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SUMMARY

A mathematical framework is presented for constructing degenerate CANDECOMP/PARAFAC models. It is
possible to construct degenerate arrays which can be approximated by two-factor models to arbitrary precision
but which do not possess an exact two-factor representation. Equivalence of different degenerate presentations is
demonstrated. By using this model, tasks are constructed where the straight path from the specified starting point
to the best-fit solution will pass through a degenerate area. Swamp behavior is observed when such tasks are
solved by various algorithms. Copyright 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

According to the CANDECOMP/PARAFAC (CP) decomposition [1–3] a three-way arrayX is
expressed as a trilinear expression of three factor matricesA, B andC:

xijk �
XR

r�1

air bjr ckr �i � 1; . . . ; I ; j � 1; . . . ; J; k � 1; . . . ;K� �1�

Often the model is used for finding a least squares approximation for a given three-way arrayX0:

x0
ijk �

XR

r�1

air bjr ckr � eijk �2�

where the factor matricesA, B andC are to be determined so that a norm of the difference arrayE is
minimized.

Work with Equation (2) has long been hampered by the occurrence of so-called degenerate arrays.
Best-fit solutions of such arrays approach infinity in such a way that the fitted array remains finite
although some (or all) of the factor elements approach plus or minus infinity.

In this work a mathematical model is presented which allows one to construct arrays whose two-
factor representations contain arbitrarily large factor elements. It is also possible to construct
degenerate arrays which can be approximated by two-factor models to arbitrary precision but which
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do not possessan exacttwo-factorrepresentation.
Whendiscussing thepossible arrays,it is assumedtacitly in thiswork thatthethreedimensionsof

thearrayX havebeenfixed to somechosen values.Generally it is alsoassumedthat thenumber of
factors hasbeenfixed to two; thusalsothe dimensionsof the threefactor matricesaredetermined.

1.1. Notation

The notation suggested by Kiers [4] is used.In addition, the triple product is definedaccording to
Kruskal [5] asfollows. Equation (1) is written asX = [A, B, C]. Similarly, X = [t, u, v], wheret, u
and v are vectors of correct dimensions, specifies the equationsxijk = tiujvk, i = 1,…,I, j = 1,…,J,
k = 1,…,K. Three-way arraysaredisplayed so that slicescorrespondingto successivevaluesof the
last index areprintedsideby side. Thus the indicesof elementsof a displayedarrayof dimensions
2� 2� 2 areasfollows:

111 121
211 221

� ���� 112 122
212 222

�
�3�

Whendiscussingthethree-way leastsquaresproblem,the‘true solution’ is denotedby X0. Thenthe
taskis to determine anarray X so that the expression Q� kX ÿ X0k2

F is minimized.

1.2. Terminology

The concept of degeneracy is usedin two meanings.A degenerate array (in the exactsenseof the
word) is anarrayhavingacertain rank(e.g.rank= 3) whichmaybeapproximatedarbitrarily well by
a factorization of lower rank (e.g. rank= 2). In suchapproximating factorizations thereare large
positiveandnegativecontributionswhich mostly cancel eachother.Thesefactorizationsarecalled
degenerate in the qualitative senseof the word. The ‘degreeof degeneracy’ means the degree of
cancellation of positiveandnegativecontributions.Theword loadingsis usedfor all threeaspectsof
the factors; this is in contrast to two-way terminology where the words ‘loadings’ and ‘scores’
differentiate between the two aspects.

1.3. Previouswork by KruskalandTenBerge

It is well known thatKruskallaid thefoundationsfor understandingdegeneratearrays[5–8].After the
mainresultsof thepresentwork hadbeenformulated,theauthorbecameawareof prior unpublished
work by Kruskal along theselines. Kruskal kindly senthis notes of this earlier work. He derives
Equation (5) for a degenerate 2� 2� 2 arrayby a constructive process.Essentiallyheworks in the
oppositedirection from the presentwork: startingfrom the properties of a degeneratesolution,he
constructs Equation (5) by a techniquewhich guaranteesthe property of degeneracy.

Kruskalalsodiscussestheuseof adiagnostic polynomialD of theelementsof a2� 2� 2 arrayfor
determining therankof thearray(seeReference[7], p. 10).Positiveandnegative valuesof D signify
thatthearrayis of rank2 or 3 respectively. If D = 0, however, therankmaybeeither0, 1, 2 or 3. Ten
Bergepresentsthe expressionof the polynomial basedon determinantsover pairsof fibersof the
array [9]. He also sharpensthe definition of the diagnostic properties of D: only sucharraysare
considered where at leastoneslice X::1 is non-singular andthe other slice X::2 is non-zeroandnot
proportional to X::1. In this classof arrays,havingD> 0 is thenecessary andsufficient conditionfor
rank= 2. If D� 0, rank= 3. Thearrayswith D = 0 arespecial: although their rank is 3, theymaybe
approximatedarbitrarily well by arrayswhoserank is 2.

286 P. PAATERO

Copyright 2000JohnWiley & Sons,Ltd. J. Chemometrics2000;14: 285–299



2. DEGENERATE ARRAYS AS LIMI TING POINTS OF SEQUENCESOF SOLUTIONS
WITH INCREASING DEGREESOF DEGENERACY

Thecolumnsof thefactormatricesA, B andC containtheloadingsof thefactors.Thefirst columnof
matrix A contains the ‘A -modeloadings’for the first factor, etc.

The following two-factormodel wasconstructed asa tool for exploring degeneracy:

X � �A;B;C� �4�

� 1
�

a� �
2

2
a

�����ÿ 1
�

a� �
2

2
a

 !
;

1
�

b� �
2

2
b

�����ÿ 1
�

b� �
2

2
b

 !
;

1
�

c� �
2

2
g

�����ÿ 1
�

c� �
2

2
g

 !" #
�5�

Thesymbolsa, b, c anda; b; g representarbitrary columnvectorsof correctdimensions. These
arecalled thegeneratingvectorsof themodel.Thegeneratingvectorsform two setsof threevectors.
The setshavedifferent roles.

This model was created by an intuitive trial-and-error process.Thus it may be impossible to
‘derive’ themodel from simplerconcepts.Thepropertiesof themodelareverifiedin thefollowing.It
is assumedthatthevectorsa anda form a linearly independent set,andsimilarly { b, b} and{ c, g}.

2.1. Discussionof the degenerate model

Theparameter� controlsthedegreeof degeneracy. When� approacheszero, theloadingsof all three
modesof thetwo factorsapproachinfinity proportionally to 1/� in suchaway thattheloadingsof the
first factor grow proportionally to the vectors a, b andc whereas the loadingsof the secondfactor
grow proportionally to thevectors7a, 7b and7c. Thevectorsof thetwo factors becomequickly
more and more linearly dependent as the contributionsdue to the vectors a, b and g decrease
proportionally to the square of �.

Themodelhasbeencarefully constructedsothatthenegativepowersof � cancelout.Thisassures
that thearrayX remainsfinite althoughthe loadingsapproachinfinity when � approacheszero.The
following expressionis obtained for the arrayX of Equation(5):

X � �a; b; c� � �a;b; c� � �a; b;g � � �
6

4
�a;b;g � �6�

Foranon-zero� therankof thisarrayis 2. When�→ 0, theloadingsof thetwo-factorpresentationof
thisarrayapproachinfinity, asexplainedfor themodel(5).ThearrayX approachesarbitrarily closeto
X* definedby

X� � �a; b; c� � �a;b; c� � �a; b;g � �7�
The elementsof the differenceX 7X* decreaseproportionally to the sixth power of �. The

propertiesof thearrayX* areinteresting.Thearrayis definedby anexpressionwhoserankis 3. It may
be approximatedby rank= 2 arraysto arbitrary precision. Kruskalet al. [8] describe arrayshaving
similarproperties. Accordingto them,it appearsthatX* belongsto aboundary between two different
domainsin thespaceof all possible X. On thelow-ranksideof theboundarytherearearrayswhose
rankis 2. On theother sidetherankis 3. As will beshown later, anarrayon thehigh-rank sideof the
boundaryis given by

X � �a; b; c� � �a;b; c� � �a; b;g � � h�a;b;g � �8�
wherethe scalarh is negative.
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2.2. Alternative formsof the first degenerate model

Themodel(5) maybewritten in thefollowingalternative formswherethearrayX remainsthesame
for all valuesof � althoughthe factor matrices A, B andC arechanged:

X � �A;B;C�

� 1
�

a� �
2

2
a

�����ÿ 1
�

a� �
2

2
a

 !
;

1
�

b� �
2

2
b

����� 1� bÿ �
2

2
b

 !
;

1
�

c� �
2

2
g

����� 1� cÿ �
2

2
g

 !" #
�9�

� 1
�3

a� 1
2

a

�����ÿ 1
�3

a� 1
2

a

 !
; b� �

3

2
b

�����bÿ �32 b

 !
; c� �

3

2
g

�����cÿ �32 g

 !" #
�10�

In thesemodelsthe differencebetweenthe B-modevectorsapproaches zero,and similarly the
difference between the C-mode vectors. In the model (10) the diverging behavior has been
concentratedin the loadings of the first mode.Then the loading vectorsof the other two modes
approachthe generating vectorsb andc when� approaches zero.

2.3. Theseconddegenerate example

By the trial-and-errorprocess,anotherexample wasfound that is not sosymmetric asthe first one.
The equations for this modelare

X � �A;B;C�

� 1
�

a

�����ÿ 1
�

a� �2a

 !
;

1
�

b

�����ÿ 1
�

b� �2b

 !
;

1
�

c� �2g

�����ÿ 1
�

c

 !" #
�11�

Performing the computationsgives

X � �a; b; c� � �a;b; c� � �a; b;g � ÿ �3�a;b; c� �12�
Comparisonwith Equation (6) shows thatwhen� → 0, thearray(12) approachesthesamelimit ing
arrayX* asthe array(6). However, the differenceterm hasa different form. Furthermore, now the
differencedecreasesproportionally to thethird power of �. Both thepositiveandnegativevaluesof �
correspond to arrayswhoserank is 2. The value� = 0 correspondsto a degeneratearray.

The second degenerate example has special historical significance. When discussing his
unpublishedwork leading to Equation (5), Kruskal mentionedthat the existence of sequencesof
modelsasdefinedby Equation (11)preventedhim from formulating asatisfactory proofof hisresults
andthusprevented him from publishingthat work.

3. CONNECTIONS WITH THE TUCKER3MODEL

In order to avoid ambiguity with the model (1), the well-known Tucker3 (T3) model [10] is here
written as

xijk �
XP

p�1

XQ

q�1

XR

r�1

aipbjqckrgpqr �i � 1; . . . ; I ; j � 1; . . . ; J; k � 1; . . . ;K� �13�
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for the casewherethe corearrayG is of dimensions P�Q� R. Setting P = Q = R = 2, the factor
matrices A, B andCaredefinedasfollows:

A � �aja�; B � �bjb�; C � �cjg� �14�
It is easyto seethatthedegeneratemodel (7) maybeinterpretedasaT3 modelwherethecorearray

is

G� 0 1
1 0

���� 1 0
0 0

� �
meaning of
G elements

� �
:

abc abc
abc abc

���� abg abg
abg abg

� �
�15�

The generalmodel (8) is similarly interpretedasT3 with

G� 0 1
1 0

���� 1 0
0 h

� �
�16�

If h is positive, thereis a two-factor CP model corresponding to the T3 model of Equation (16).
However, when h → 0, the factors of the corresponding CANDECOMP/PARAFAC model grow
without limi t, andwith h� 0 thereis no exactlycorrespondingtwo-factor CPmodelanymore.As a
description of a given (empirical) degeneratearray,Equations (13)–(15)might be consideredmore
desirable thanthe correspondingCPmodel(5) wherefactor elementsapproachinfinity.

3.1. Samerank for X and G

It is possible to stateaconnection between theranksof X andG in Equation(13).Whenconsidering
the equation

xijk �
XP

p�1

aipwpjk �i � 1; . . . ; I ; j � 1; . . . ; J; k � 1; . . . ;K� �17�

Kruskal (seeReference[5], p. 104)shows that if thenumberof li nearlyindependent slicesis the
samein thesetsX i:: (i = 1,…,I) andWp:: (p = 1,…,P), thenrank(X) = rank(W). Ontheotherhand,the
numbersof linearly independent slicesarethesameif thematrix (A) is of full columnrank,i.e. if rank
(A) = P. By applyingthis resultthreetimes,wegettherule thatX andG in Equation (13)areof same
rank if all threematrices A, B andC areof full columnrank, i.e. if rank (A) = P, rank(B) = Q and
rank(C) = R. In thiswork thefull rankof A, B andC is alwaysassumed. Thuswemaydecidetherank
of X by inspectingthe correspondingcorearrayG.

4. ANAL YSIS OF THE 2� 2� 2 ARRAY

TheKruskalpolynomial D hasalreadybeendiscussed in Section1⋅3. It is usefulto derivefor D an
expressionthat is directly basedon the elements of the array. In order to simplify notation, the
elementsof the arrayX areheredenotedas

X � a b
c d

���� e f
g h

� �
�18�

andthe factors as
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A � o u
p v

� �
; B � q w

r x

� �
; C � s y

t z

� �
�19�

By starting from the definition of D asgiven by Ten Berge[9], oneobtainsthrougha tediousbut
straightforwardcalculation thefollowingpresentationfor theKruskalpolynomialD (oneshould note
that althoughthis D looks quite different from the D shownby Ten Berge,the two representations
describe exactly the samepolynomialof the elementsof the arrayX):

D�a; b; . . . ; h� � aahh� bbgg� ccff � ddee

ÿ 2�acfh� bdeg� abgh� cdef� adeh� bcfg� �20�
� 4�adfg� bceh�

If D(X) > 0, thenthearrayis of rank2. Similarly, D(X) < 0 impliesthatrank(X) = 3. Onordinary
points(i.e. on those points that satisfythecriteria of TenBerge)of thehypersurfacedefinedby the
equation D(X) = 0, therankis 3.At thespecial pointsrejectedby thecriteria of TenBerge,therankis
0, 1 or 2. At ordinary points of the hypersurfacethe array is degenerate: at suchpoints the exact
representationof X is of rank3, butanarbitrarily goodapproximation of X is obtained with rank= 2.

In orderto simplify the problem, the following arraysareconsidered:

X � 0 1
1 d

���� e 0
0 h

� �
�21�

wheree is regardedasaconstant,typically e= 30.For arraysdefinedby (21), Equation(20)simplifies
to D(d,h) = e2 d2� 4eh. Consideringonly oneof thevariablesd andh ata time,theearlier resultsare
confirmed: if e> 0 andd = 0, the sign of h decidesif rank= 2 (h> 0) or 3 (h< 0); if, on the other
hand,e= 0 andh = 0, thenthearrayis degenerateat d = 0 but hasrank2 with all othervaluesof d.

Consideringthetwo variablesd andh together givesamoredetailedpicture.Theparabolah = 7e
d2/4,consistingof degenerateborder points,is shownin Figure1 (SeeSection 6).All pointsbelowthe
parabolahaverank3, while all pointsabovehaverank2, whenconsidering thearrayX(d,h) specified
by Equation(21).

TheCANDECOMP/PARAFAC decomposition of X definedby Equation (21) is expressedin the
following form:

X � 0 1

1 d

���� e 0

0 h

� �
�22�

� �A;B;C� �23�

� o u

p v

� �
;

q w

r x

� �
;

s y

t z

� �� �
�24�

� 1=� ÿ1=�

p v

� �
;

1=� ÿ1=�

r x

� �
;

1=� ÿ1=�

t z

� �� �
�25�

Theform of Equation(25)fixesthefour arbitrarynormalizationsandguaranteesthatx111= 0. The
variablesp, v, r, x, t andz maybeeliminatedby lengthy but straightforward calculations,leadingto

4h� ÿed2� e�6 �26�
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By letting � → 0, the equation of the parabola of degeneracy is againobtained: 4h = 7e d2. In this
way the result easily obtained using the Kruskal polynomial can be laboriously confirmedin this
specialcase.

4.1. Thegeneralcase

Examinetheshapeof thecurveD(d,h) = 0 with arbitrary valuesof thesix arrayelements{ a,b,c,e,f,g}.
Ignorethecasea = e= 0; thenD doesnot dependon d or h at all. At first sight it might appear that
D(d,h) is ageneralpolynomialof second degree.However, closer inspectionshowsthatD(d,h) = 0 in
fact always represents a parabola. The orientation and position of this parabola dependon the
numericalvaluesof the six arrayelements. In contrast,the expression D(d, f) is a general second-
orderpolynomial of d andf. Thusin different(d, f) hyperplanestheshapeof thedegenerateborder
curveD(d,f) = 0 may bea parabola, anellipseor a hyperbola.

Denoteby j thevectorconsistingof theeight elementsof thearrayX. TheHessianmatrixH of D is
definedas

hij � @2D
@�i@�j

�27�

The eigenvaluesof H wereevaluated at the top of the parabola of degeneracy, i.e. at the point
definedby d = h = 0 in Equation (21). Thenumbersof positive, zeroandnegative eigenvaluesof H
werefoundto bethree,threeandtwo respectively.It is seenthat the‘top of theparabola’ is in fact a
saddlepoint of the surfaceD(j) = 0 in the full eight-dimensional spaceof the elementsof X.

5. DEGENERATE MODELS AND SWAMPS

Thewordswamphasbeenusedto denotesuchareasof thesolution spacewherethealternating least
squares(ALS) algorithmadvancesextremely slowly, as if draggingits feet in mud [11]. It is well
known that suchswamps areconnected with degeneratemodels. It is easyto understandthat if the
arrayX0 to beapproximatedby theCPmodel is degenerate(or in thehigher-rankdomain),thenany
algorithm trying to find the best (lower-rank)approximation X is in trouble. The factor matrices
becomeill-conditionedwhenthesolutionapproachestheborder of thehigh-rank domain.Larger and
larger changes in the factor matrix elementsare requiredin order to achieve smallerand smaller
improvementsin the object function. The path of the iteration is driven to end in a swamp!
Furthermore, in mostcasesthedegeneratesolutionis notmeaningful for theoriginal problem. It will
be necessaryto modify the problemsomehowin orderto avoid creatingdegeneratesolutions.This
modifying is intimately connectedwith thereal-life situation thatis beingmodeled.Discussionof this
problemgoesoutsideof the presentpaper.

It is alsowell knownthatswampbehaviormayoccurmidway between a non-degenerate starting
point anda well-defined non-degeneratebest-fit solutionof a CANDECOMP/PARAFAC problem
[12]. It hasbeenobservedthat thecondition numbersof factormatrices increase alongthepathand
thendecreasebackto ‘normal’ levelswhenthebest-fitsolutionis approached. RayensandMitchell
[12] report that the severityof half-way swamps can be lessened by applying regularization (see
below) to the model.The experienceof Paatero[13] alsosupportsthis finding, althoughhedid not
explicitly investigatethequestion: thealgorithmPMF3is normally usedwith initial regularizationso
that the regularization is only decreasedafter a ‘reasonably good’ approximation hasbeenfound.
Half-way swamps haveneverbeena problem with PMF3.

By using the synthetic degenerate models, it is possible to illustrate what happens when the
iterationencountersa degeneratesolutionarea. In thefollowing section, examplesarecreatedwhere
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theparabola-shapeddegenerateareaextendsbetweentheinitial andtruesolutions.Dependingonthe
geometry of themodel,eithertheiterationis just sloweddown, or theiteration is unableto reachthe
true solutionbecauseit cannotget around the swamp.

6. NUMERICAL EXPERIMENTS

When discussing numerical results, the final convergence of the ALS algorithm is mentioned
repeatedly. Experienceshowsthatthefinal convergenceof ALS is geometricwhen thearrayX0 is not
degenerate.Denoteby X1 thesolution of theiterativecomputationsafter ‘infinitely many’ iterations.
(For thepresentnon-degenerate2� 2� 2 cases,X1 = X0.) Eachiteration stepreducestheremaining
differenceX 7X1 by afactorr = 17k, wherek is asmallconstant.Fordifficult casesthevalueof the
convergence decrement k is typically (much)below0⋅01.

Thenumericalexperimentsserveto illustratewhy thecomputedsolutionof aCPmodel sometimes
becomesdegenerate evenwhen the true array X0 hasrank 2. Intuitively, one might expect such
behaviorwheneverthe startingpoint X and the correct solution X0 are situated so that thereis a
domainof degeneracybetween them.Sucha situation is most pronouncedwhentheparabolahasa
peaked shapeandX andX0 areon opposite sides of theparabola.The actualvalueof theconstante
determinestheshapeof theparabola. With small values,suchase= 1, theshapeis shallow.A peaked
shapeis obtained with largevaluesof e. Thevaluee= 30is chosen for all thefollowingcomputations.

Formost computationsthefreeparametersof thearrayX0 definedby Equations(21)and(25)were
chosenas� = 0⋅54 andd = 0⋅25. For the otherparametersonethenobtainsh = 70⋅28, p = r = 0⋅37,
v = x = 70⋅086, t = 72⋅57andz= 11⋅3. The truesolution is seenasthemark‘�’ on theright sideof
theparabola.During thecomputationsthetwelveelementsof thefactormatricesarenot constrained
in anyway. Thenumericalvaluesshownin Equation(25) areonly usedwhen specifying the initial
andfinal arraysX andX0.

The initial solution, i.e. the starting point of the iterations,was placedon the left side of the
parabola, at� = 0⋅6,d = 70⋅23,h = 70⋅047.Figure1 showsthepathof thesolutionobtainedby using
the original ALS-basedCANDECOMP/PARAFAC algorithm without any acceleration techniques.
Thestartingpoint is markedby aplussign. Everytenthiterative solutionis markedby anopencircle.
Thesolutionis freeto movein all directionsin thetwelve-dimensional solution space. Theother ten
dimensionsmaybeimaginedasbeingperpendicular to the(d, h) planeof thepicture. This example
hasbeenconstructed so that theseextradimensionsdo not play a decisiverole.

Fourdifferentstagescanbediscernedin theprogressof theiteration.During thefirst 50stepsthere
is a rapidadvancetowards thedegenerate domain. During thenext150steps the solutionadvances
slowly. The directionof the ‘pull’ towards the true solution is almostorthogonalto the barrier that
preventsthe direct approach towards the true solution.The pull causes the advancing solution to
approachcloserto theparabolaof degeneracy, becoming moreandmoredegenerate.Thethird stage
beginswhenthesolutionhaspassed thetopof theparabola.Gradually thepull becomesparallelto the
allowedpath.Thestepsbecomelonger,until thesolution,after340steps,comesalmostto astandstill
between the true solutionandthe parabolaof degeneracy.The fourth stage,not shownin Figure1,
correspondsto thefinal convergence towardsthetrue solution. This convergenceis extremely slow,
becausethe solution still possessesthe degeneracy caused during the second stageof the iteration.
Theinitial value of theconvergencedecrementk is 0⋅00007during thefourth phase.Approximately
4400stepswereneeded for coveringhalf of the distance towardssolution. Anotherhalving of the
remaining distance required only 1500 steps,because the solution was gradually leaving the
degenerate area.Closeto X0 the decrementhad the value 0⋅00066. It is seenthat the decreasing
degeneracyallowsthegeometricalconvergencerateto improve almostby a factorof tenduringthe
fourth stage.
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Figure2 showsthepathof thesolutionwhenusingtheprogramPMF3basedontheGauss–Newton
algorithm[13]. In contrastto thepreviousfigure,eachiterativesolution is shownhere.After 53steps
the remaining distance to the solutioncorrespondsto the resultobtainedwith ALS in 11 000steps.
Thefour stagescanbevaguelydiscernedin Figure 2 too.Thereis a markeddifferencein thesecond
stagesof PMF3 and ALS. With PMF3 the solution keepsa certain distance to the parabola of
degeneracy. This is causedby theregularizationthat is alwayspresentwhenusingPMF3: theobject
function Q, minimizedduring the iteration,is of the form

Q� kX ÿ X0k2
F � ��kAk2

F � kBk2
F � kCk2

F� �28�

whereX is thecurrentapproximationof X0 and� is auser-definedparameterspecifying thestrength
of regularization. Approaching the parabola of degeneracy would increasethe numerical valuesof
elementsin oneor severalof thefactormatricesA, B andC, leadingto anincreasein thesecond term
in Q. The solution will stay at a distancewhere an increase in the second term just balancesthe
decreasein the first term kX ÿ X0k2

F. Thus avoiding the more degenerate solutions is one of the
reasonsfor the fast convergence of PMF3[14].

TheJacobian matrix J of thesolutionwasevaluatedat the truesolution. Detailsof this technique

Figure1. Graphicalpresentationof thearrayX, asdefinedby Equation(21), andthe340first stepsof theALS
iteration.Theelementsof X aredesignatedby lettersa to h accordingto Equation(18).Theabscissaandordinate
correspondto arrayelementsd andh respectively.The parabolarepresentsthe intersectionof the degenerate
hypersurfacewith the hyperplane(a = f = g = 0, b = c = 1, e= 30). The points below and abovethe parabola
correspondto rank= 3 andrank= 2 arraysrespectively.Thestartingpoint (�) andthetruesolution(�) arein the
planeof thefigure.Thepathof theALS iteration(everytenthsolutionshownby opencircles)is in generalnot in

the planeof thefigure.
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havebeendescribedby Paatero[15]. Thedimensionsof J are8� 12,correspondingto eightelements
in arrayX which dependon twelveelementsin thethreefactormatricesA, B andC. Therearefour
‘dead’ directions in the spacespannedby the twelve factor elements,corresponding to trivial scale
changes of thefactors.A changein thesolutionin anyoneof these deaddirections doesnot change
the array at all. Correspondingto the deaddirections, four of the singular valuesof J equalzero.
Thesefour singular valuesareignoredin thefollowing.Theeffectivecondition numberof J (theratio
of largestandsmallestnon-zero singular values)wasfound to be 1926, meaning that thereis one
directionin thetwelve-dimensional spacewhere therateof decreasein Q is extremely low. Theleft
and right singular vectorscorresponding to the smallestsingular value were examined. The left
singular vector corresponds to changesin elements of X. This vector was found to be practically
parallel to the changein X during the fourth stageof ALS. Similarly, the right singular vector
correspondsto changes in elementsof the threefactor matricesA, B andC. It wasfound that the
changein the factorsduring the fourth stageof ALS iterationwasapproximately orthogonalto the
right singular vectorsonethroughseven.It is seenthat the final convergenceof X in the CP-ALS
algorithm happened in the direction of the leastsignificant singular vectorsof J. In addition, the
factorsdid also changein thedeaddirections,representedby theright singular vectorsnineto twelve.
For comparison,theeffectiveconditionnumber of J wasalso evaluatedfor thestrongly degenerate
resultof thethird phaseof ALS. Thevalueof 4756 wasobtained,morethantwice thevalueobtained
at the true solution.

Different variationsof thepreviousexampleswerecomputedasfollows. Theinitial regularization
parameter � wasincreased for PMF3. This led to slightly fasterconvergence. However,the overall

Figure2. The pathof the PMF3 iteration from the startingpoint (�) to the true solution(�). The 53 iterative
solutionsareshownby opencircles.For otherdetailsseecaptionof Figure1.
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behaviorwassimilar to Figure2. Also, aspecialregularizedversion of theALS algorithm wastested
sothatthefirst 120stepswerecomputed with regularization,therestwithout. Thepathof thesolution
is shown in Figure3. Thecuspof the pathis at the stepwhen the regularization wasremoved. The
iterationreachedthe neighborhood of the true solution in 270 stepsinsteadof the original 340 (cf.
Figure1). By chance, the third phasearrivedvery closeto the true solution, so the distance to be
coveredby the fourth phase(not shown)wasquite short. The final convergence decrementwasof
courseidenticalto thenon-regularizedALS run.A regularizedstepof ALS [12] maybecalledridge
regression. This termis oftenusedwhen solvingill-conditionedregressionproblemssothatthesum
of squaresof regressioncoefficients is included in the objectfunction.

The acceleration mechanismincludedin the ALS algorithm of Bro wasalsotested,by usingthe
defaultsettingsof thedistributedalgorithm [16]. A clearimprovementwasobserved.The first three
phasesof the iteration were completed in only 120 steps, one-third of the original 340. At the
beginning of the fourth phasethe convergencedecrementwask = 0⋅0003,increasingto k = 0⋅0035
towardstheendof thefourthphase. Thesevaluesrepresent afivefold increasewith respectto thenon-
acceleratedtests.

Figure 4 showsanotherexample. The true and initial solutionswere definedby (d, h) = (0⋅26,
70⋅39)and(d, h) = (70⋅26,70⋅39) respectively. Now thetopof theparabolareachessofar up that
theiterative solutionis unableto getaround it. For bothALS andPMF3thesolutionwasstuckat the
left sideof the parabola.Figure 4 shows the pathof the PMF3solution.

Figure3. Thepathof the270first stepsof theALS iterationwith initial regularization.Theregularizedform of
theobjectfunction,shownin Equation(28),wasusedduringthefirst 120iterationsteps.ThebasicALS wasused
in all the remainingsteps.Every tenth solution is shownas an opencircle. For other detailsseecaptionof

Figure1.
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7. HIGHER-ORDERDEGENERACIES

It was possible to constructthe following non-trivial example of three-factor degeneracy. In this
example all the loadingsof the threefactors grow without limit sothat thearrayapproachesa finite
limit. It is assumedthatall thesets{ a,a,a} { b,b,m} and{ c,g,n} arelinearly independent. Themodel
is definedby setting

X � �A;B;C�

� ÿ 1
�

aÿ 1
�

a
1
�

a� �
2

2
a

���� ����1� a
� �

; ÿ 1
�

b
1
�

b� �
2

2
b

���� ����1� b� �
2

2
m

� �
;

�

ÿ 1
�

c
1
�

c� �
2

2
g

���� ���� 1� c� �
2

2
n

� ��
�29�

With � > 0 therankof this arrayX is obviously 3, becauseall threefactormatricesareof full rank.
Performing the computationsgives

X � �a; b;g � � �a;b; c� � �a; b; c� � �a; b;n� � �a;m; c� �O��3� �30�
Thelimit X* at � → 0 is obtainedin a five-factorrepresentation by simply omitting thelast(sixth)

Figure 4. Applying the PMF3 algorithm to a slightly different problem,where the initial (�) and true (�)
solutionsaresituateddeeperdownin the(d,h) plane.Otherelementsof X arethesameasin Figure1. Insteadof
convergingtowardsthetruesolution,theiterationplungesinto the‘swamp’,i.e. towardsthedegeneratearea.The

first 103stepsareshownasopencircles.
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term in the previousequation. The correspondingcorearray is

G� � G��! 0� �
0 1 0
0 0 1
1 0 0

����� 1 0 0
0 0 0
0 0 0

����� 0 0 0
1 0 0
0 0 0

0@ 1A �31�

As shown in the next subsection, the rank of this array is in fact 5. It is easily seenthat the
presentationof the limit arrayX* is not unique: rotationsarepossible between suchpairsof factors
which areidentical in onemode.An example of a rotatedpresentationof the limit arrayis

X � �a; b;�g � c�� � �a; �b ÿ b�; c� � �a; b; c� � �a; b; n � � �a;m; c� �32�
Four-factor degeneracy is mosteasilyconstructedwith 4� 4� 4 arraysasa superpositionof two

two-factordegeneracies.Construct the array

Xh � �a; b; c� � �a;b; c� � �a; b;g � � h�a;b;g � �33�

so that the generating vectors have the values a = b = c = (1,0,0,0) and a = b = g = (0,1,0,0).
Similarly construct

Xg � �a; b; c� � �a;b; c� � �a; b;g � � g�a;b;g � �34�

with vectorsa = b = c = (0,0,1,0) and a = b = g = (0,0,0,1). Depending on the valuesof the scalar
coefficientsh andg, the rankof the arrayX = Xh� Xg may equal4, 5 or 6. If bothcoefficientsare
zero,the arrayis doubly degenerate: it hasrank 6 but it may be approximatedarbitrarily well with
arrayshaving rank4. If bothcoefficientsarepositive, the arrayhasrank4.

7.1. Rankof the array G*

Severaltoolsfor estimatingranksof arraysaregivenin Reference[5]. Corollary 1' on p. 108is used
for showingthattherankof thearrayG* in Equation (31) is 5. Thecorollaryestimatestherankof an
arraywith thehelpof anauxiliary row vectorz thatmaybefreelychosen to bestsuit thetask. Denote
themoden rankof anarrayby rankn. Assuming thatagivenarrayZ is 3-nondegenerate,thecorollary
providesa lower limi t for its rank:

rank�Z� � min
fwjw�z6�0g

�rank�Z�3 w�� � rank3�Z� ÿ 1 �35�

SetZ = G* andchoosez = (100). Thenthe conditionfor w in Equation(35) simplifies to requiring
thatin w = (a,b,) thefirst elementa is non-zerowhile theother two arearbitrary. TheproductG* �3

w evaluatesto

G� �3 w �
� � 0
 0 �
� 0 0

0@ 1A �36�

Thedeterminantof thismatrix is a3 = 0, independent of b and. Thusthefirst termin Equation(35)
is 3. It is easilyseenthatrank3 (G*) = 3.Substitutinginto (35)givesrank(G*)� 3� 37 1 = 5,which
is the desiredresult.
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8. CONCLUSIONS

The examples shown in this work demonstratethe structure of a degenerate three-wayarray and
facilitate an easyconstruction of variousdegenerateexamples,e.g.for testingalgorithms.

It was seenthat someamountof regularization helpsthe algorithms in keeping distance to the
swamps, i.e. to the degenerateregionswhereconvergence is slow.

It wasdemonstratedthatsometimesthedegenerateregionscreate ‘shadows’ in thesolution space.
Althoughthetruesolution is non-degenerate,it cannotbereachedfrom astarting point lying in sucha
shadow.If theiteration is startedsothattheinitial solution is in theshadow,thealgorithmsgetstuck,
progressing deeper anddeeper into the swamp. In suchsituations the only remedyis to repeatthe
computationsstarting from different pseudorandom initial solutions.

Earlier it had beenreported that slow and fast phases may alternate in the progressof an ALS
iteration [12]. In this work the nature of thesephases is illustratedby an example displayingfour
distinctphases with fast,slow, fastandextremely slow convergencerespectively. The ‘simple’ task
of fitting a 2� 2� 2 array displays a surprising richness of features!
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