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Construction and analysis of degenerate PARAFAC models
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SUMMARY

A mathematical framework is presented for constructing degenerate CANDECOMP/PARAFAC models. It is
possible to construct degenerate arrays which can be approximated by two-factor models to arbitrary precision
but which do not possess an exact two-factor representation. Equivalence of different degenerate presentations is
demonstrated. By using this model, tasks are constructed where the straight path from the specified starting point
to the best-fit solution will pass through a degenerate area. Swamp behavior is observed when such tasks are
solved by various algorithms. Copyright 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

According to the CANDECOMP/PARAFAC (CP) decomposition [1-3] a three-way aKag
expressed as a trilinear expression of three factor matAc&andC:

R
Xk =Y _aryee (i=1....1, j=1...3, k=1..K) (1)
r=1

Often the model is used for finding a least squares approximation for a given three—wa%%lrray
R
Xi(,-)k = Z air by Cir + ik (2)
r=1

where the factor matrice’, B andC are to be determined so that a norm of the difference &y
minimized.

Work with Equation (2) has long been hampered by the occurrence of so-called degenerate arrays.
Best-fit solutions of such arrays approach infinity in such a way that the fitted array remains finite
although some (or all) of the factor elements approach plus or minus infinity.

In this work a mathematical model is presented which allows one to construct arrays whose two-
factor representations contain arbitrarily large factor elements. It is also possible to construct
degenerate arrays which can be approximated by two-factor models to arbitrary precision but which
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do not possssan exacttwo-factorrepresatation.

Whendiscusang the possble arrays, it is assunedtacitly in this work thatthe threedimensons of
thearrayX havebeenfixed to somechos@ values.Generdly it is alsoassumedhatthe numker of
factors hasbeenfixed to two; thusalsothe dimensgons of the threefactor matricesare deternined.

1.1. Notaton

The notaion suggeted by Kiers [4] is used.In addiion, the triple produd is definedaccordirg to
Kruskal [5] asfollows. Equaton (1) is written asX =[A, B, C]. Similarly, X =[t, u, v], wheret, u
andv are vecbrs of correctdimensions specifes the equationsxi, = tiuv, 1 =1,..., ] =1,....J,
k=1,... K. Threeway arraysare displayed so that slicescorrespondingo successiveraluesof the
lastindex areprintedside by side Thusthe indicesof elements of a displayedarray of dimensons
2 x 2 x 2 areasfollows:
<111 121’ 112 122) 3)
211 221|212 222

Whendiscussinghe three-wg leastsquaesproblem,the ‘true soluion’ is denotedby 50. Thenthe
taskis to deternine anarray X sothatthe expressinQ = ||X — §°||§ is minimized.

1.2. Termindogy

The concept of degeneacy is usedin two meanirgs. A degeneate array (in the exactsenseof the
word)is anarrayhaving a certain rank (e.g.rank= 3) which maybeapproaimatedarbitraily well by
a factorization of lower rank (e.g. rank=2). In suchappraimating factorizatons there are large
positive and negativecontibutionswhich mogly cancé eachother. Thesefactorizationsare called
degeneate in the qualitaive senseof the word. The ‘degreeof degenerag means the degree of
cancellaion of positiveandnegatiwe contributions. The word loadingsis usedfor all threeaspectof
the factors; this is in contastto two-way terminolbgy where the words ‘loadings’ and ‘score$
differentiate betwee the two aspects

1.3. Previouswork by Kruskaland TenBerge

It iswell known thatKruskallaid thefoundaionsfor understandinglegeneratarrays5—8]. After the
mainresultsof the preentwork hadbeenformulated,the authorbecameawareof prior unpwlished
work by Kruskal along theselines. Kruskal kindly senthis notes of this earlier work. He derives
Equaton (5) for adegenera 2 x 2 x 2 arrayby a constructve process.Essentiallyheworks in the
oppositedirection from the presentwork: startingfrom the propertes of a degeneate solution, he
construts Equaton (5) by a techniquewhich guaranteeshe propety of degeneacy.

Kruskalalsodiscussetheuseof adiagnosic polynomial D of theelementsof a2 x 2 x 2 arrayfor
determining therankof thearray (seeReference[7], p. 10). Positiveandnegaive valuesof D signify
thatthearrayis of rank2 or 3 respedtely. If D =0, howevertherankmaybeeither0, 1,2 or 3. Ten
Bergepresentghe expressionof the polynomial basedon determirantsover pairs of fibers of the
array [9]. He also shapensthe definttion of the diagnostic propeties of D: only sucharraysare
consideed where at leastoneslice X..; is non-sngular andthe othe slice X.., is non-zeroandnot
proportiondto X..;. In this classof arrays,having D > 0 is the necessarandsufficient conditionfor
rank=2.If D <0, rank=3. Thearrayswith D =0 arespecal: althowgh their rankis 3, they maybe
approxmatedarbitrarily well by arrayswhoserankis 2.
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2. DEGENERATE ARRAYS AS LIMITING POINTS OF SEQUENCESOF SOLUTIONS
WITH INCREASING DEGREESOF DEGENERACY

Thecolumnsof thefactormatricesA, B andC containtheloadngsof thefactors. The first columnof
matrix A contairs the ‘A -modeloadings’for the first factor, etc.
The following two-factormodd wasconstruted asatool for exploring degenerag:

X =1[A,B,C] (4)

1 €2 1 €2 1 €2 1 €2 1 €2 1 €2
<Za+§a _Ea+§a>’<zb+iﬁ —Eb‘f‘iﬂ s EC+E _;C—’_EY
Thesymbolsa, b, candea, B, y representarbitrary columnvectas of correctdimensionsThese
arecalledthegenenting vecbrs of themodel. Thegeneratingreciorsform two ses of threevectors.
The setshavedifferentroles.
This modd was createl by an intuitive trial-and-error process.Thus it may be impossble to

‘derive’ themodd from simplerconcepts. The propertesof themodelareverifiedin thefollowing. It
is assumedhatthevectasa anda form alineatly independemset,andsimilarly {b, 8} and{c, y}.

()

2.1. Discussion of the degeneate model

The parametet controlsthedegres of degenerag. Whene appracheserg theloadingsof all three
modesof thetwo factors apprachinfinity proportionallyto 1/e in suchaway thattheloadingsof the
first factor grow proportiondly to the vecbrsa, b andc wherea the loadingsof the secondfactor
grow propotionally to theveciors —a, —b and —c. The vectorsof the two factors becomequickly
more and more linearly depen@nt as the contributionsdue to the vecors @, B8 and y decease
proportiondly to the squae of e.

Themodelhasbeencardully constuctedsothatthe negative powersof ¢ cancelout. This assures
thatthe array X remainsfinite althoughthe loadingsapprachinfinity when e appraacheszero.The
following expressionis obtainel for the array X of Equation(5):

66
X= [a,b,C]+[a,[)',C]+[a,b,‘y}+z[a,ﬂ, 7] (6)

Foranon-zroe therankof thisarrayis 2. Whene — 0, theloadingsof thetwo-factorpreseration of
thisarrayapprachinfinity, asexplainedfor themodel(5). ThearrayX approachearbitraily closeto
X" definedby

X' =[a,b,c]+[aB,c]+[aby] (7)

The elementsof the difference X —K deceasepropotionally to the sixth powe of ¢. The
propertesof thearrayf areinteresing. Thearrayis definedby anexpressionwhoserankis 3. It may
be apprximatedby rank= 2 arraysto arbitraly predsion. Kruskalet al. [8] descrile arrayshaving
similar properties Accordingto them, it appeasthatX” belongsto abounday betwea two different
domainsin the spaceof all possble X. Onthelow-ranksideof the boundarytherearearrayswhose
rankis 2. Ontheothe sidetherankis 3. As will be shown later, anarrayon the high-rark sideof the
boundaryis given by

X= [a,b,C]+ [a,ﬂ,c]+ [aa ba7]+h[aaﬂv 7} (8)

wherethe scalarh is negatiwe.

Copyright0 2000JohnWiley & Sons,Ltd. J. Chemometcs 2000;14: 285-299
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2.2. Alternaive formsof the first degenerat modé

Themodel(5) maybewritten in the followi ng alternaive formswherethearray X remainsthe same
for all valuesof ¢ althoughthe factor matrices A, B andC arechanged:
1 €2 1 e 1 e |1 € 1 e |1 €2
1 1 1 1 € e e e
= [(E—aa—kéa —6—3a+§a>,<b+5ﬁ'b—§ﬂ>,<c+§yc—§y>] (10)
In thesemodelsthe differencebetweenthe B-mode vectorsapproachs zero, and similarly the
difference betwee the C-mode vecbors. In the model (10) the diverging behavor has been

concentratedin the loadngs of the first mode. Then the loadng vectorsof the othe two modes
approachthe geneanting veciorsb andc whene approachs zero.

X =[A,B,C]

2.3. Theseconddegeneate exampé

By the trial-and-errorprocess,another exampk wasfound thatis not so symmetic asthe first one.
The equatios for this modelare
1
——C 11
)l

X= [aa b,C} + [a,ﬂ,c] + [av ba 7] - ES[Q,B,C] (12)

X =[A,B,C]

(1a 1) (1b
€ € €

Perforning the compuationsgives

—1b+62/3>, <1C+ ey
€ €

Compaisonwith Equaton (6) shows thatwhene — 0, thearray(12) appracheshe samelimiting
arrayg asthe array (6). Howeve, the differenceterm hasa different form. Furthermoe, now the
differencedecreasgproportiondly to thethird powe of . Both the positiveandnegative valuesof ¢
correspad to arrayswhoserankis 2. The valuee = 0 correspadsto a degeneatearray.

The secoml degeneate exampe has special historical significance. When discussing his
unpublshedwork leadingto Equation (5), Kruskal mentionedthat the existance of sequacesof
modelsasdefinedby Equaton (11) preventedhim from formulaing a satisfactoy proofof hisresuls
andthusprevente him from publishingthat work.

3. CONNECTIONS WITH THE TUCKER3 MODEL

In orderto avoid amkguity with the model (1), the well-known Tuckei3 (T3) model[10] is here
written as

Copyright 2000JohnWiley & Sons,Ltd. J. Chemometric000;14: 285-299
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for the casewherethe corearray G is of dimensons P x Q x R. Sdting P=Q=R =2, the factor
matrices A, B andCaredefinedasfollows:

A=(aa), B=(bp), C=(cy) (14)

It is easyto seethatthedegeneatemodd (7) maybeinterpretedasa T3 modelwherethecorearray
is

1 0/0 O G elements| * \ abc afcC

G- 0 1/11 0 meanig of | [ abc afc
= aby apy

aby aﬁy) (15)

The generalmodé (8) is similarly interpretedas T3 with

(3 35 )

If his positive,thereis a two-factor CP model correspading to the T3 modd of Equation (16).
Howeve, when h - 0, the factors of the correspading CANDECOMP/PARAFAC model grow
without limit, andwith h < 0 thereis no exactlycorrespading two-factor CPmodelany more.As a
descrigion of a given (empirica) degeneate array, Equatons (13)—(15)might be consteredmore
desiralte thanthe correspading CP model (5) wherefactor elementsapprachinfinity.

3.1. Samerankfor X and G

It is possibe to statea connetion betwee theranksof X andG in Equation(13). Whenconsideing
the equation

P
Xk = > @k (=1....1, j=1....3, k=1..,K) (17)
p=1

Kruskal (seeReference[5], p. 104) shows thatif the numberof linearlyindependem slicesis the
samen thesetsX;.. (i=1,...,I) andW,.. (p=1,...,P), thenrankX) = rankW). Ontheotherhand,the
numberof linearlyindependat slicesarethesaneif thematrix (&) is of full columnrank,i.e. if rank
(A) = P. By applyingthisresultthreetimes,we gettherule thatX andG in Equaton (13) areof same
rankif all threematrices A, B andC areof full columnrank,i.e. if rank (&) =P, rank®) = Q and
rank(C) = R. In thiswork thefull rankof A, B andC is alwaysassumedThuswe maydecidetherank
of X by inspectingthe correspondingcorearray G.

4. ANALYSISOFTHE 2 x 2 x 2 ARRAY

The Kruskal polynamial D hasalreadybeendiscussd in Sectionl[3. It is usefulto derivefor D an
expressionthat is direcly basedon the elemerts of the array. In orderto simplify notation,the
elementsof the array X areheredenotedas

a b
l_(cd

o) 19

andthe factors as
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S S )

By stating from the definition of D asgiven by Ten Berge[9], one obtainsthrougha tediousbut
straightbrwardcalculaton thefollowi ng preserditionfor the Kruskal polynomialD (oneshoutl note
that althoughthis D looks quite different from the D shownby Ten Berge,the two represetations
descrile exactly the samepolynomial of the elements of the array X):

D(a,b,...,h) = aahh+ bbgg+ ccff + ddee

— 2(acth+ bdeg+ abgh+ cdef 4+ adeh+ bcfg) (20)
+ 4(adfg+ bceh

If D(X) > 0, thenthearrayis of rank2. Similarly, D(X) < 0 impliesthatrank(X) = 3. Onordinary
points(i.e. on those points that satisfythe criteria of Ten Berge)of the hypesurfacedefinedby the
equation D(X) = 0, therankis 3. At thespecal pointsrejectedby thecriteria of TenBerge therankis
0, 1 or 2. At ordinary points of the hypesurfacethe array is degeneate: at such points the exact
represatationof X is of rank 3, butanarbitrarily good approximaion of X is obtaina with rank= 2.

In orderto simplify the problem, the following arraysare consdered:

(32 2)

whereeis regardedsaconstanttypically e = 30.For arraysdefinedby (21), Equation(20) simplifies
to D(d,h) = €® d + 4e h. Corsideringonly oneof thevariablesd andh atatime, the earlier resultsare
confirmed if e> 0 andd =0, the sign of h decidesif rank=2 (h > 0) or 3 (h < 0); if, on the other
hand,e # 0 andh =0, thenthearrayis degeneateatd = 0 but hasrank 2 with all othervaluesof d.

Consiceringthetwo variablesd andh togethe givesa moredetailedpicture. Theparaboleh= —e
d?/4, consistingof degeneateborde points,is shownin Figure 1 (SeeSecton 6). All pointsbelowthe
parabolehaverank3, while all pointsabovehaverank2, whenconsideing thearrayX(d,h) specified
by Equation(21).

The CANDECOMP/PARAFAC decompotgion of X definedby Equaton (21) is expressedin the

following form:
(030
=[A,B,C] (23)
1606
G )G SO0 &

Theform of Equation(25) fixesthefour arbitrarynormalizatimsandguaranteesthatx; 1, = 0. The
variablesp, v, r, X, t andz may be eliminatedby lengthy but straightforwad calculations,leadingto

4h = —ed® + e (26)
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By letting ¢ — 0, the equatia of the paraola of degenerag is againobtaned: 4h= —e d?. In this
way the resut easily obtainal using the Kruskal polynomial can be labariously confirmedin this
specialcase.

4.1. Thegeneralcase

Examinetheshapeof thecurveD(d,h) = O with arbitrary valuesof thesix arrayelementq a,b,c,ef,g}.
Ignorethe casea = e=0; thenD doesnot dependond or h atall. At first sight it might appea that
D(d, h) isagenerapolynomial of secom degreeHoweve, closerinspectionshowsthatD(d,h) = 0in
fact always represats a par@ola. The orientation and postion of this parébola dependon the
numericalvaluesof the six array elements. In contast,the expressn D(d, f) is a generl second-
orderpolynomil of d andf. Thusin different(d, f) hyperplaresthe shapeof the degeneate borde
curve D(d,f) = 0 may be a parabolaan ellipseor a hypebola.

Denoteby &éthevectorconsistingof theeight elementsof thearrayX. TheHessanmatrixH of D is
definedas

0°D
hj 96,06 (27)

The eigenvaluesof H were evaluaged at the top of the paraola of degeneray, i.e. at the point
definedby d=h =0 in Equaton (21). The numbersof postive, zeroandnegatie eigenvalueof H
werefoundto bethree,threeandtwo respectively. It is seenthatthe ‘top of the parabolais in facta
saddlepoint of the surfaceD(€) = 0 in the full eight-dimen®na spaceof the elementsf X.

5. DEGENERATE MODELS AND SWAMPS

Theword swamphasbeenusedto denotesucharea of the soluiion spacenvherethe alternaing least
squareqAL S) algorithm advancesxtrenely slowly, asif draggingits feetin mud [11]. It is well
known that suchswams are conneted with degeneratenodels It is easyto undestandthatif the
arrayﬁ0 to beappraimatedby the CP modéd is degeneate(or in the higher-rankdomain),thenany
algorithm trying to find the best(lower-rank)approimation X is in trouble The factor matrices
becomaéll-conditionedwhenthe solutionapprachegheborde of thehigh-rank domain.Large and
larger changs in the factor matrix elementsare requiredin orderto achieve smallerand smdler
improvementsin the object function. The path of the iteration is driven to end in a swamp!
Furthermoe, in mostcaseshe degeneatesolutionis not meanimgful for theoriginal problem It will
be necesaryto modify the problemsomehowin orderto avoid creatingdegenerataolutions.This
modifying is intimately connet¢edwith thereal-life situation thatis beingmodelal. Discussionof this
problemgoesoutsideof the presentpaper

It is alsowell known that swampbehaviormay occurmidway betwee a non-deenerag staring
point and a well-defired non-deyeneratebest-fit solution of a CANDECOMPPARAFAC problem
[12]. It hasbeenobsewedthatthe condtion numbersof factor matrices increag alongthe pathand
thendecreasdackto ‘normal’ levelswhenthe best-fitsolutionis approachd. RayensandMitchell
[12] reportthat the severity of half-way swams can be lessend by applying regularizaton (see
below)to the model. The experenceof Paaterd13] alsosupportshis finding, althoughhe did not
explicitly investigatethe quesion: thealgorithmPMF3is normally usedwith initial regulaizationso
that the regulaization is only decieasedafter a ‘reasonaly good’ appraimation hasbeenfound.
Half-way swamp haveneverbeena problem with PMF3.

By using the syntheic degeneate models it is possibe to illustrate what happes when the
iterationencourtersa degeneratsolution area In the following sectian, exampésarecreatedvhere
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theparabolashapediegeneraareaextendsbetweertheinitial andtrue solutions Dependng onthe
geomety of themodel,eithertheiterationis just sloweddown, or theiteration is unableto reachthe
true solutionbecawseit cannotgetarourd the swamp.

6. NUMERICAL EXPERIMENTS

When discussing numeical results, the final convergene of the ALS algorithm is mentioned
repeatelly. Experienceshows thatthefinal convegenceof ALS is georretric when thearray X% is not
degeneate.Derote by X * the solution of theiterativecomputdions after ‘infinitely mary’ iterations.
(Forthepresennon-degjenera¢2 x 2 x 2 cases,l1 = ﬁo.) Eachiterdtion stepreducegheremaning
differenceX — X* by afactorr = 1 —k, wherek is asmallconsant. For difficult caseghevalue of the
convergene decrenentk is typically (much)below O01.

Thenumericalexperimens seneto illustratewhy the computedsolutionof aCPmodd sometines
becomesdegeneate evenwhen the true array X° hasrank 2. Intuitively, one might expec¢ such
behaviorwheneverthe starting point X andthe correct soluion X° are situaked so that thereis a
domainof degeneacy betwea them. Sucha situaton is mog pronowncedwhenthe parabolahasa
peakel shapeandX and 50 areon opposte sides of the pardola. The actualvalue of the constanie
determirestheshapeof the parabolaWith smdl values suchase = 1, theshapés shallow.A peaked
shapds obtainel with largevaluesof e. Thevalue e = 30is chose for all thefollowi ng conputations.

Formosg conmputationsthefree parametes of thearray X° definedby Equations(21) and(25) were
chosenase = 054 andd = 0[25. For the other paramé¢ersonethenobtainsh= — 028, p=r =037,
v=x= —0[086t= —257andz=113. The truesolution is seenasthemark’ x’ on theright sideof
the pardola. During the computdionsthe twelve elementsof thefactor matrices arenot constraned
in anyway. The numericalvaluesshownin Equation(25) areonly usedwhen specifying the initial
andfinal arraysX andX°.

The initial solution, i.e. the staring point of the iterations,was placedon the left side of the
parabolaate = 06,d = —023,h = —0[047.Figurel showsthepathof thesolutionobtanedby using
the original ALS-basedCANDECOMP/PARAFAC algarithm without any acceleation techniques.
Thestartingpointis markedby aplussign Everytenthiterative solutionis markedby anopencircle.
The solutionis freeto movein all directionsin thetwelve-dmension& soluion space The othe ten
dimensons may beimaginedasbeingperpexdicula to the (d, h) planeof the picture. This example
hasbeenconstruted sothat theseextradimensons do not play a decisiverole.

Fourdifferentstagecanbediscerredin theprogressof theiteration.During thefirst 50 stepsthere
is a rapid advanceowards the degenera doman. During the next 150 steps the solutionadvanes
slowly. The directionof the ‘pull’ towardsthe true solution is almostorthogonalto the barrie that
preventsthe direct apprach towards the true solution. The pull causs the advaning solution to
approactcloserto the parabolaof degeneacy, beconing moreandmoredegeneate. Thethird stage
beginswhenthesolutionhaspasse thetop of the parabola.Gradualy thepull becomegparallelto the
allowedpath.Thestepsbecomdonger,until thesoluion, after340steps,comesalmostto astandsitl
betwea the true solutionandthe parabolaof degeneacy. The fourth stege, not shownin Figurel,
correspadsto the final convergene towardsthe true solution. This convegenceis extremey slow,
becawsethe solution still possesesthe degenerag causel during the secoml stageof the iteration.
Theinitial value of the convegencedeciementk is 0[00007during the fourth phase Approximately
4400stepswere neede for coveringhalf of the distane towardssolution. Anotherhalving of the
remainirg distan@ required only 1500 steps, becawse the solution was gradwally leaving the
degeneate area.Closeto 50 the decementhad the value O[00066. It is seenthat the decreasing
degeneacy allowsthe geonetrical convegencerateto improve almostby a factor of tenduringthe
fourth stage.
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-0.3r

Figurel. Graphicalpresentatiorof the array X, asdefinedby Equation(21), andthe 340first stepsof the ALS

iteration. Theelementof X aredesignatedby lettersa to h accordingo Equation(18). Theabscissandordinate

correspondo array elementsd and h respectively. The parabolarepresentshe intersectionof the degenerate

hypersurfacewith the hyperplane(a=f=g=0, b=c=1, e=30). The points below and abovethe parabola

correspondo rank= 3 andrank= 2 arraysrespectivelyThestartingpoint (+) andthetruesolution(x) arein the

planeof thefigure.The pathof the ALS iteration(everytenthsolutionshownby opencircles)is in generahotin
the planeof thefigure.

Figure2 showsthe pathof thesolutionwhenusingthe programPMF3basedn the Gatss—Newon
algorithm[13]. In contastto the previousfigure,eachiterativesolution is shownhere. After 53 steps
the remaining distane to the solutioncorrespoadsto the resultobtainedwith ALS in 11 000 steps.
Thefour stagecanbe vaguelydiscernedn Figure 2 too. Thereis a markeddifferencein the second
stagesof PMF3 and ALS. With PMF3 the solution keepsa certan distan@ to the paraola of
degenerag. Thisis causedy theregulaizationthatis alwayspresenwhenusingPMF3: the object
function Q, minimized during the iteration, is of the form

Q=X — X°lI + A(IAZ + 1Bl + ICI[E) (28)

whereX is the currentapproiimation of ﬁo and ) is auserdefinedparaneterspecifying the strength
of regulariation. Approading the paréola of degeneacy would increasethe numeical values of
elementsn oneor severabf thefactormatrices A, B andC, leadingto anincreasen thesecorml term
in Q. The solutionwill stay at a distancewhere anincrea® in the secom term just balanceshe
decreasén the first term || X — X°||2. Thus avoiding the more degeneate solutions is one of the
reasondor the fastconvergene of PMF3[14].

The Jacolian matrix J of the solutionwasevaluaed at the true solution. Details of this technique
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0.1r 1

0.1

-0.2f

Figure2. The pathof the PMF3iteration from the startingpoint (+) to the true solution(x). The 53 iterative
solutionsare shownby opencircles. For otherdetailsseecaptionof Figure 1.

havebeendescibedby Paaterd15]. Thedimensonsof J are8 x 12,correspadingto eightelements
in array X which dependon twelve elementsin thethreefactor matricesA, B andC. Therearefour
‘dead’ directiors in the spacespannedy the twelve factor elemants, correspading to trivial scale
changs of the factors. A changein the solutionin any oneof thes deaddirectiors doesnot change
the array at all. Correspondingto the deaddirectons, four of the singula valuesof J equalzero.
Thesefour singula valuesareignoredin thefollowi ng. The effectivecondiion numberof J (theratio
of largestand smallestnon-zro singular values)was found to be 1926, meaning that thereis one
directionin the twelve-dmension& spacewhere the rateof deceasen Q is extremey low. Theleft
and right singula vectorscorrespading to the smallestsingula value were exanmined. The left
singula vector correspadsto changesn elements of X. This vector was found to be practically
parallel to the changein X during the fourth stageof ALS. Similarly, the right singular vector
correspadsto changs in elementsof the threefactor matricesA, B and C. It wasfound that the
changein the factorsduring the fourth stageof ALS iterationwasapproximately orthogonalto the
right singular vectorsonethroughseven.lt is seenthat the final convegenceof X in the CP-ALS
algorithm happemd in the direction of the leastsignficant singular vectorsof J. In addition, the
factorsdid also changen thedeaddirectiors, representedy theright singula vectorsnineto twelve.
For comparison,the effective conditionnumber of J wasalso evaluatedfor the strongly degenerate
resultof thethird phaseof ALS. The valueof 475 wasobtaned, morethantwice thevalueobtained
at the true solution.

Different variatiors of the previousexampéswerecomputedasfollows. Theinitial regulaization
paraméer A wasincreagd for PMF3. This led to slightly fasterconvergene. However,the overall
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T T T T T T T

01F

-0.3F

-0.4}

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
d

Figure3. The pathof the 270first stepsof the ALS iterationwith initial regularizationTheregularizedorm of

theobjectfunction,shownin Equation(28),wasusedduringthefirst 120iterationstepsThebasicALS wasused

in all the remainingsteps.Every tenth solutionis shownas an opencircle. For other details seecaption of
Figurel.

behaviomwassimilar to Figure 2. Also, aspecialregulaizedverdgon of the ALS algarithm wastested
sothatthefirst 120stes werecomputel with regulaization, therestwithout. The pathof thesolution
is shown in Figure3. The cuspof the pathis at the stepwhen the regulaization wasremoved The
iterationreachedhe neighborlood of the true solution in 270 stepsinsteadof the originad 340 (cf.

Figure 1). By chane, the third phasearrived very closeto the true soluion, so the distane to be
coveredby the fourth phase(not shown)was quite short The final convergene decementwas of

courseidenticalto the non-regularizedALS run. A regulaizedstepof ALS [12] maybe calledridge
regressionThistermis often usedwhen solvingill-conditionedregressionproblens sothatthe sum
of squaesof regressiorcoefficientsis included in the objectfunction.

The acceleratio mechanismincludedin the ALS algarithm of Bro wasalsotested by usingthe
defaultsettingsof the distributedalgorithm [16]. A clearimprovementwasobseved. The first three
phasesof the iteration were conmpletedin only 120 steps, one-thrd of the origind 340. At the
beginnirg of the fourth phasethe convegencedecementwask = 00003, increasingto k = 00035
towardstheendof thefourth phase Thesevaluesrepresat afivefold increasewith respecto thenon
acceleatedtests.

Figure 4 showsanotherexanple. The true and initial solutionswere definedby (d, h) = (026,
—0[39)and(d, h) = (— 026, —0039) respectivly. Now thetop of the parabolareachesofar up that
theiterative solutionis unableto getarourd it. For bothALS andPMF3the solutionwasstuckatthe
left side of the parabolaFigure 4 shows the path of the PMF3 solution.
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Figure 4. Applying the PMF3 algorithm to a slightly different problem, where the initial (+) and true (x)

solutionsaresituateddeepedownin the (d,h) plane.Otherelementsf X arethesameasin Figurel. Insteadof

convergingowardsthetruesolution,theiterationplungesnto the‘'swamp’,i.e. towardsthedegeneratareaThe
first 103 stepsare shownasopencircles.

7. HIGHER-ORDERDEGENERACIES

It was possble to constructthe following non-tivial exampe of threefactor degenerag. In this
exampe all the loadngs of the threefactors grow withoutlimit sothatthe arrayapprachesa finite
limit. It is assumedhatall thesets{a,a,a} {b,B,u} and{c,y,»} arelinearlyindependat. The modd
is definedby seting

X =[A,B,C]

K 1 1_
=|l--a—-a
€ €

2 2 2
LaiSalta), (“2olto+ S o+ S ),
2 e € |e 27 e 2

°% %C%—;v)} (29)

With e > 0 therankof this array X is obviously 3, becaseall threefactor matricesareof full rank.
Performng the compuationsgives

X =[ab,y] +[a8,c + [a,b,c + [ b,»] + [@ u, ¢ + O() (30)

Thelimit K ate — Ois obtanedin afive-factorrepresentatia by simply omitting the last (sixth)
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termin the previousequaton. The correspading corearray is

01 0/1 00000
G'=Ge—0={00 1/0 0 0[1 0 0 (31)
10 0/0 00000

As shown in the next subsetion, the rank of this array is in fact 5. It is easily seenthat the
presenation of thelimit array X™ is not unique: rotationsare possble betwee suchpairsof factors
which areidenticalin onemode.An exanple of a rotatedpresentationof the limit arrayis

X=[ab(y+c)]+[a(B-b)c+[ab,c+[abr+[anCc] (32
Four-fador degenerag is mosteasilyconstuctedwith 4 x 4 x 4 arraysasa supepositionof two
two-factordegeneacies.Constrict the array

X" = [a,b,c] + [a,B,c| + [a,b,y] + hla, B, V] (33)

so that the geneating vectors have the values a=b=c=(1,0,00) and = 8=y=(0,1,0,0).
Similady constru¢

lg = [av b,C] + [a,ﬁ,c] + [av b?Y] + g[a’7ﬁ7 7] (34)

with vectorsa=b =c¢=(0,0,10) and @«= 8= y=(0,0,0]1). Dependng on the valuesof the scabr
coefficients h andg, the rank of the array X = X" + X9 may equal4, 5 or 6. If both coefiicientsare
zero,the arrayis doubly degeneate:it hasrank 6 but it may be appraimatedarbitraily well with
arrayshaving rank 4. If both coefiicientsare postive, the arrayhasrank 4.

7.1. Rankofthearray G

Severatoolsfor estimatingranksof arraysaregivenin Reference[5]. Corollary 1’ onp. 108is used
for showingthatthe rank of thearrayg* in Equaton (31) is 5. The corollary esimatestherankof an
arraywith the helpof anauxiliary row vectorz thatmaybefreely chose to bestsuitthetak. Derote
themoden rankof anarrayby rank,. Assumng thatagivenarrayZ is 3-noncegeneratethe corollary
providesa lower limit for its rank:

rankZ) > min (rankZ x3w)) + ranks(Z) — 1 (35)
{wiw-z£0}

SetZ = g* andchoosez =(100). Thenthe conditionfor w in Equation(35) simplifies to requiring
thatin w = (o, 3,7) thefirst elementa is non-zrowhile the other two arearbitraryy. The productg* X3

w evaluaesto
6 a 0
G'xsw=[~v 0 « (36)

a 0 O
Thedetermirantof this matrixis o> # 0, independat of § and~. Thusthefirst termin Equation(35)

is 3. It is easilyseerthatrank; (G*) = 3. Substitutinginto (35) givesrank(G') > 3 + 3 — 1="5,which
is the desiredresult.
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8. CONCLUSIONS

The exanples shown in this work denonstratethe strucure of a degeneate three-wayarray and
facilitate an easyconstuction of variousdegeneate examplesg.qg.for testingalgorithms.

It was seenthat someamountof regulaization helpsthe algorithns in keeping distane to the
swamp, i.e. to the degeneateregionswhereconvergene is slow.

It wasdemonstatedthatsometinesthe degeneateregionscrede ‘shadows’ in the soluion space.
Althoughthetruesoluion is non-deyenerateit cannotbereachedrom astartng pointlying in sucha
shadowlf theiteraion is startedsothattheinitial solution is in theshadowthealgarithmsgetstuck,
progresig deepe anddeepe into the swamp. In suchsituatians the only remedyis to repeatthe
computdions stating from different pseudorandm initial solutions.

Earlier it had beenrepoted that slow and fast phase may alternae in the progressof an ALS
iteration[12]. In this work the natue of thesephass is illustratedby an exampe displayingfour
distinctphass with fast, slow, fastandextrenely slow convegencerespedtely. The ‘simple’ task
of fitting a2 x 2 x 2 array dispays a surpiising richnes of featues!
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