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Abstract

The problem of identifying sources of airborne pollutants and providing quantitative estimates of the contributions of each of

those sources is important for airborne particulate matter. Various forms of factor analysis have been applied to this problem.

However, in factor analysis, there is the fundamental problem of rotational ambiguity that makes the problem ill-posed. Thus,

the incorporation of additional information can be useful in improving the solutions. Especially for identifying local sources,

wind data (direction and speed) could be valuable additional information in such receptor modeling. However, wind data cannot

be used directly as dependent variables in factor analytic modeling because the dependence of observed concentrations on wind

variables is far from linear. An expanded multilinear model has been developed in which the wind direction, speed and other

variables are included as independent variables. For each source, the analysis computes a directional profile that indicates how

much of the concentrations are explained by the factors depending on wind direction, speed, and other values. This model has

been tested using simulated data developed by the U.S. Environmental Protection Agency as part of a workshop to test

advanced factor analysis methods. For most of the local sources, well-defined directional profiles were obtained. D 2002

Elsevier Science B.V. All rights reserved.
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1. Introduction

With the promulgation of new National Ambient

Air Quality Standards (NAAQS) for airborne partic-

ulate matter, there is a renewed interest in improved

methods to identify and quantitatively apportion

sources of particle mass. Such methods will be

needed in the near future to analyze the data that

will be obtained through the national chemical spe-

ciation network that will begin to be deployed in

2000 and will eventually produce large quantities of

elemental composition data that will need to be

analyzed. The results of such source identification

and apportionment efforts will then be utilized as part

of the State Implementation Planning (SIP) process

to develop efficient and effective strategies to bring

the particulate matter concentrations into compliance

with the NAAQS values. The identification and

0169-7439/02/$ - see front matter D 2002 Elsevier Science B.V. All rights reserved.

PII: S0169-7439 (01 )00183 -6

* Corresponding author. Department of Chemical Engineering,

Clarkson University, P.O. Box 5705, Potsdam, NY 13699-5705,

USA. Tel.: +1-315-268-3861; fax: +1-315-268-6654.

E-mail address: hopkepk@clarkson.edu (P.K. Hopke).

www.elsevier.com/locate/chemometrics

Chemometrics and Intelligent Laboratory Systems 60 (2002) 25–41



apportionment of pollutants to their sources is called

receptor modeling.

Currently, there are two basic approaches to the

receptor model problem depending on the extent of a

priori knowledge that is available about the number

and nature of the sources. If the pollution sources are

known and the compositions of the emissions have

been measured, then the Chemical Mass Balance

(CMB) model [1,2] can be applied. This model pro-

vides a quantitative estimate of the contribution of

each identified source and the corresponding uncer-

tainty in that estimate. However, in many cases, the

sources have not been identified or their emissions

characterized.

If the source information is not known, multi-

variate receptor models [3,4] can be applied. These

models estimate the number and nature of the sources

from only the ambient data. However, there are limi-

tations to the ability of factor analysis to produce un-

ambiguous results that make the factor analysis prob-

lem ill-posed [5]. The imposition of constraints such

as non-negativity of the source profile and source

contribution values can reduce this rotational ambi-

guity. Thus, new factor analysis methods have been

developed that incorporate such constraints. UNMIX

developed by Henry [3,6] applies constraints exter-

nally to the eigenvector analysis used to identify the

number of underlying source profiles. The model has

been applied to the data from Los Angeles, CA [7].

An alternative method, Positive Matrix Factoriza-

tion (PMF), uses a least squares approach to solve

the factor analysis problem and can integrate the non-

negativity constraints into the optimization process

[8]. This approach as implemented in the programs

called PMF2 and PMF3 have been applied to a num-

ber of data sets including precipitation [9,10] and ur-

ban [11,12] and remote [13–16] site particulate

matter compositions. In the study of data from Alert,

N.W.T., it was found that the data were best repro-

duced by a more complicated model [17]. In order to

fit this model, Paatero [18] developed a more flexible

fitting algorithm called the multilinear engine (ME)

that can be applied to fit any model that can be

expressed as a sum of products. The availability of

this tool that can efficiently fit complex data models

has enabled the construction of the present model.

Airborne concentrations due to specific sources may

display a sharp directional pattern with respect to

wind directions. In these cases, concentrations are

high when the air arrives from certain direction(s)

while concentrations associated with other directions

are low or nil. Such non-linear dependency cannot be

directly modeled so that wind information would be

included in a factor analytic model as one or a few

special variables, used in parallel with the ordinary

variables, the concentrations. There may be other

similar kinds of effects such as weekend/weekday

activity patterns, time of day, time during the year,

etc. that significantly affect the observed elemental

concentrations. The non-linear variables can be

included in the model as independent or free varia-

bles. The nature of the resulting expanded factor

analysis model is described in the next section. The

application of this model will be demonstrated using

the simulated data prepared by the Environmental

Protection Agency for a workshop held in February

2000 to compare the performance of UNMIX and

PMF [19].

2. Data analysis

In this study, a generalization of the ordinary

bilinear (factor analytic) model has been used for

modeling source–receptor data. The ordinary factor

analysis model can be written as

X ¼ GFT þ E ð1Þ

where X is the matrix of ambient elemental concen-

trations, F is the matrix of source profiles, G is the

matrix of source contributions, and E is the matrix of

residuals that are not fit by the model. In this paper,

composition profiles run along columns of F, not

along rows. This creates a consistent notation where

all factor matrices are organized similarly. For this

reason, F is transposed in Eq. (1).

To present the expanded factor analysis approach,

the model is described from the viewpoint of one

source, denoted by p. In reality, there are several

sources and the observed concentrations are sums of

contributions due to all sources, p = 1,. . .,P. In the

customary bilinear analysis, the contribution rijp of

source p on day i to concentration of chemical species

j is represented by the product gip fjp, where gip
corresponds to the strength of source p on day i,

P. Paatero, P.K. Hopke / Chemometrics and Intelligent Laboratory Systems 60 (2002) 25–4126



and fjp corresponds to the concentration of compound

j in the emission signature of source p.

In the present expanded PMF analysis, the bilinear

Eq. (1) is augmented by another more complicated set

of equations that contain modeling information. In its

most basic form, the contribution rijp of source p is

represented by the following expression:

rijp ¼ mip fjp ¼ Dðdi; pÞVðvi; pÞ fjp ð2Þ

The known values di and vi indicate wind direction

and wind speed on day i. The symbols D and V

represent matrices, consisting of unknown values to

be estimated during the fitting process. Their columns

numbered p correspond to source number p. Because

of typographic reasons, their indices are shown in

parentheses, not as subscripts. The index value di for
day i is typically obtained by dividing the average

wind direction of day i (in degrees) by 10 and

rounding to the nearest integer. As an example, if

source 2 comes strongly from the wind direction at

90�, then the element D(9,2) is likely to become large.

The values vi are obtained from a chosen classification

of wind speeds. The following classification was used

in this work: 0–1.5–2.5–3.5–5.8–1 m/s. Thus,

vi = 2 for such days when the average wind speed is

between 1.5 and 2.5 m/s.

Fig. 1. Location of main sources relative to the receptor location.

Fig. 2. Comparison of the average contributions of the 12 PMF

resolved source profiles with the actual average source contribu-

tions. The results of the conventional PMF analysis are represented

by the gray bars while the black bars present the known true values.
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In component form, the equations of the model

are:

xij ¼
XP
p¼1

gip fjp þ eij

xij ¼
XP
p¼1

mip fjp þ eVij

¼
XP
p¼1

Dðdi; pÞVðvi; pÞ fjp þ eVij ð3Þ

The notation mip does not indicate a factor ele-

ment to be determined, such as gip, but the expres-

sion defined by the physical model in question. In

different physical models, mip will correspond to

different expressions. Because the variability of mip

is restricted by the model, the second set of Eq. (3)

will produce a significantly poorer fit to the data

than the first set of Eq. (3). The physical model, mip,

is one of multiple possible models depending on the

understanding of the system under study while the

mass balance in the first set of equations should be

much more applicable. Thus, the error estimates

connected with the second set of equations must be

(much) larger than the error estimates connected with

the first set of equations.

The task of solving this expanded PMF model

means that values of the unknown factor matrices

G, F, D, and V are to be determined so that the models

Fig. 3. Source profiles for road 4, road 2, area, and lime kiln compared to the true profiles.
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fits the data as well as possible. In other words, the

sum-of-squares value Q, defined by

Q ¼
XI
i¼1

XJ
j¼1

ðeij=rijÞ2 þ
XI
i¼1

XJ
j¼1

ðeVij; =rV
ijÞ

2 ð4Þ

is minimized with respect to the matrices G, F, D, and

V, while the residuals eij and eijV are determined by

Eq. (3). The error estimates rijV must be specified

(much) larger than the corresponding error estimates

rij.

Since there are other sources of variation such as

weekend/weekday source activity patterns or seasonal

differences in emission rates or in atmospheric chem-

istry, additional factors are included in the model. In

this case, wind direction, wind speed, time of year,

and weekend/weekday will be used. In this case,

twenty-four 1-h average values are available for wind

speed and direction. Time of year will be aggregated

into six 2-month periods or seasons, indicated for

each day i by the index variable ri (the Greek letter r
is used for two purposes: rij indicates the error

Fig. 4. Source profiles for coal, asphalt, refinery, and residual oil combustion compared to the true profiles.
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estimates of data values, while ri indicates the season

number for day i). For the values i= 1 to i= 60, ri = 1,
meaning that January and February belong to the first

season. For the values i = 61 to i = 121, ri = 2, and so on.
Instead of the basic Eq. (2), the non-linear depend-

encies are now defined by the following multilinear

expression:

mip ¼
X24
h¼1

Dðdih; pÞVðvih; pÞWðxi; pÞSðri; pÞ

ð5Þ

whereD(dih,p) is the element ofDwith the index for the

wind direction during hour h of day i for the pth source,

V(vih,p) is the element of V with the index for the wind

speed during hour h of day i for the pth source,W(xi,p)

is the element of W with the index corresponding to

day i for the weekday/weekend factor for the pth

source, and S(ri,p) is the element of S with the index

corresponding to the time-of-year classification of day i

for the pth source. Each of these matrices,D,V,W, and

S, contain unknown values to be estimated in the

analysis. The specific factor elements used to fit a

Fig. 5. Source profiles for jetfuel, steel sinter, glass, and incinerator compared to the true profiles.
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particular data point are selected based on the hourly

(D,V) or daily (W,S) values of the corresponding

variables. Thus, these auxiliary variables are not fitted,

but serve as indicators to the values to be fitted.

The expanded model to be fitted consists thus of

the basic bilinear equations plus a set of multilinear

equations specifying the physical model:

xij ¼
XP
p¼1

gip fjp þ eij ð6Þ

xij ¼
XP
p¼1

mip fjp þ eVij ¼
XP
p¼1

X24
h¼1

Dðdih; pÞ

�Vðvih; pÞWðxi; pÞSðri; pÞfjp þ eVij ð7Þ

The multilinear engine (ME) was used to solve this

problem with non-negativity required for all of the

elements of the matrices being estimated [18]. The

following values were used as input to the program: xij, the

corresponding error estimates rij and rijV, and the index

variables dih, vih, xi, and ri.

3. Data description

Sixteen distinct source profiles were used in Pal-

ookaville simulation—nine point sources, four indus-

trial complexes, one area source, and two highways.

The layout of the sources is shown in Fig. 1. Hourly

meteorological data including wind speed and direc-

tion were used in the ISC3 model to estimate the

concentrations at the receptor site. The area profile

was a mixture of dust and road profiles. All source

profiles with the exception of the petroleum refinery

were fixed. The latter profile had some built-in

variability (coefficient of variability of approximately

Fig. 6. Source profiles for wood combustion, iron ore, and metal fabrication compared to the true profiles.
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Fig. 7. Wind direction factors for each of the sources. The columns of matrix D are plotted in polar coordinates.

P. Paatero, P.K. Hopke / Chemometrics and Intelligent Laboratory Systems 60 (2002) 25–4132



25%). Temporal modulation of the source strengths

(50% CV for most) was found to be essential in being

able to resolve the sources by PMF or UNMIX. A

total of 366, 24-h samples were generated at the

receptor site.

The data matrix was augmented by one artificial

variable: all identified concentration were subtracted

from the measured mass concentration. The resulting

variable might be called unidentified mass. The pres-

ence of such variable is useful for limiting the range of

possible rotations: such rotations are prevented that

would cause the concentration of unidentified mass to

go negative in some factor(s).

4. Practical details

4.1. Weekday/weekend factors

The weekday/weekend factors has been simplified

as follows. In principle, the matrix W has dimension 2

by p. The first row specifies the coefficients for week-

days, and the second row for weekend days. In this

work, the weekday coefficients have been fixed at unity

so that they may be omitted from the actual equations.

Then only the second row remains in effect. Its elements

specify the average strength of each factor on weekend

days, relative to the strength in weekdays.

4.2. Modification of the equations to accommodate

modeling errors in strong factors

In this data set, there are three strong non-direc-

tional sources that are not very well described by the

physical model in Eq. (5). It turned out that it was

impossible to determine the weakest (15th) factor if

Eq. (7) was used in its original form. When the

number of factors was increased from 14 to 15, one

of the strongest factors split in two because of the poor

fit. For this reason, Eq. (7) was modified to be

xij ¼
XP
p¼1

ðkpgip þ ð1� kpÞmipÞfjp þ eVij

¼
XP
p¼1

kpgip þ ð1� kpÞ
X24
h¼1

Dðdih; pÞ
 

�Vðvih; pÞWðxi; pÞSðri; pÞ
�
fjp þ eVij ð8Þ

For all but the strongest sources, the coefficients kp
were set to zero. For the strongest factors, kp = 0.8 was
used. In this way, the less-than-perfect model of the

strong factors did not mask the 15th factor. This

problem will exist for any system in which some

sources have strong wind directional dependence and

some do not. The separation of the object function

through the use of the kp reduces the effect of the

wind directionality in the model on the non-direc-

tional sources.

4.3. Computation in stages

It is common to start a multilinear analysis at a

pseudorandom starting point. In this work, it was

necessary to run in stages. First, an initial analysis

was computed with a smaller number of factors,

typically 13, by using a pseudorandom start. Then

the strongest factors were identified and non-zero

values were assigned to the corresponding coefficients

kp. The number of factors was increased by one, and

the new factor was initiated by using pseudorandom

values. The old factors were started from the values

that resulted from the previous computation. After

computing the results, the number of factors was

again increased by one. This was continued until the

emerging factor was not meaningful.

Fig. 8. Weekend/weekday correction factor (values on the second

row of matrix W).
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4.4. The scale for wind directions

When the use of wind information was discussed

above, it was suggested that wind direction is clas-

sified into intervals of uniform width, typically 10�
or 20�. It is, however, quite possible to use intervals

of varying widths, in analogy with classifying wind

speeds. In this data, the point sources with directions

between 200� and 240� appear with very sharp

directional definition. For this reason, 20 directional

intervals were chosen, most of them having width of

20�. Between 200� and 240�, four intervals of width
10� were specified.

4.5. Choosing the error estimates

For the bilinear Eq. (6), the error estimates rij were

set according to the noise that was introduced in the

simulation. The relative level of this noise (expressed

in percent of the true values) was specified in simu-

lation description. In the description, detection limits

were also specified for all elements. In this work, it is

assumed that error estimates of low concentrations

must not be smaller than one-third of the specified

detection limit. With real data, this would be normal

practice. However, in this simulated data set, the

relative noise level remains the same also for lowest

Fig. 9. Wind speed factors (columns of matrix V) for jetfuel, steel sinter, glass, asphalt, coal, and road 4.
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concentrations (this fact was revealed after the work-

shop). Once this fact is known, one could extract more

information from the data by decreasing the error

estimates of the lowest concentrations. Such modifi-

cation was not attempted in this study because it

would never work with any real data. The lessons

from the simulation study will be most valuable if one

avoids such techniques that never succeed with real

measurements.

For the multilinear Eqs. (7) or (8), the error

estimates rijV were specified as a fixed multiple of

the corresponding bilinear values rij: rijV = 8rij. The

multiplier ( = 8) was chosen so that the contribution to

Q from the bilinear equations was three times the

contribution from the expanded model equations.

However, the value of the multiplier is not critical.

Practically the same results would be obtained with

values ranging from 7 to 10, say.

4.6. Regularization

The data suffer from the fact that concentrations

are integrated over 24 h. It is not possible to attribute

the collected concentrations to different hours of the

day with certainty. Solving the model is an ill-posed

problem. It was noticed during this study that different

factor values might produce practically the same fit to

data. In order to avoid spurious results, it is necessary

to regularize the model. The following regularization

was applied in the present work.

Fig. 10. Wind speed factors (columns of matrix V) for iron ore, residual oil combustion, incinerator, lime kiln, refinery, and area.
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The seasonal factors S(k,p) and the weekend coef-

ficients W(2,p) were pulled towards unity. In other

words, auxiliary equations were added to the model,

such as

Sðk; pÞ ¼ 1 ðk ¼ 1; . . . ; 6; p ¼ 1; . . . ;PÞ ð9Þ

The error estimates connected to these equations were

specified so that the contributions to Q from these

equations were a few percent of the contributions

from main equations. In other words, introduction of

these equations was not allowed to worsen the fit

noticeably. Nevertheless, the computed factors

changed clearly. Such variation disappeared from the

seasonal and weekend factors that was not essential

for achieving a good fit.

4.7. The multilinear engine script

The details described above were implemented as

commands in the script that guides the operations of

the multilinear engine program. The script should be

understandable for anybody with programming back-

ground in BASIC, Fortran, or C. The script is avail-

able from the authors. The program was run on a PC

computer equipped with a Pentium II processor and

96 MB of memory. Typically, between 1000 and 2000

iteration steps were needed for convergence. One step

took approximately 1 s.

5. Results

The conventional PMF analysis of the Palookaville

data produced a 12-factor solution that clearly identi-

fied the major sources [19]. For the main sources, the

source profiles computed by PMF produced an excel-

lent match to the true profiles used in the simulation.

However, several profiles of the minor sources were

less well reproduced and some of the mass was

apportioned from the most significant sources to some

of the minor sources. The comparison of the conven-

tional factor analysis to the known average source

strengths is shown in Fig. 2.

Using the expanded wind-based model, it was

possible to extract 15 of the 16 source profiles

employed in the simulation. Only the cement plant

could not be separated. These resulting source profiles
Fig. 11. Wind speed factors (columns of matrix V) for road 2, wood

combustion, and metal fabrication.
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can be compared to the known profiles used to

prepare the data. These comparisons are shown in

Figs. 3–6. Thus, this analysis has resolved an addi-

tional three of the weak sources. In general, there is a

good agreement between the extracted and the true

profiles. There are cases of a number of specific

elements in particular profiles that are over- or under-

predicted. This result is particularly important given

that no specific rotations were imposed on the results.

It is the expanded modeling that reduces the rotational

ambiguity in the problem.

The wind direction factors, the columns of matrix

D, are displayed in Fig. 7. The point sources (lime

kiln, coal, asphalt roofing, petroleum refinery, residual

oil combustion, jet fuel combustion, steel sinter, glass

furnace, municipal incinerator, wood combustion, iron

ore dust, and metal fabrication) generally show strong

directional behavior that agrees well with the distri-

bution of the sources. These results are extremely

encouraging in terms of being able to identify the

direction from which the source materials arrives at

the receptor site. For the distributed sources (area,

road 2, and road 4), there is still some defined di-

rectionality. The major road source (road 2) is mainly

along the roads that cross just to the south of the

receptor site. Thus, the major wings in the road 2

directional pattern point along these four directions.

For the area source that is uniformly distributed

around the receptor site, there are also preferred di-

rections in the wind direction. The directionality

shown in the area source figure may reflect these

features in the data formulation process. However, one

cannot exclude the possibility that the directionality of

the area source is an artefact caused by too little

regularization being applied.

Fig. 12. Predicted versus true mass contributions for residual oil and

wood combustion.

Fig. 13. Predicted versus true mass contributions for glass and the

total mass values.
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The weekend/weekday correction factors, corre-

sponding to the relative strength of each source on

weekend days, are shown in Fig. 8. The incinerator

was set to be off on weekends and it can be seen that

the correction factor for this source is almost zero.

There was also reduced traffic on the major road (road

2) on weekend days, in agreement with what was built

into the data creation process.

Figs. 9–11 show the profiles for the wind speed

factor, columns of matrix V. Many of these factors

have very low values for the lowest wind speed range,

indicating weak transport from the point sources to

the receptor site. The general trend is that these

factors decrease with increasing wind speed. This

trend is explained by a dilution effect: with increasing

wind speed, the same emitted mass is distributed to a

larger volume of air so that the concentration

decreases. Without having more specific details on

the preparation of these data, it is not possible to

compare these results to the true relationships used to

create the data. However, in general, the results seem

sensible. For the sources ‘‘wood’’ and ‘‘metal fabri-

cation’’, the computed wind speed dependency

appears unrealistic. This is not surprising because

Fig. 14. Seasonal factors for jetfuel, steel sinter, coal, road 4, road 2, and residual oil.
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these factors are so weak that their identification is

just barely possible.

Figs. 12 and 13 show several of the seasonal or

time-of-year patterns ( = columns of matrix S). Again,

it is not possible to directly compare these results with

the data creation process.

Figs. 14 and 15 show the contribution values for

the individual samples for several of the sources. The

parameters describing the quality of the reproduction

of the true contributions values are provided in Table

1. It can be seen that, generally, the relationship of the

estimated contributions for individual samples with

the true values has a very high correlation with many

of the r2 values approaching 1. For the sources

making significant contributions, the slopes are gen-

erally close to 1. The ability to accurately resolve the

weaker sources depends on how distinctive the source

profiles are relative to the other sources and the level

of uncertainty in the data.

The apportionment of the average aerosol mass to

the sources is shown in Fig. 15. It can be seen that for

all of the higher contribution sources, there is excel-

lent agreement between the estimated and the true

contributions.

5.1. Interpretation of results

The independent variables do not necessarily occur

randomly in arbitrary combinations. During different

times of year, wind may come predominantly from

different directions or average wind speeds may be

different. Thus, some part of variation in source

strengths might be explained alternatively by the

seasonal factors or by the wind-related factors. Sim-

ilarly, wind speed and wind direction may be corre-

lated. Because of such correlations, caution is needed

when interpreting the results.

Fig. 15. Average mass apportionment by the present analysis

compared with the true average mass contributions.

Table 1

Parameters describing the predicted versus the true source contributions

Source Mass (mg� 3) Intercept Error Slope Error r r 2

Aircraft 1.01 0.04 0.01 0.999 0.003 0.998 0.996

Asphalt 0.62 0.04 0.01 1.693 0.012 0.992 0.983

Coal 1.62 0.06 0.02 1.066 0.004 0.997 0.994

Road 4 0.62 0.18 0.01 0.528 0.009 0.946 0.895

Road 2 23.35 0.03 0.13 0.914 0.004 0.996 0.993

Glass 0.15 0.06 0.00 0.340 0.004 0.970 0.941

Iron ore 0.41 0.20 0.01 0.504 0.015 0.864 0.746

Lime kiln 1.02 0.42 0.03 0.781 0.013 0.950 0.903

Metal fabrication 0.34 0.18 0.02 0.548 0.025 0.756 0.572

Incinerator 0.89 0.04 0.01 0.839 0.002 0.999 0.997

Residual oil 5.40 0.06 0.03 0.996 0.002 0.999 0.998

Refinery 0.95 0.10 0.02 1.086 0.008 0.991 0.982

Area 29.67 1.2 0.2 1.010 0.005 0.996 0.992

Steel sinter 0.79 0.12 0.01 0.888 0.009 0.982 0.964

Wood combustion 0.44 0.29 0.02 2.03 0.08 0.811 0.658

Total mass 67.28 0.12 0.18 1.000 0.002 0.999 0.998
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Wind speed is correlated with mixing properties of

the atmosphere. Thus, some effects attributed to wind

speed might in fact be caused by variations in mixing

height or by inversion situations.

Variations observed at receptor site may be due to

variations in source strength or variations in transport

path. This ambiguity should be taken into account

when interpreting the seasonal (time-of-year) factors.

The variation shown by a seasonal factor may be

caused by variations in the activity of the source. For

example, a coal-fired power plant may be off during

low demands of electricity. On the other hand,

weather conditions may be different during different

parts of the year, thus influencing the efficiency of the

transport path from the source to the receptor site.

Such differences of transport efficiency can be repre-

sented by the seasonal factors. In summary, any

variation seen in the seasonal factors may indicate

seasonal variation of source strength or of transport

conditions or of both.

6. Conclusions

The customary bilinear factor analytic model is

enhanced so that a structural expanded factor model is

fitted simultaneously with the original bilinear model.

The structural model reduces the rotational ambiguity

of the solution. In addition, the structural factors, such

as wind direction dependence, aid in identifying the

sources that correspond to the computed factors.

Two meteorological variables (wind speed and

wind direction) plus two calendar variables (the sea-

son of each observation, and the weekday/weekend

status of each observation) are used as independent

variables in the structural model. Each observation

can be envisioned as being mapped into this four-

dimensional space; weather data and calendar infor-

mation determine the mapping. For each source, its

dependence on these four variables is determined

when the model is fitted. A fully unique solution is

not expected because of two reasons: (1) the four

independent variables of the structural model are

correlated; (2) concentrations are integrated over 24

h, thus losing much detail connected with the mete-

orological variables. By applying regularization, a

unique ‘‘smooth’’ solution was obtained, at the

expense of possibly losing some detail.

Comparisons with known true data indicate that the

analysis is successful. More factors could be deter-

mined than by the state-of-the-art bilinear technique

PMF. Close inspection of the results reveals that

minor rotational problems still remain. They are

mainly visible so that the strongest elements of the

strongest factors tend to appear in the weaker factors.

This analysis was based on 24-h concentrations

and 1-h weather data. The success of the analysis

demonstrates that the high-resolution weather data

may significantly enhance the usefulness of 24-h

concentration data. Recording high-resolution weather

data costs much less than gathering high-resolution

concentrations. It is suggested that a cost-optimal

measuring strategy should record frequent and com-

prehensive weather information even if the concen-

trations are integrated over longer times.
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