must be rejected (CHISQ (30) 5 91.6). However, the difference

in chi-square values of two hierarchically related models itself has a chi-square distribution

only if at least the less restricted model does ®t. But according to the chi-square goodness of

®t test model 1.1 does not ®t either. Therefore, we compare the ®t of models by calculating
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Table 2. L3MM parameter estimates (model 1.4)

PINI CASP SEFF

L0 5

1.00 0.00 0.00

1.04 0.00 0.00

1.01 0.00 0.00

0.00 1.00 0.00

0.00 0.87 0.00

0.00 0.00 1.00

0.00 0.00 0.88

0.00 0.00 1.06

£££££££££££££££££££

£££££££££££££££££££

t0 5

0.00

2 0.07

2 0.27

0.00

0.47

0.00

0.66

2 0.17

£££££££££££££££££££

£££££££££££££££££££

Occasion 1 Occasion 2 Occasion 3 Occasion 4

PINI CASP SEFF PINI CASP SEFF PINI CASP SEFF PINI CASP SEFF

F 5

0.79

0.14 0.20

0.19 0.11 0.36

0.38 0.11 0.13 0.64

0.10 0.17 0.14 0.07 0.20

0.16 0.12 0.30 0.13 0.14 0.38

0.38 0.14 0.20 0.26 0.11 0.19 0.76

0.10 0.15 0.13 0.09 0.18 0.14 0.11 0.22

0.18 0.10 0.29 0.16 0.15 0.29 0.21 0.15 0.41

0.37 0.07 0.18 0.34 0.05 0.14 0.34 0.07 0.20 0.66

0.15 0.18 0.14 0.13 0.17 0.16 0.16 0.20 0.17 0.11 0.29

0.14 0.13 0.30 0.13 0.13 0.31 0.18 0.16 0.34 0.20 0.20 0.40

£££££££££££££££££££££££££££££

£££££££££££££££££££££££££££££

k9 5 3.48 3.45 3.85 3.73 3.49 3.84 3.91 3.55 3.81 3.56 3.57 3.85
££ ££

Note: N 5 271, CHISQ (380) 5 546.6, RMSEA 5 0.040; other ®t indices for the L3MM (model 1.4) are given in
Table 1; coef®cients in italics are ®xed parameters; estimates of the Q parameters are omitted from the table to save
space.



the con®dence intervals of the RMSEA values. For model 1.1 the 95% con®dence interval of

the RMSEA ranges from 0.022 to 0.043. As the point estimate of the RMSEA of the L3MM

falls well within the con®dence interval of the RMSEA of model 1.1, we do not reject the

hypothesis of measurement invariance.

We will use this L3MM as the reference model in further model comparisons below. This

means that, if a hypothesis is tested by ®tting a particular model that is a special case of the

L3MM, then this hypotheses will be rejected only if the point estimate of the RMSEA of

this special case does not fall within the con®dence interval of the RMSEA of the L3MM

(0.031±0.049; see model 1.4 in Table 1).

6.3. Testing L3MM hypotheses

Restricting the L3MM according to (22)±(24) tests the hypotheses about the common factor

variances, correlations and covariances. These restrictions have been imposed, one at a time,

in models 2.1, 2.2 and 2.3. From the ®t results in Table 1 it appears that the common factor

variances may be invariant across occasions (because the restricted model 2.1 does not ®t

signi®cantly worse than the L3MM), but the other hypotheses must be rejected. With models

2.4, 2.5 and 2.6, the same hypotheses are tested for the residual factors as well. For these even

the hypothesis of equal variances and covariances across occasions ((29)) is not clearly

rejected (see Table 1).

Hypotheses about the common factor means are investigated with models 2.7, 2.8 and 2.9.

In model 2.7 the common factor means are restricted according to (25), testing the hypothesis

of equal common factor means across occasions. Comparison of the ®t results of model 2.7

and the L3MM shows that this hypothesis cannot be rejected. The invariant common

factor means of PINI, CASP and SEFF are estimated at 3.69, 3.49 and 3.81, respectively,

which values are indeed not far off the unrestricted factor means that are estimated under the

L3MM without the restriction of (25) (see Table 2). Nevertheless, for the purpose of

illustration, we test the hypothesis of a linear trend for the common factor means as well.

In model 2.8 the restriction of (26) is imposed on the k vector, yielding intercept and slope

estimates of

a 5

3.66

3.43

3.84

£££££££

£££££££
and b 5

0.03

0.04

0.00

£££££££

£££££££
. (68)

Note that the slope parameters are almost zero, which is not surprising knowing that the

hypothesis of invariant common factor means could not be rejected. However, inspection of

the unrestricted common factor means of the L3MM in Table 2 shows that at least the PINI

factor means do vary somewhat across time. If we ®t the same model once more but with

t2 and t3 free to be estimated, then we obtain a better ®t (model 2.9 in Table 1), but the

requirement of (58) is no longer satis®ed, indicating that across-occasion changes of

the common factor means (of PINI at least) are not adequately described by a linear trend.

These last remarks do not bear much weight as we have not even discarded model 2.7, testing

the invariant means hypothesis of (25).

Finally, in model 2.10 we have imposed both (22)Ðinvariant variancesÐand (25)Ð

invariant means. As this model does not ®t signi®cantly worse than the unrestricted L3MM

Longitudinal three-mode models 69



(Table 1), we conclude that the PINI, CASP and SEFF factor means and variances

are invariant over time. Note that this does not mean that the individuals have not changed

over time; this will be investigated by testing hypotheses within the framework of LC3MMs.

6.4. Fitting AR3MMs

The RMSEA for the basic AR3MM (model 3.1) does not fall within the 95% con®dence

interval of the RMSEA for the L3MM (compare models 1.4 and 3.1 in Table 1). So the basic

AR3MM with only ®rst-order autoregressive effects must be rejected. Adding synchronous

correlations (model 3.2), synchronous effects (model 3.3), cross-lagged effects (model 3.4),

or second-order autoregressive effects (model 3.5) to the basic AR3MM does improve the

®t, but still none of these models ®ts quite as well as the L3MM (Table 1). Only model 3.5

yields an RMSEA that falls within the RMSEA interval for the L3MM (model 1.4). The ®t

further improves if second-order autoregressive effects are combined with synchronous

correlations (model 3.6), synchronous effects (model 3.7) or cross-lagged effects (model 3.8).

The synchronous effects (in models 3.3 and 3.7) and the cross-lagged effects (in models

3.4 and 3.8) are effects of SEFF on PINI, SEFF on CASP, and CASP on PINI. These effects,

which do seem plausible to people familiar with the AHUS study, are estimated by allow-

ing all coef®cients above the diagonal of the Bjj (synchronous effects; j 5 1, . . . , J ) or Bj, j 2 1

matrices (cross-lagged effects; j 5 2, . . . , J ) to vary freely. From Table 1 it appears that

model 3.7 ®ts best, but not signi®cantly better than model 3.8. As we feel that in the AHUS

case cross-lagged effects are more plausible than synchronous effects, we choose model 3.8

as our reference model for the subsequent testing of hypotheses. The parameter estimates

for model 3.8 are presented in Table 3.

In models 4.1±4.3 we impose the across-occasion restrictions given by (38)±(40), to test

for equal autoregressive and cross-lagged effects (model 4.1), equal innovation factor

variances (model 4.2) and equal innovation factor means (model 4.3), respectively. The

point estimates of the RMSEA for these models all fall within the 95% con®dence interval of

the RMSEA for model 3.8, and these individual hypotheses are not rejected. The same goes

for the hypothesis of both the means and the variances of the innovation factors being

invariant across occasions, investigated by combining the restrictions of (39) and (40) (model

4.4). But if we require the autoregressive and cross-lagged effects to be invariant as well, we

obtain a model that does not ®t (model 4.5, Table 1).

With model 4.6 we test the hypothesis that the successive common factor means can be

described by a linear trend, imposing the restriction of (42) on the a vector of model 3.8. The

®t of model 4.6 is not signi®cantly worse than that of model 3.8, so this hypothesis is not

rejected. The resulting estimates for the intercepts and slopes are

a 5

3.58

3.38

3.84

£££££££

£££££££
and b 5

0.04

0.05

0.00

£££££££

£££££££
. (69)

These estimates hardly differ from the intercept and slope estimates for the linear trends

of the common factor means in the L3MM ((68)). As with the L3MM, the slopes are close to

zero, and the hypothesis of a stationary trend in the AR3MM (equation (41), or (42) with

b 5 0) is not rejected either (model 4.7, Table 1).
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The hypothesis of equal common factor variances is tested by comparing the ®t of

models 3.8 and 4.8. The speci®cation of these two AR3MMs is the same, but the matrix F is

written as in (21) and the parameters of model 4.8 are estimated under the constraint of (22).

This yields an additional nine degrees of freedom, and the relative ®t of model 4.8 is as

good as the ®t of model 3.8 (Table 1). Restricting model 3.8 by imposing both the restric-

tions of (22) and (41) yields model 4.9, the ®t of which is still satisfactory (Table 1). So we

arrive at the same conclusion as before (with model 2.10, that is). Across occasions, the PINI,

CASP and SEFF factor means and variances appear invariant.

Model 4.10 is obtained by specifying a ®rst-order autoregressive structure for the variances

and covariances of the residual factors « ((43)) in model 3.8. The ®t of model 4.10

is satisfactory, but adding second-order autoregressive effects on the residual factors still

improves the ®t (model 4.11; Table 1). Additional imposition of equality constraints on all

(same order) autoregressive effects in B« (model 4.12) yields so many degrees of freedom,

that the RMSEA decreases again (Table 1).

6.5. Fitting LC3MMs

LC3MMs are obtained by restricting the L3MM (model 1.4) according to latent curve models

for the common factors. The ®rst LC3MM that we ®t is a model where the scores on the

common factors are described by simple linear curves. So, in model 5.1, we assume the target

function of (52) for all three common factors, yielding three (4 3 2) Pr matrices as in (53).

The time of the occasions is coded by tj 5 j. The three Pr matrices are used to build four Pj

matrices, as shown in (48), which are stacked to make up a (12 3 6) P matrix. The (6 3 1) n

vector contains the means of intercept and slope factors and is made up of three stacked nr

vectors are given by (54). The symmetric (6 3 6) P matrix contains the variances and

covariances of the intercept and slope factors, and the diagonal (12 3 12) Q matrix contains

the variances of the residual factors u.

The ®t of this model is satisfactory. The point estimate of the RMSEA of model 5.1

does not fall outside the 95% con®dence interval of the RMSEA of the L3MM (model 1.4,

Table 1). The means of the intercept factors are 3.57, 3.41 and 3.85, and the means of the

slope factors are 0.04, 0.04 and 2 0.00, for PINI, CASP and SEFF, respectively. These ®gures

hardly differ from the intercepts and slopes that have been estimated for the linear curves

describing the common factor means in the L3MM (equation (68)) and AR3MM (equation

(69)). The variances of the intercept factors in the LC3MM are estimated at 0.41, 0.18 and

0.33, and the variances of the slope factors at 0.00, 0.01 and 0.01. So the slope factor scores

hardly vary across subjects. This means that most individuals develop their PINI, CASP and

SEFF at the same rate, albeit at different levels. As the means of the slope factors are close to

zero as well, we can try to do away with the slope factors altogether. Model 5.2 is a LC3MM

with intercept factors only, thus describing stationary trends for all three common factors.

The ®t of this model is not as good as that of model 5.1, but as its RMSEA point estimate does

fall within the con®dence interval of the RMSEA of model 5.1, we cannot reject the idea of

stationary trends.

Models 5.1 and 5.2 may re¯ect reality, but an alternative explanation is that the common

factor scores are better described by curves other than linear curves. Looking at the esti-

mated common factor means of the L3MM (vector k in Table 2) we see that the means of the

PINI factor are probably better described by a parabola or a bell-shaped curve. Therefore we
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®t two other LC3MMs, models 5.3 and 5.4. In model 5.3, a quadratic curve is speci®ed for

the individual factor scores on the ®rst factor, while retaining the simple linear curves for the

other two factors. This model ®ts almost as well as the L3MM (although not signi®-

cantly better than the other LC3MMs). The parameter estimates for model 5.3 are presented

in Table 4. It appears that the third curve factor for common factor PINI (that is, associated

with c13) has no variance. In model 5.4 we have used equations (59)±(63) to specify a bell

curve for the PINI scores, but the present dataset has too few occasions to accurately estimate

the means and variances of all curve factors. If we ®x the second and fourth parameter in (59)

(c12 5 2.5, c14 5 1) we obtain a ®t for model 5.4 that is almost as good as that of model 5.3

(Table 1).

In the LC3MMs discussed above, Q matrix is a diagonal matrix containing only the

variances of the residual factors u. In models 5.5, 5.6 and 5.7 we have speci®ed a ®rst-order

autoregressive structure for the variance±covariance matrix Q of models 5.1, 5.2 and 5.3 (as

F. J. Oort72

Table 3. AR3MM parameter estimates (model 3.8)

PINI CASP SEFF

L0 5

1.00 0.00 0.00

1.03 0.00 0.00

1.01 0.00 0.00

0.00 1.00 0.00

0.00 0.82 0.00

0.00 0.00 1.00

0.00 0.00 0.88

0.00 0.00 1.06

£££££££££££££££££££

£££££££££££££££££££

t0 5

0.00

2 0.06

2 0.27

0.00

0.62

0.00

0.69

2 0.16

£££££££££££££££££££

£££££££££££££££££££

Occasion 1 Occasion 2 Occasion 3 Occasion 4

PINI CASP SEFF PINI CASP SEFF PINI CASP SEFF PINI CASP SEFF

B 5

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.44 0.17 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.80 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.35 0.00 0.00 0.11 0.21 0.26 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.09 0.00 0.00 0.78 0.07 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.58 0.00 0.00 0.29 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.38 0.00 0.00 0.28 2 0.18 0.29 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.66 0.13 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.56 0.00 0.00 0.00

£££££££££££££££££££££££££££££

£££££££££££££££££££££££££££££



in (65)). This does not signi®cantly affect the ®t (Table 1). Only the relative ®t of model 5.7 is

marginally better than the ®t of model 5.2. In model 5.8 we have tried an Q structure of

diagonal blocks but that did not further improve the ®t (Table 1).

6.6. Conclusion

The preferred versions of the AR3MM (model 3.8) and the LC3MM (model 5.3) do not ®t

signi®cantly worse than the basic L3MM (model 1.4). Some people contend that in deciding

between different models, substantive reasoning should prevail over the evaluation of ®t

statistics anyway. Although, in the case of the AHUS study, we had no strong ideas of what

structure should be present in the data beforehand, we do have some reservations about

the AR3MMs, as we do not like the fact that only AR3MMs that include second-order

autoregressive effects show satisfactory ®t (Table 1). We do not see why these postponed

effects should apply to the yearly measurement of PINI, CASP and SEFF, and we note that

data of just four occasions are hardly summarized by a second-order autoregressive model.

We have some reservations about the LC3MMs as well. From the parameter estimates for

model 5.3 (Table 4) it appears that some of the curve factor variances are very small. This

may indicate that a latent curve model does not apply to the AHUS data. Or perhaps other

curves than the ones considered here are more appropriate for the AHUS data. We have

already seen that model 5.2 with stationary curves for all three AHUS dimensions shows

reasonable ®t as well.
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Table 3. continued

Occasion 1 Occasion 2 Occasion 3 Occasion 4

PINI CASP SEFF PINI CASP SEFF PINI CASP SEFF PINI CASP SEFF

W 5

0.79

0.12 0.20

0.19 0.12 0.36

0.00 0.00 0.00 0.44

0.00 0.00 0.00 0.00 0.04

0.00 0.00 0.00 0.00 0.00 0.12

0.00 0.00 0.00 0.00 0.00 0.00 0.53

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08

£££££££££££££££££££££££££££££

£££££££££££££££££££££££££££££

a 9 5 3.48 3.44 3.85 1.23 0.21 0.58 0.58 0.27 0.48 0.55 2 0.04 0.13
££ ££

Note: N 5 271, CHISQ (419) 5 638.4, RMSEA 5 0.044; other ®t indices for this AR3MM (model 3.8) are given
in Table 1; coef®cients in italics are ®xed parameters; estimates of the Q parameters are omitted from the table to
save space.
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Table 4. LC3MM parameter estimates (model 5.3)

PINI CASP SEFF

L0 5

1.00 0.00 0.00

1.04 0.00 0.00

1.01 0.00 0.00

0.00 1.00 0.00

0.00 0.82 0.00

0.00 0.00 1.00

0.00 0.00 0.88

0.00 0.00 1.05

£££££££££££££££££££

£££££££££££££££££££

t0 5

0.00

2 0.06

2 0.26

0.00

0.64

0.00

0.66

2 0.14

£££££££££££££££££££

£££££££££££££££££££

PINI CASP SEFF
____________ ________ _______
h11 h12 h13 h21 h22 h31 h32

P 5

1 1 1 0 0 0 0

0 0 0 1 1 0 0

0 0 0 0 0 1 1

1 2 4 0 0 0 0

0 0 0 1 2 0 0

0 0 0 0 0 1 2

1 3 9 0 0 0 0

0 0 0 1 3 0 0

0 0 0 0 0 1 3

1 4 16 0 0 0 0

0 0 0 1 4 0 0

0 0 0 0 0 1 4

£££££££££££££££££££££££££££££

£££££££££££££££££££££££££££££

vec diag Q 5

0.19

0.03

0.05

0.39

0.03

0.09

0.47

0.04

0.10

0.28

0.07

0.02

£££££££££££££££££££££££££££££

£££££££££££££££££££££££££££££

P 5

1.361

2 0.519 0.149

0.075 2 0.013 0.000

0.086 0.033 2 0.011 0.174

0.003 2 0.000 0.000 2 0.005 0.005

0.236 2 0.050 0.008 0.118 0.002 0.328

2 0.022 0.009 2 0.000 2 0.006 0.006 2 0.017 0.011

£££££££££££££££££

£££££££££££££££££

n 5

2.830

0.784

2 0.150

3.407

0.044

3.845

2 0.001

£££££££££££££££££

£££££££££££££££££

Note: N 5 271, CHISQ (423) 5 616.0, RMSEA 5 0.041; other ®t indices for this LC3MM (model 5.3) are given in
Table 1; coef®cients in italics are ®xed parameters; vec diag Q is the diagonal of the Q matrix converted to a vector;
estimates of the Q parameters are omitted from the table to save space.



In conclusion, we suggest that if there is no substantive theory about the structure of

the longitudinal data at hand, then it is perhaps best to use the L3MM for the testing

of substantive hypotheses. For the AHUS case this has been done with models 2.1±2.10

(Table 1). One of our examples was the hypothesis that there is no development of the means

and variances of the three AHUS dimensions. This hypothesis could not be rejected (model

2.10, Table 1). The ®tting of various LC3MMs shows that this conclusion also applies to the

development of PINI, CASP and SEFF of individual subjects, as the estimated means and

variances of the slope factors are insubstantial.

7. Discussion

The mean and covariance structures of the L3MM, given by (19) and (20), have been

presented as a special case of an S3MM, which itself is a special case of the general linear

latent variable model. The S3MMs are obtained by imposing one or more of the Kronecker-

product constraints, given by (12)±(17), on the parameter matrices that feature in the mean

and covariance structure equations of the linear latent variable model, given by (6) and (7).

The L3MMs are obtained by imposing the constraints of (9) and (10), thus requiring

measurement invariance across occasions.

In this way we have shown how the general theory of structural equation modelling

(Bollen, 1989; JoÈreskog & SoÈrbom, 1996) applies to the L3MMs, and that in principle

L3MMs can be ®tted with standard software for structural equation models. Special cases

of the L3MM are obtained by further restricting the mean and covariance structures of the

common factors of the L3MM. Autoregressive models and latent curve models have been

given as examples. Imposition of (35) and (36) on the L3MM yields AR3MMs, and

imposition of (49) and (50) yields LC3MMs.

A model for multivariate longitudinal data that does not readily ®t into the framework of

L3MMs is McDonald’s (1984) invariant factors model (IFM). In the IFM the common factors

are assumed invariant, and therefore there are just R common factors in the model, instead of

JR. The IFM can be written as an S3MM where the measurement invariance restriction on the

t vector still applies (equation (10)), but where the restriction on the L matrix now features

the G matrix of (12):

L 5 (IJ 3 J Ä L0) G, (70)

where G is JR 3 R, consisting of J transformation matrices Gj, stacked vertically, each Gj

being a R 3 R lower-triangular matrix. These Gj matrices are used to transform the basic

common factor covariance matrix FR 3 R to the particular common factor covariance matrix

for occasion j. That is, in the IFM, Gj FR 3 R G 9
j, gives the variances and covariances of the

common factor scores on occasion j. Likewise, GjkR 3 1 gives the means of the common factors

on occasion j. In this way several hypotheses can be tested with the IFM. For example,

restricting all Gj matrices to be diagonal means that the correlations between factor scores do

not change across occasions, and restricting all Gj matrices to be identity (Gj 5 IR 3 R) means

that the variances, covariances and means of the common factors do not change either. This

latter hypothesis can also be tested with the L3MM, namely by restricting the F matrix and

the k vector as in (16) and (17), with FS 5 UJ 3 J and kS 5 uJ 3 1. It is no surprise that this very

restrictive version of the IFM does not ®t the AHUS data (CHISQ (461) 5 2337.6,

RMSEA 5 0.123).
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Many variations of L3MMs, AR3MMs and LC3MMs have been ®tted to the AHUS data.

Note that in our illustration we have always investigated hypotheses by imposing restrictions

on all three AHUS dimensions simultaneously. Some hypotheses are better tested for each

dimension separately (as with models 5.3 and 5.4, where different curves are ®tted for

different AHUS dimensions). Other variations of the L3MMs not considered in our example

are arrived at by ®rst imposing a Kronecker-product restriction on one of the L3MM matrices

(for example, the F restriction of equation (16)), and subsequently imposing some structure

on one of the component matrices (FS or FF). Kroonenberg & Oort (1999) give an example

where the Kronecker-product restriction of (15) is imposed on the residual covariance matrix

Q, and autoregressive structures are imposed on the QS component matrix. Another obvious

extension of the L3MM and its special cases is to apply them to the data of multiple groups.

Measurement invariance restrictions must then be imposed across groups as well (that is, L

matrices and t vectors must be equal across groups), so that hypotheses concerning group

differences can be tested.

In spite of some limitations, the AHUS data do serve to show various examples of

hypothesis testing with L3MMs, AR3MMs and LC3MMs. The AHUS example also shows

that one cannot decide between different models on the basis of ®t statistics alone.
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