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Abstract

Positive Matrix Factorization (PMF) is a least-squares approach for solving the factor analysis problem. It has been

implemented in several forms. Initially, a program called PMF2 was used. Subsequently, a new, more flexible modeling tool, the

Multilinear Engine, was developed. These programs can utilize different approaches to handle the problem of rotational

indeterminacy. Although both utilize non-negativity constraints to reduce rotational freedom, such constraints are generally

insufficient to wholly eliminate the rotational problem. Additional approaches to control rotations are discussed in this paper:

(1) global imposition of additions among ‘‘scores’’ and subtractions among the corresponding ‘‘loadings’’ (or vice versa), (2)

constraining individual factor elements, either scores and/or loadings, toward zero values, (3) prescribing values for ratios of

certain key factor elements, or (4) specifying certain columns of the loadings matrix as known fixed values. It is emphasized

that application of these techniques must be based on some external information about acceptable or desirable shapes of factors.

If no such a priori information exists, then the full range of possible rotations can be explored, but there is no basis for choosing

one of these rotations as the ‘‘best’’ result. Methods for estimating the rotational ambiguity in any specific result are discussed.
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1. Introduction

One of the significant problems in the use of factor

analysis to solve the mixture resolution problem is

that there is rotational indeterminacy in the solution.

Henry [1] presents this issue in terms of the factor

analysis problem being ‘‘ill-posed’’. The problem can

be solved, but it does not produce a unique solution.

To illustrate this problem, Fig. 1 shows simulated

data for ambient samples that consist of mixtures of

the soil and basalt source profiles [2]. This figure

shows a plot of the iron and silicon values for a series

of simulated samples. There need to be two profiles to

reproduce each data point, but these ‘‘profiles’’ could

range from the original axes to any of the other pairs

of lines. Because there are no zero valued source

contributions, the solid lines are not the ‘‘true’’

profiles. The true source profiles lie somewhere

between the inner solid lines that enclose all of the

points and the original axes, but without additional

information, these profiles cannot be fully determined.

This paper discusses rotations and uniqueness of

the bilinear non-negatively constrained factor analytic

model. Part of the discussion is independent of the

technique used to calculate the factor model, and part

applies specifically to Positive Matrix Factorization

(PMF) [3]. Many of the conclusions and recommen-

dations are based on the extensive hands-on experi-
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ence of authors when analyzing various data sets

rather than exact mathematical or statistical analyses.

Statistical analyses are severely hampered because of

the non-linear nature of the bilinear model and

because the distributions and covariances of errors

of data values are not known in practice. In particular,

the assumption of statistically independent errors

would be a gross over-simplification for most envi-

ronmental multivariate data sets.

By using the element-wise notation, the bilinear

factor analytic model is written as:

xij ¼
Xp
h¼1

gih fhj þ eij

ði ¼ 1; . . . ;m; j ¼ 1; . . . ; nÞ: ð1Þ

Customarily, the elements gih of matrix G are called

scores and elements fhj of F are called loadings.

However, the model is fully symmetric with respect

to an interchange of G and F. Hence, the notation of

scores and loadings is arbitrary; it should just be taken

as a convenience. In atmospheric studies, i is time

index while j is variable index. In spectroscopy, i

would be the wavenumbers index while j enumerates

samples.

In matrix notation, the same system of equations is

written as:

X ¼ GFþ E: ð2Þ

In many environmental and chemometric applica-

tions, it is required that all factor elements be non-

negative: gih� 0, fhj� 0. Throughout this work, it is

assumed that these constraints are imposed, unless

noted otherwise.

The ‘‘loss function’’ Q is defined as follows:

Q ¼ QðG;FÞ ¼
Xm
i¼1

Xn
j¼1

ðeij=sijÞ2 ð3Þ

where the values sij are error estimates of data values.

The unknown ‘‘factor elements’’ gih and fhj are to be

determined so that the loss function Q is minimized.

The number of factors, p, is assumed known

throughout this paper. In practice, deciding upon the

best value for p is often difficult. This question has

been discussed in literature [4,5] and is hence omitted

from the present work. In practice, one usually has to

repeat the analysis with different values of p. One

chooses the solution that appears most useful.

1.1. Rotations and uniqueness

The pair of factor matrices (G,F) can be trans-

formed to another pair (Ḡ,F̄) so that the same Q

corresponds to the pairs (G,F) and (Ḡ,F̄). Then it is

said that the first pair can be rotated so that it becomes

equal to the second pair. Assume that T is a

nonsingular square matrix of dimensions p� p. Then

T has an inverse matrix T� 1 so that T T� 1 = I. A

transformation is defined with the help of T by

setting:

Ḡ ¼ GT and F̄ ¼ T�1F: ð4Þ

Then the products of the pairs (G,F) and (Ḡ,F̄) are

equal because ḠF̄ =GTT � 1F =GIF =GF. This

shows that the transformation defined by Eq. (4) is a

rotation. However, this rotation is only acceptable or

allowed if all elements of the new factor matrices are

also non-negative: ḡth� 0, f̄hj� 0. The non-negativity

constraints limit the rotations so that in some cases,

there are no allowed rotations. Then the solution is

unique.

In many cases, however, some rotations are possi-

ble without violating the non-negativity constraints.

Then there are an infinite number of possible solutions

to the factor analytic problem. In practice, there are

several points to be considered: (1) Is the solution

unique or not? (2) If not unique, what is the extent of

Fig. 1. Simulated data showing multiple possible source ‘‘profiles’’

that could be used to fit the data.
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the domain of possible solutions and (3) Can one

solution be found that appears more plausible than the

others. These aspects of the factor analysis problem

are the focus of the present work.

It is well known that if a sufficient number of

elements of G (or F) are a priori know to be zero, then

there is no rotational ambiguity in the solution [6].

Then the problem is easily solved by simply fixing

those elements to be zero before starting the least

squares fit. One might also assume that a unique result

is obtained if a sufficient number of elements are fixed

to zero in G and F, taken together. The authors are not

aware of any published analysis of uniqueness in the

case when zeros are enforced both among scores and

among loadings.

In practice, one may have good reason to believe

that there are zero values in G (or/and in F), without

having any a priori information about the locations of

those zero elements. Then ‘‘fixing to zero’’, as men-

tioned in the preceding paragraph, is not applicable.

Then non-negativity constraints may be applied

instead, in the expectation that some elements of G

(or/and of F) will become zero in the fitting process.

1.1.1. Terminology

The term rotation is traditional. It would be more

correct to use the term linear transformation. How-

ever, it is customary to use the word rotation. Some-

times the terms orthogonal rotation and oblique

rotation are used in order to distinguish between cases

where the matrix T is and is not orthogonal. In this

work, orthogonality of T is not of interest. Thus, the

word rotation is used in the meaning of oblique

rotation, i.e. arbitrary non-singular linear transforma-

tion.

The word ‘‘rotation’’ is used here in two meanings.

The exact meaning, a pure rotation, is defined above.

The word is also used for approximate or distorted

rotations, where Eq. (4) are only approximately

obeyed. The typical reason for distortion is that exact

rotation would create some negative factor elements.

Distortions keep those elements at the constrained

value of zero. When a distorted rotation is performed,

the product of the two matrices G and F changes and

thus, Q also changes.

The notation G� 0 (or F� 0) is used in the

meaning that each element of the matrix G (or F)

fulfills the inequality.

2. Elementary rotations

2.1. Definition of an elementary rotation

As discussed by Paatero and Tapper [7], a specific

rotation may be understood as consisting of a se-

quence of many elementary rotations. If no elemen-

tary rotations are possible without creating negative

values, then it can be concluded that the solution is

unique. In order to discuss elementary rotations, the

following index conventions are assumed: s and u

denote some chosen factor indices so that 1V sV p,

1V uV p, s a u. The symbol v denotes all index

values 1,. . .,p except s. Similarly, w denotes all index

values 1,. . .,p except u. The index i represents all

values from 1 to m. Similarly, j represents all values

from 1 to n. The elementary rotation between factors s

and u is represented by equations:

�gis ¼ gis þ rgiu; �giv ¼ giv

�fuj ¼ fuj � rfsj; �fwj ¼ fwj

: ð5Þ

The matrix T corresponding to Eq. (5) is almost equal

to a unit matrix of dimension p� p. The only differ-

ence is that the off-diagonal element tus = r. One can

verify that Eq. (5) really represent a rotation by

computing the matrix product ḠF̄ based on Eq. (5)

and verifying that ḠF̄ =GF. In this case, the inverse

matrix T � 1 is also surprisingly simple. It is like

matrix T, except that its only non-zero off-diagonal

element (us) is of opposite sign in comparison to the

same element in T.

Eq. (5) may be conceptualized as follows: The

values in column u of G, multiplied by r, are added to

column s of G. Simultaneously, the values in row s of

F, multiplied by r, are subtracted from row u of F.

It should be stressed that elementary rotations are

basically a tool for understanding rotations. For ac-

tually performing the rotations, elementary rotations

are useful when searching for a good rotation ‘‘by

hand’’, so that one performs incremental rotations

upon the factors and observes the results before trying

the next incremental rotation. In automatic computa-

tions with programs PMF and ME, all rotations are

computed in a global way, without recourse to ele-

mentary rotations.
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2.2. Elementary rotations applied to the correct solu-

tion

Assume that the correct solution, corresponding to

the physical components of the situation, is repre-

sented by the factor matrices G and F. Examine what

happens when an elementary rotation with coefficient

r is applied to this solution. If r is positive, then all

changes induced in matrix G are in the positive

direction. No element in G can decrease. In contrast,

all changes in F are in the negative direction, and no

element in F may increase. If, on the other hand, r is

negative, then the behavior of G and F is the reversed:

Elements in G either decrease or stay constant, while

elements in F either increase or stay constant.

If all elements in the true factor matrices, G and F,

are strictly positive, then all rotations are possible in

the following sense: if arbitrary factors s and u are

chosen for rotation, then there are limits r � < 0,

r + > 0 that define the domain of allowed rotations.

Whenever r� V rV r + , the rotation does not produce

any negative elements in either of the matrices G or F.

If r equals r� or r + , then one element in one of the

rotated factor matrices becomes exactly zero. It is seen

that there are p2� p possible types of elementary

rotations. Furthermore, regarding each one of these

possible rotations, the true solution is situated in an

inner point of the domain of possible rotations. The

number of possible elementary rotations is the same as

in ordinary unconstrained PCA. However, some of

their rotational domains may be rather small, depend-

ing on the numerical values of the factor elements. If

the domain is small for a certain rotation, then the

rotation in question may in practice be insignificant

and might perhaps be ignored.

Next, consider the situation when all elements in

the true factor matrix G are strictly positive, while

there are a number of zeroes among the elements of F.

Rotations with negative parameter values r will

increase elements of F and decrease those of G. All

such rotations are possible (with sufficiently small r)

because each element of G may decrease at least a

little before hitting against zero. Rotations with pos-

itive values of r offer a different picture. Choose some

factors s and u for rotation. If there is a value j such

that fuj= 0, fsj > 0, then the corresponding rotated ele-

ment becomes negative: f̄ uj < 0. Then the rotation (s,u)

with r > 0 is not possible. Considering this rotation, the

true solution is situated at the extreme end of the

rotational domain.

If the number of zero entries in F is large enough,

then all possible rotations with arbitrary indices (s,u)

are impossible with positive values of r. Then the true

solution is situated at the extreme end of each of the

rotational domains.

Third, consider the situation when there are a

number of zeroes among the elements of both G

and F. Choose some factors s and u for rotation. If

there is a value j such that fuj= 0, fsj > 0, then the

rotation (s,u) is not possible with r > 0. Analogously, if

there is a value i such that gis = 0, giu > 0, then the

rotation (s,u) is not possible with r < 0. It is seen that if

there are a sufficient number of zero values in both the

F and G matrices, then non-negativity causes the

solution to be rotationally unique: there are no possi-

ble rotations.

2.3. Example: the true solution at the end of the rota-

tional domain

Spectroscopic problems offer examples where the

true solution can be at the extreme end of the rota-

tionally accessible domain. Assume that the columns

of the true G consist of spectral peaks whose shapes

are Gaussian with identical widths. Then subtracting

any one of the columns from another will produce

negative values regardless of the size of r. Then all

rotations with a negative r are impossible.

3. Global control of the rotations of the computed

solution

3.1. The true solution vs. the computed solution

In the preceding discussion, the conditions under

which the true solution may be rotated were pre-

sented. In practice, the true solution is unknown, and

only the best computed solution is known. The same

logic can be applied to the computed solution. If it

possesses a sufficient number of zero values, it cannot

be rotated at all. Then a unique solution has been

obtained.

On the other hand, it may happen that one believes

that the true solution is at the extreme end of the

rotational domains, while the computed solution is
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seen to be in the middle of (most of) the rotational

domains. Then it is clear that there is rotational

ambiguity and that the computed solution is not the

correct one. From the reasoning presented above, one

knows that the true solution cannot be rotated with

positive r, say. Then one might try to rotate the

computed solution with positive r, hoping that the

rotations would be transformed up to the true solution

but not past it.

3.2. The rotational parameter / in the program

PMF2

Up to this point, the discussion has been valid for

all possible means of computing two-way factor

analysis, including PCA and manual methods of

finding ‘‘good’’ rotations. Now the rotational machi-

nery of PMF2 is discussed.

The rotations computed by PMF2 are influenced

by two special features. First, non-negativity is imple-

mented with logarithmic penalty functions. These

functions cause the solutions to stay away from all

zero values. One could say that PMF2 attempts to

compute a solution that is in the middle of all rota-

tional domains. Second, a non-zero value of the user-

specified rotational parameter /, called FPEAK in the

documentation of PMF, tries to impose rotations to the

emerging solutions throughout the iteration sequence.

Positive values of / try to rotate using positive

coefficients r in Eq. (5). Similarly, a negative / tries

to rotate with negative coefficients r.

If the true solution is not at the extreme end of all

rotational domains, then rotating with / is not likely

to find the true solution. In other words, if there are

not enough of zero values in either the G and F ma-

trices, then rotating with / has no theoretical jus-

tification. In this case, there is no best value of / to

use. Unless specific patterns of zero valued elements

in either G or F or both are known a priori, there

is no theoretical basis for choosing a specific value

of /. The domain of rotations can be explored by

choosing a series of specific values and examining the

results. However, any specific choice of the / value

will have to be based on the judgment of investigator

based on their individual knowledge of the system

under study.

However, using empirical estimations about suit-

able values of / can potentially cause problems. An

investigator may assume that the new measurement is

similar to previous measurements, and thus, it can be

successfully analyzed by setting / equal to some

specific value that made sense in the prior application.

In environmental monitoring and enforcement,

unusual situations do occur. Sometimes these unusual

situations are the most critical ones where most

unpredictable circumstances may occur. The patterns

of factors may be different from the familiar ones.

Thus, the prior information about / cannot be

extended to the analysis of unusual data.

When analyzing environmental data, the most

important use of the parameter / is to quickly de-

monstrate how much rotational ambiguity exists in the

computed factors. By computing with both positive

and negative values of / the range of possible solu-

tions can be bracketed. Using / for pinpointing one

solution within this range is not possible except in rare

special occasions.

What happens if the original data matrix X is

transposed and the transposed matrix XT is analyzed

instead of X? Then the roles of the factor matrices G

and F are interchanged: the original contents of G

appear now in F, and vice versa. If the original

problem is solved successfully with a positive /, then
the transposed problem requires a negative /, and

vice versa. It is seen that when reporting about usage

of /, it is not sufficient to say that ‘‘problems of type

xxx require rotation with a positive /’’. In addition,

one must state the arrangement of the problem, i.e.

what are the roles of the rows and columns of X. In

source apportionment problems, one must specify

whether one column of X represents the concentration

of one element in all samples or the concentrations of

all elements in one sample. Equivalently, one might

say that ‘‘the rows of F represent emission profiles of

sources’’ or ‘‘the rows of F represent time sequences

of emissions by different sources’’.

3.3. Rotations in other multilinear programs

Managing rotations in PMF2 is based on the special

structure of the program. The rotational matrix, T, is

explicitly manipulated in the program. In three-way

factor analytic program, PMF3, there is no correspond-

ing mechanism for controlling rotations.

Paatero [3] describes a generic technique for con-

trolling rotations. This technique is based on an
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enhanced form of the object function. The technique

is generic in the sense that it may be applied in any

factor analytic algorithm that is explicitly based on

minimizing some form of a quadratic object function.

When using the multilinear engine program, ME-2

[8], for solving non-negative factor analytic problems,

the technique has been used successfully in a modi-

fied form. The method will be described for obtaining

rotations with negative r. For the opposite case r > 0,

the roles of G and F are to be interchanged.

The following additional terms are included in the

object function Q:

Qn ¼
Xp
h¼1

1�
Xn
j¼1

f 2hj

 !2,
a2 ð6Þ

Qp ¼ b2
Xp
h¼1

Xm
i¼1

gih

 !2

: ð7Þ

The term Qn defined by Eq. (6) attempts to normalize

the rows of F to unit norm (sum of squares of

elements of each row is driven towards unity). The

parameter a should be chosen small enough so that in

the computed solution, the norms of rows of F deviate

from unity at most by a small value (e.g. 0.01). The

term Qp defined by Eq. (7) attempts to pull the sum of

all elements of G towards zero. A tedious analysis

shows that this attempt leads to rotations in the

direction of negative r. The parameter, b2, corre-

sponds to negative values of / in PMF2. By increas-

ing b2, a stronger rotational influence is applied to the

solution. For simplicity, rotations are discussed in the

following section from the viewpoint of PMF2 and /.
The same reasoning applies to ME-2 and the param-

eter b2, however. Positive values of / correspond to

such Eqs. (6) and (7) where G and F have been

interchanged.

3.4. Flexibility of the computed factors

An apparent contradiction may be observed when

computing the same problem with zero and non-zero

/ values. With no rotational influence, the solution

may appear unique. There may be small non-zero

factor values that appear to prevent all rotations.

However, it has to be remembered that the rotation

becomes part of the solution to the problem. Thus,

when the solution is recomputed with a non-zero /, a
considerable amount of rotation may be observed. The

explanation is as follows: in the ‘‘academic’’ discus-

sion of the rotations, the factors are assumed rigid in

the sense that the product of the factor matrices must

not change at all. In real life, the factors are ‘‘alive’’ or

flexible: any changes in factors are acceptable as long

as the Q value does not grow ‘‘too much.’’ Under the

influence of /, the program will accept a slightly

worse fit in order to minimize the modified object

function. In that way, a distorted rotation is performed.

This worse fit is caused because a number of factor

elements need to deviate from the negative values.

The question of how much increase of Q is ‘‘too

much’’ is discussed below.

The experience accumulated when rotating with /
may be summarized as follows: the first phase is when

/ is initially increased from zero. Q increases slowly

during this first phase. If there is rotational freedom in

the original result, then this freedom is ‘‘consumed’’

during the first phase. The solution rotates as far as it

may easily go. If the original solution is rotationally

fixed, then the solution hardly changes at all. In the

second phase, when / is increased further, Q in-

creases steeply. The factor shapes change clearly

because now the factors have become distorted. The

changes of factor elements are no longer fully des-

cribed by Eq. (5). It appears that useful results are

often obtained with the / that corresponded to the end

of the first phase. Further experience is needed about

choosing useful values of /.

3.5. Caveats

The intuitive notion of elementary rotations gives a

feeling about the possibility of rotations. However,

considering elementary rotations alone does not give

rigorous conditions about the uniqueness of a solu-

tion. Such non-unique solutions exist where no single

elementary rotation is possible. A combination of two

(or more) simultaneous elementary rotations may still

lead to a different allowed (non-negative) solution

even in cases where all single rotations are impossible.

This warning does not affect practical computations,

e.g. when pulling selected factor elements to zero,

because all fitting is performed in a global way, not

through elementary rotations.
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Rotations driven by / do not necessarily lead to a

‘‘best’’ rotated solution. The iteration may end up in

situations where no continuation is possible by using

only rotations with the desired sign of r. Continuation

would require a combined rotation, composed of

elementary rotations having different signs of r. There

is no guarantee that any value of / will force such a

combined rotation. Thus, there is also no guarantee

that the true solution is contained in the domain

covered by the rotations driven by different values

of /.
Usually, factor analytic least squares computations

are started from pseudorandom initial values. When

studying rotations, the situation is different. If started

from same initial values, iterations may end up in

different local minima depending on what rotational

parameters are used. Also, identities of factors may

change, i.e. different sources appear with different

indices h. The effect of any rotational influence may

be entirely masked by the different features of the

different local solutions. When studying rotations,

the following scheme is suggested. First, run multi-

ple pseudorandom starts without rotational parame-

ters, or with a weak ( = safe) rotational forcing.

Inspect the results and choose one or a few most

important solutions for use as starting points in

further study. Set up a run where rotations are

forced. Use the chosen solution as the starting point

and input the initial factor values from a saved file

rather than generating new pseudorandom values.

Repeat the experiment with different rotational

parameter values, and each time use the same chosen

solution as the starting point. Possibly, repeat the

same exercise with another chosen solution as the

starting point. In this way, it will be possible to

compare effects caused by slightly different rota-

tional forcings.

4. Techniques for estimating the rotational

ambiguity

4.1. What is meant by rotational ambiguity?

Rotational ambiguity, as a property of a solution

(G,F), may be understood as the collection T of all

‘‘allowed’’ rotational transformations T (both elemen-

tary and non-elementary rotations included) that may

be applied to (G,F). The formal interpretation of this

definition would be:

T ¼ fT j GT � 0; T�1F � 0g: ð8Þ

However, this formal definition ignores the flexibility

of factors when attempting a rotation. Instead, the fol-

lowing intuitive definition is more realistic:

T ¼ fT j Ḡ � GT; F̄ � T�1F; Ḡ � 0; F̄ � 0;

QðḠ; F̄ÞVQmaxg ð9Þ

where Qmax denotes the largest acceptable value for Q

(see below).

It does not seem possible to characterize the

ambiguity by one single numerical value. Different

tools for characterizing the family of acceptable rota-

tions T are needed. One possibility is to explore how

small or how large a few chosen individual elements

of G and/or F may become.

4.2. Assessing the increase of Q when a rotation is

attempted

Throughout this work, rotations are considered

acceptable if they do not increase Q ‘‘too much.’’

Full understanding of how much is ‘‘too much’’ needs

to be provided. Devising reliable criteria is compli-

cated by the fact that the error structure of environ-

mental measurements is complicated. Some error

sources may be common to many data points, and

hence statistical techniques based on the assumed

statistical independence of errors of data points are

not applicable. The following qualitative guidelines

have been used successfully in practical work. It is

assumed that correct error estimates have been used in

the analysis. The notation Qm means the portion of Q

that arises from the main or data-fitting equations

(penalty-defining equations are excluded).

If the model is correct, the expected value of Qm is

approximately equal to the number of data values

minus the number of essential free parameters fitted to

the data. This value is often called degrees of freedom

v. For factor analysis, this gives:

EðQmÞ � v ¼ nm� pðnþ mÞ ð10Þ

i.e. the size of X minus the number of unknown

factor elements. (Because of free rotations, the num-
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ber of essential free parameters is usually smaller

than the number of factor elements. However, this

problem is ignored.) Consider a rotation that meets

resistance because a number of factor elements are

driven against the limit of zero. Then Qm increases

because the shapes of factors must change more than

what corresponds to a pure rotation. On the other

hand, the factor elements that are forced to be

approximately zero are not free variables any more.

Their values cannot be adjusted in order to optimize

the fit. Thus, one may argue that the number of free

parameters should not include such factor elements

that are approximately zero. It follows that the

expected value of Qm increases by the number of

(near) zero entries that are introduced in the factor

matrices because of the rotation. The practical rule

is as follows: ‘‘A rotation that introduces k (near-

)zeros in factor matrices is certainly allowable if

the accompanying increase of Qm is less than k

units.’’

No rule is known that would say when a rotation is

certainly not allowable. In practice, increases of Qm

by tens of percent have been considered forbidden.

Between these two extremes, there is the gray area

where reliable criteria are not yet known. When

reporting results where rotations in the gray area are

considered, one should probably report the observed

increase of Qm so that the reader may form an opinion

about the situation.

4.3. Approaching rotational ambiguity through trial-

and-error rotations

Detailed information about the rotational ambigu-

ity may be obtained by trial-and-error rotations. Then

one repeatedly influences the solution by any of the

available methods (e.g. by pulling chosen factor

elements towards zero) and observes how much the

Qm value increases from its lowest value. By com-

paring the change induced in results and the change

of Qm, one obtains information about the uniqueness

of the solution. If the increase of Qm is allowable,

then the rotated factors represent another viable

solution.

Different rotations interact with each other. Thus, it

is not enough to determine which individual rotations

have large uncertainties. A complete understanding of

the situation requires that one also studies to what

extent those rotations may be performed simultane-

ously with each other.

4.4. Program PMF2 and the matrix of rotational un-

certainties

Program PMF2 implements non-negativity con-

straints by means of logarithmic penalty functions,

included in the object function Q to be minimized.

Whenever an element gih (or fhj) is about to become

negative, then the corresponding term in the object

function, � ln( gih), approaches plus infinity and

causes an increase of Q. The elements never become

exactly zero. By controlling the strength of the

penalty terms, the user may allow arbitrarily close

approach to zero but the exact value of zero is never

reached.

At each iteration step, PMF2 computes and exe-

cutes a rotation matrix T as a linearized least squares

fit that minimizes the penalty functions (see Paatero

[2]). The unknowns in this fit are all the non-diagonal

elements of T. If this rotation is computed at the point

of convergence, then the identity matrix is obtained,

i.e. all non-diagonal elements of T are zero. In

addition to matrix T, the least squares fit produces a

covariance matrix for the estimated unknowns, i.e. for

all non-diagonal elements of T. This matrix is of

dimensions ( p2� p)� ( p2� p). The square roots of

the diagonal elements of this matrix represent the

standard deviations of the computed elements of T.

The program PMF2 provides these standard deviation

values as a matrix called ‘‘rotmat’’. In this presenta-

tion, matrix ‘‘rotmat’’ is denoted by &. Elements of &

represent error estimates of elements of the rotation

matrix T:

Cij ¼ stddevðtijÞ: ð11Þ

The significance of elements of & is discussed in

the PMF User’s Guide, Part 2 [9]. Roughly, each

value &us indicates how large the parameter r may be

at most in the corresponding Eq. (5) without increas-

ing the penalty function more than by one unit

(D(Qpenalty)V 1.0). This estimate takes into account

all possible rotations, not just elementary ones.

At this time, no quantitative evaluation of & has

been performed. It is only reasonable to consider it as

a qualitative or heuristic tool. Each ‘‘large’’ element in
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& indicates that there is a free rotation between the

indicated factors. In contrast, a ‘‘small’’ valued ele-

ment of & means that there is no rotational freedom

between the indicated factors. The elements of &

describe the total effect of all possible rotations,

elementary and non-elementary. This result is guaran-

teed by the way & is formed: its elements are not

formed one-by-one by trying individual elementary

rotations. Instead, all elements of & arise from one

global least squares fit where all of the non-diagonal

elements of T are determined together.

The rotational status of the solution may be influ-

enced by pulling some factor elements towards zero or

by using a non-zero rotational parameter /. Such in-

fluencing will decrease the remaining rotational un-

certainty in the new result. Hence, the elements of &

will be smaller for the new solution. This result should

not be construed as a proof that the new solution is

‘‘better.’’ The smaller elements of & simply indicate

that there is less room for further rotations because the

user has fixed some parts of the solution.

In addition to the joint rotational uncertainty of G

and F, there is also individual uncertainty in G and F

(see next section). It is not known how to combine

these different estimates into a single description of

uncertainty.

4.5. Using the Jacobian or Hessian matrix for esti-

mating uncertainties

Paatero [8] discussed the use of the Jacobian or

Hessian matrix for estimating uncertainties of com-

puted factor elements. The approach appears promis-

ing for small and medium-sized problems where the

data value errors are relatively small. Also, by using

the Hessian approach, a single set of estimates is

obtained that describes both rotational and regres-

sion-like uncertainty of all factor elements. This out-

come is in contrast to the approach of PMF2, where a

complete uncertainty estimation requires three sepa-

rate steps: (1) Estimating uncertainty of G, when F is

assumed known, (2) similarly, estimating uncertainty

of F, when G is assumed known, and (3) estimating

the joint rotational uncertainty of G and F, as

described above. However, there is no documented

record of the application of this approach to date.

Further discussion of the approach has to be post-

poned until more experience is gained.

5. Other techniques for controlling rotations

As a tenet of our scientific experience, there is an

implicit assumption that ‘‘A unique answer exists to

each question. This unique answer will be obtained if

you use the right techniques.’’ In the spirit of this

assumption, one would hope that there would be some

technique for finding ‘‘correct’’ rotations. Unfortu-

nately, it seems that the rotational problem is unsolv-

able unless some additional information is available.

Thus, one has to look for possible sources of addi-

tional or a priori information.

5.1. Pulling selected factor elements towards zero

When analyzing Hong Kong aerosol, Lee et al.

[10] found sulfate in almost all factors. Such a result

did not appear plausible. The concentration of sulfate

was then forced toward zero in a number of factors in

a follow-up PMF2 run. The increase of Qm did not

appear significant and more plausible factors resulted

from the pulled-down computations.

The analysis of Hong Kong data offers a simple

example of forcing toward zero with only one com-

pound subjected to pulling. It would be possible to

use such forcing on several compounds, provided that

there is reliable information about compounds that

are not emitted by certain sources. In addition, it

might also be possible to apply forcing to specific

time series factor elements. Sometimes information

about weather patters might reveal that a certain

source cannot affect the receptor site during certain

time intervals or it was not functioning (e.g. plant

was on strike). Then the time factor elements corre-

sponding to such intervals could be forced towards

zero.

If pulling-down is used in a reported study, then it

is essential that such forcing is reported. Of course,

such a priori information that justifies the use of

pulling must also be reported. In this way, the reader

will be provided with all of the pertinent information

that is needed for replicating the analysis or for

judging the validity of the analysis. Also, at a later

time, it may become known that some part of the

assumed a priori information was in fact not true.

Then proper reporting of the details of the analysis

helps in deciding what portion of the results remain

valid and what should be discarded.
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5.2. Target shapes—half-way between FA and CMB

Factor analysis (PCA, FA) and Chemical Mass

Balance (CMB) are two extreme forms of emission

analysis. For CMB, see Cooper et al. [11]. In factor

analysis, nothing is assumed about the composition

profiles of sources (except for the assumption that

profiles do not change with time). In CMB, it is

assumed that all profiles are exactly known in

advance.

As an intermediate between FA and CMB, a

method called Target Transformation Factor Analysis

(TTFA) has been used [12]. In TTFA, the user

specifies likely target shapes for the composition

factors. The algorithm attempts to rotate the com-

puted solution so that the target shapes are repro-

duced as well as possible. Although TTFA has been

successful in many practical problems, it suffers

from the fact that rotations are performed a posteri-

ori, after choosing the subspace with an eigenanal-

ysis.

Both of the extremes (FA, CMB) have certain

merits. However, by using new solution tools such

as PMF2 or ME-2, it is possible to set up analyses that

are between these extremes where something is

assumed known about emission profiles but additional

information is to be determined during the analysis.

Such analyses might be called with the generic name

of ‘‘Target factor analysis’’. It is believed that in

situations where one might consider using either

CMB or FA, a technique based on target shapes would

in fact be optimal, better than either one of the

extreme alternatives.

Simple forms of target factors may be imple-

mented by using the program PMF2. However, set-

ting up such runs is tricky and error-prone because

PMF2 was not originally designed for these kinds of

analyses. The program ME-2 is the better tool for

setting up target factors. The technique will be pre-

sented without regard to the exact form of setting up

the runs.

5.2.1. A hybrid setup between CMB and FA

A hybrid analysis is conceptualized in the follow-

ing way: a number of the composition factors

( = rows of factor matrix F) are specified as com-

pletely known or ‘‘fixed’’. This is in spirit of CMB.

The remaining composition factors are assumed to be

completely unknown, in the spirit of PCA or FA. In

this way, the best of CMB and of FA could be

combined if a few of the sources are well known in

advance. This kind of analysis has not been attemp-

ted so far.

5.2.2. Target shapes: approximately known ratios of

concentrations

Equations of the type:

afjs � bfju ¼ 0 ð12Þ

are easily implemented in the program ME-2. Such an

equation specifies that the ratio of the two concen-

trations fjs and fju has to be approximately b/a. The

error estimate assigned to the equation specifies how

closely the factor values must match the specified

ratio. Sometimes the absolute level of certain concen-

trations is not known although the ratios of a few of

them are well known. Then Eq. (12) is preferable to

techniques presented below.

5.2.3. Target shapes: exactly known concentrations

If some concentrations of a source are reliably

known, then the corresponding factor elements may

be specified as ‘‘fixed’’. Alternatively, upper and

lower limits may be specified for such factor elements

so that a narrow interval of variation is left for the

values in question. Note that the normalization of the

factor in question becomes defined by such specifi-

cations. No additional normalization should be speci-

fied for such a factor. This arrangement may lead to a

fast convergence of the run.

5.2.4. Target shapes: approximately known concen-

trations

If elements of a composition profile are approx-

imately known, then equations should be specified

with suitable error estimates that reflect the uncer-

tainty of the information. The known (or assumed)

values of factor elements fjs are represented by a

matrix ujs. Equations of the type ujs = fjs are inserted

in the model for some indices j and s. Error estimates

corresponding to the uncertainty of the information

are specified for the equations. If there is no informa-

tion available for certain concentrations, then either

the corresponding equations are omitted from the
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model or else ‘‘infinitely large’’ error estimates are

specified for those equations.

5.3. Should one use a priori information for checking

the computed factors or for computing the factors?

Such information can only be used once and using

it for both tasks is a circular problem. With customary

techniques, one has used a priori information for

controlling the quality of the computed analysis. If

the computed factors were in conflict with the a priori

known facts then the analysis was rejected. If a priori

information is used for guiding the analysis towards a

meaningful rotation, then this possibility of a posteri-

ori checks is lost. Perhaps a trade-off may be found.

Some part of the available a priori information can be

reserved for a posteriori checking while the rest is

used for setting up auxiliary a priori equations, e.g.

Eq. (12).

5.4. Using the ‘‘edges’’ in the p-dimensional space of

rows of matrix G

Henry [13] has suggested a technique based on

patterns of data points in the p-dimensional space of

rows of matrix G. These patterns are called edges.

Simplified, the reasoning goes as follows.

Each data point corresponds to a row in matrix G,

and hence to a point in a p-dimensional linear space of

factors. Non-negativity means that the points are

confined to the first octant of the space. Each different

rotation corresponds to a different position of the

coordinate planes or subspaces in the space. The data

points are considered to be in fixed positions. It is

assumed that there are one or several sources that are

not present in a sufficient fraction of the data points.

The points where one source is absent lie in a sub-

space of dimension p� 1. In the terminology of

Henry, such a subspace is called an edge. Henry has

implemented an algorithm UNMIX that attempts to

rotate so that one of the coordinate subspaces becomes

identical with an edge subspace. If this succeeds, then

it is highly probable that the factor in question

corresponds to a real source. Often, it is possible to

rotate so that several edge subspaces become identical

with coordinate subspaces, thus identifying several

factors. The use of edges is under development for the

multilinear engine.

6. Summary

Elementary rotations were introduced. These rota-

tions serve as an aid in visualizing what happens in a

rotation. Also, they allow a quick qualitative way of

inspecting the results and deciding if rotational ambi-

guity is or is not present.

Different techniques for influencing the rotational

status of computed factors have been discussed. It is

emphasized that these techniques are not statistical

miracles. Instead, the techniques are based on assump-

tions about true factors, and in particular, on assump-

tions regarding the zero elements in scores and/or

loadings. If such assumptions are not justified, then

there is also no justification for any of the rotational

techniques.

The problem of diagnosing the rotational ambi-

guity was also discussed. It was seen that the two

problems (influencing and diagnosing rotations) are

intertwined: the most general method for diagnosis is

to try to cause rotations. If rotations do happen,

ambiguity is present. Matrix-based methods of diag-

nosis were also discussed. One such method is based

on the internal structure of the program PMF2 and not

easily transportable to other environments. Another

method, based on the Jacobian or Hessian matrices of

the fit, is theoretically superior in the small-error case

where a linear approximation of the bilinear model is

good enough. However, the Jacobian and Hessian

matrices become impractical to handle if the total

number of scores and loadings is large (more than,

say, 2000).
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