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Determination of underlying components of a cyclical time series
by means of two-way and three-way factor analytic techniques
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SUMMARY

Atechnique is presented for determining the underlying components in a cyclical time series which is influenced
by one prominent cycle (the diurnal or the yearly cycle). The separation of the components is based on their
different shapes within this period, assuming that the shape of each component stays approximately constant with
time and that the amplitude of each component is a slowly changing function. The series is folded into matrix
shape so that each cycle forms one column. The matrix is factorized by principal component analysis or by
positive matrix factorization (non-negatively constrained factor analysis with individual weighting of data
values), resulting in the shape and amplitude functions for the underlying components. Synthetic two-way
demonstration examples are analyzed. As a real-life example, traffic-induced carbon monoxide concentrations in
urban air are analyzed. The CO has a diurnal concentration cycle which changes shape on weekends. This
behavior is explained by two factors, identified with work-related and other traffic. The CO data in fact contain
another multiplicative cycle, the weekly workdays/weekend pattern. Arranging the data according to time of day,
day of week, and week of the year creates a three-way array. The method is extended to the analysis of such
arrays. Existing software for the well-known PARAFAC model is used for solving the three-way model. Two
factors are again obtained. Their diurnal and weekly cycles correspond to the work-related and weekend-related
traffic patterns. Analysis of cyclical multivariate data is discussed: such data are also governed by the three-way
PARAFAC model. The advantage of the PARAFAC model relative to customary two-way methods is
emphasized: there is usually no rotational ambiguity in PARAFAC results. Copyrig?200 John Wiley &

Sons, Ltd.

KEY WORDS. factor analysis; principal component analysis; positive matrix factorization; cyclical time
series; environmental time series; carbon monoxide

INTRODUCTION

In this work the term ‘time series’ is used in its basic meaning, denoting that some quantity has been
observed repeatedly over time. An analysis is made of cyclical time series, i.e. of series in which
similar values occur repeatedly in a fixed, previously known cycle. The amplitude of the cyclical
signal varies with time. It is assumed that the cyclic behavior is clear and evident, so that there is no
doubt about the existence or length of the cycle. In nature, many such cyclical series depend on the
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242 P.PAATEROAND S.JUNTTO

diurnal rhythm or on the yeaty rhythm. If a seriesdepend on two rhythms which interact

multiplicatively, thenit is called a doubly cyclical series The repetitivebehavioris cause by the

influence of externd periodic circumstancese.g.tempeature level of illumi nation,rainfall patterns,
etc. In this work, univariae time seriesaremodly discussd. Importantenvironmentalmultivariate

applicdions alsoexig. Theseapplicationsare mentionedater on.

Usingtheterminology of signalprocessingthe elementay sigralsto be studed maybedescribed
asamplitude-modulagd signalswhere the carrierwave is not sinusoidl but hasa specift constant
periodic shape.The measured'composite signal’ conskts of a superpogion of several such
elementary signals All thesesigrals havethe sameperiod of the carrierwave. Howeve, both the
periodic shapeof the carrierwave andthe shapeof the moduating sigral areunique for eachof the
elemeantarysignals Theelementarysignalsareto besepaatedfrom eachother,basednthes unique
propertes.At the outset, thesepropatiesareunknown. Theresultcomprisesboththe periodic shaps
andthemoduation shapegor eachelemantarysignal.In custonary signalprocessingthe elementay
signalsthat shouldbe sepaatedfrom eachother are usually of different frequenées. The preent
problemis more difficult becaseall the componentsignalshavethe samefundamental frequeng.

It is not assumedhat the obseved quantty behave accoding to the assumptias which are
custormary in traditional ‘tim e seriesanalysis’.Ecological, econom¢ and also sone environmendl
time seriegnayexhibit dynamicor intrinsic periodcities,sothattheperiodis nota priori known, and
usuallythelengthof the periodis notfixed. Suchoscillatonsaregovemnedby the dynanic feedhack
propertes of the processandsuchtime seriesarewell handked by custorary ‘time seriesanalyss’
[1,2], perhgswith the autoregredse modds. Suchseriesarenot constderedfurtherin this work.

The essatial ideaof the presentwork is thatthe cyclical seriesto be analyzedis folded sothatit
formsamatrix. Thedatafor one cycleform one columnof the matrix, the datafor the nextcycleform
the next column,andso on. In this way the regularities of the seriesare transbrmedso that they
appea aspropeties of the matrix. The existing mathematial tools for analyzing matrices arewell
advaned: they include e.g. principal componentanalysis (PCA), which is basedon singularvalue
decompotion (SVD), andthe new positive matrix factorizaion (PMF), which is espedlly suitable
for postively constaineddata[3]. Theseestablisledtechniquesareappied in the preentwork: no
new computer programs are neededand the mathematal propertes of the soluions are already
known Thesetechniquesallow oneto determire the shapesf the comporentsof cyclic phenonena
instea of merelyidentifying that a periodicty is preent.

A doubly cyclical seriesis analogouly folded sothatit forms a three-wayarray. The threeway
partof the preentwork is basedon the PARAFAC model,sometimesalled CANDECOMP.

p
Xijke 7~ Z ainbjh Ckn (1)
h=1
The PARAFAC modéd wasfirst introducedby Harshmari4]. Later, RossandLeurgans[5] added
positivity constrants and weighting basedon standard deviations of data values. An efficient
algorithm ‘PMF3’ for solving PARAFAC modelswasrecentlyintroducedby Paaterd6].
It hasbeensuggestd to the authorsthat no specialtechniqiesare neededor solving the present
task.According to thesesuggetions, the usualtools of Fourieranalsis would be sufficiert. In the
view of the auttors, this is not true. This questio will be discussd in a separatesectia, later on.

Themultivariate case

Insteadof a scalarvariablex, the time seriesmay also consistof observabns of a vecta-valued
variablex. The precedingdiscussiorappliestheretoo. In thesingly cyclical casethe multivariatedata
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CYCLICAL TIME SERIES 243

arearrangedn the form of a three-wayarray which may be viewed asa matrix of vector values.
Again, the PARAFAC modé is neededfor apprximating the dataarray. In order to keepthe
expositon as simple as possilke, the main part of this paperdescibes the univariae case.The
multivariste equatios aregiven later, in a dedicaed section.

Termindogy, notation

Theword cyclical denotesherea function or sequacewhich repetssimilar behaviar with a fixed
known cycle lengh, without repeatingitself exactly. Only valuesmeasued at discree timesare
consideed. In typical real-life appications the data points would typically be hourly, daily or
monthly. The exampésin this work arebasedon hourly dataobeying a 24 h or diurnalcycle. In the
doubly cyclical exanple the longercycleis 1 week. The notationis basedon thesetime units. For
otherappicationsonewould haveto translae the units accordingly. The spanof the measuremat
denoteghe time spanfrom the very first to the very lag measued value.

Equidistant stepfundion denotesa function which is constantwithin the openintervals (a + nr,
a+ (n+ 1)), n=0,1,.... Suwch a function may only changeat the step instan@sa+ nr, n=0,1,....
Superscipts denotethe individual componerg (factors)in a multicompaentmodel.

Therepresentidonsof thesequencén thedifferenttime framesarecalledmodes. Thefirst modeis
the cyclical diurnal (hour-to-haur) shape In doubly cyclical modelsthereis alsoa secoml cyclical
mode.Thelag modeis thenon-g/clical trendmodewhich coversthewholespanof themeasurerant.
Thetrendmodeis alwaysdenotedy T. Thetrendmodeshows howtheamgitude of theoscillation(s)
evolveswith time.

t time; the index of the datapointin the sequenceX(t) and Y(t)

X(t) the tth value of the sequace of observeddatavaluesX

Y(t) the tth value of the modd sequaceY

h hour; hour-of-day value of anyinstane t

d day; day-of-wed of anyinstanet

w week;weekof anyinstane t

(h,d) equivakentrepresatationof t in singly cyclical modds (the cycle lengh is 24 h)

(hd,w) equivakentrepresatationof t in doubly cyclical models(24 h and 1 weekcycles)

X(h,d avalue of the sequace X(t) of datavalues,indexed with hourandday indices

Xhd the valuesof the sequace X(h,d), understod asa matrix X

X(h,d,w)  avalue of the sequace X(t), indexedwith threeindices(hour, day andweek)

Xhdw the valuesof the sequace X(h,d,w), undestoodasa threeway array X

Ohd standad deviation of Xq

Ohdw standad deviation of Xqw

H(t) = H(h) astrictly cyclical hourly function with a diurnal cycle of lengh =24 h

D(t) a function with cyclic behavior the cycle lengh is 1 week in this work, but could be
e.g.1 yearin otherappications

T(t) a non-gyclic trend function whose changeis slow or nil within the shorer time
frame(s) in this work, T(t) = T(d) or T(t) = T(w)

p the numberof basiccomponents(factors)in the model

v anindex enuneratingthe bast componentg(factors) v=1,2...p

m,n the numberof datapointsin the cycle, the numter of cyclesin the span

m,n, o numbersof datapoints in the shortercycle, shortercyclesin the longer cycle, and

longercyclesin the spanof a doubly cyclical sequace
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Figurel. Syntheticexampleno. 1. Y(t) = Y(h,d) = H(h,d)T(h,d) is a cyclic functionwith 24 h cycles.H(h,d)does
not dependon d. T(h,d)is a stepfunction which doesnot dependon h.

MATHEMATICAL MODELS FORCYCLICAL AND DOUBLY CYCLICAL TIME SERIES
Thebasiccomponentthe produd of a cyclical fundion and an equidigant stepfunction

The first basicbuilding block is a sequace Y(t) = Y(h,d) which hasthe represatation
Y(t) = Y(h,d) = H(h)T(d) (2)

Any valueof thesequaceY(h,d) is obtainedasthe productof anhourly valueH(h) andadaily value
T(d). Theouterprodud of acolumnvectorH(h) (h=1,... m) andarow vectorT(d) (d=1,...n) also
definesamatrix y,q of dimensons(m,n). Thismatrix hasrank= 1. Therankof thesequencés defined
to beequalto therankof thecorrespadingmatrix. Thusthefirst basicbuilding block is asequaceof
rank=1. It hasthe sameshapeon all days,but on different daysit hasa different amplituce or
‘strengh’.

ThefunctionsH(h) andT(d) of Equation(2) maybewrittenasfunctionsof t: H(h) = H(h,d) = H(t)
andT(d) = T(h,d) = T(t). HerethefunctionH(h,d) doesnotdependnd, andsimilarly T(h,d) doesnot
dependbnh. ThusH(t) is astrictly cyclical functionwith cycle= 24 h. Similarly T(t) is anequidistan
stepfunction. It hasa constantvalue betweenthe midnightswhen the stepsoccur.

The simplesttime seriesmodelrepresats an observedsequace X(h,d) asthe sumof arank=1
sequene Y(h,d) andrandon noiseE(h,d) accoding to the modd

X(h,d) = Y(h,d) + E(h,d) = H(h)T(d) + E(h,d) (3)
When X(h,d) is given, solving the model mears that the unknown vectorsH(h) and T(d) areto be

determired so asto minimize somenorm of the residud sequace E(h,d). Non-negatinty may be
required for H(h) andbr for T(d). Equaton (3) definesauseiil non-trivial problem,sincesome simple
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real seriesmay well berepresatedby this modd. The computdional taskis easy,with the solution
beingobtainal usingsimpleiterativetechniqies.

In this sectio, threesyntheic exanplesdenonstratehow thetime seriesfunctionsarecomposed
of acyclical shapdunction andatrendfunction. In latersectimsthe sarme exampesareusedto show
how to approiimate the original functionsby applying PMF to the time series The first exanple,
consistingof four cyclesof a sequencavith a cycle lengh of 24h, is presentd in Figure 1. The
exampéshavebeenconstruted so thatthey areunredistically ‘easy’: the differentfeatuesdo not
overlapeachothe. The shape®f thecomponerd may bediscerredby carefullylooking atthem.In
many real-life problerns the overlap is sevee andthe shaps cannotbe deternined without using
computdional tools.

Theproductof a cyclical fundion and a slowly varying fundion

In the preceding subsectiorthe trend function T wasassumedo be a stepfunction having change
pointsatthebeginnirg of eachday(in otherappicationsthechangs could happerateachNew Year,
say).The sudderchangds sometinesarealisticassumpbn, butin mary situatimstheassunptionis
definitely nottrue. A morerealistic assumpbn is often thatthe changes occurgradually. The modd
now becomes

Y(h,d) =H(t)T(t) = H(h)T(h,d) (4)

Equation(4) represats an exampleof the secondbasicbuilding block for modelingtime series
AgainH(t) is astrictly cyclic function,butnowthetrendfunction T(t) = T(h,d) depend onbothh and
d. Quditatively it is assumedhatT(t) is a slowly varyingfunction.In some casethevariaton in T(t)
is soslowthatonemaysafdy appraximateT(h,d) with T(d). Suchappraimationmightbeacceptale
wheneverrandan variaton of the datais more significant than this artefactof the mathematal
model.

A syntetic exampe consistingof 12 periodsof a 24 h cycleis presenédin Figure2. Thereis an
upwardtrendduring the first 7(8 periods,after which the trend is dowrnward.

A morecomplicaked series:a supepositionof seveal basiccompamentsand noise

The one-omponentEquatons (3) and (4) are rarely adequatdn real-wotd situations.Usually a
multicomporent‘complex’ modd is neededTheconplexmodelseriesy(h,d) is constuctedasasum
of p basicbuilding blocks:

Y(h,d) = Y(h,d) + Y2(h,d) + ... + YP(h,d)
— HY(h)T(h,d) + H2(h)T2(h,d) + ... + HP(N)TP(h,d) (5)

This serieshasrank=p if eachTY(h,d) is replacel with TY(d). A real measued seriesX(h,d) is
approximaéd by the modd of Equation(5) according to the key equaion

X(h,d) = Y*(h,d) + Y?(h,d) + ... + YP(h,d) + E(h,d)
= HY(h)TY(h,d) + H2(h)T?(h,d) + ... + HP(h)TP(h,d) + E(h,d) (6)

whereE(h,d) represat the randon or noise part of the measuement.
The practicalcomputaional problem, given the measuementX(h,d), is to determire the unknown
vectorsH"(h) and TY(d) (v=1,... p) (approximating T"(h,d)) sothat a suitablenorm of the residua
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Figure2. Syntheticexampleno. 2. Y(t) = Y(h,d) = H(h,d)T(h,d) = H(h)T(h,d)), whereH is a cyclic functionwith
24 h cycles;H doesnot dependon d. The trendfunction T(h,d) dependsn both h andd.

seriesk(h,d) is minimized. This problemis bestsolvedwith the existingtechniquesdevelopedor
factor anaysis.

A cyclical time serieswith two componentsandaddednoise is shownin Figure 3d. The standard
deviationof the normally distributedrandomerrarsis 30% of the meanof the series Thereis always
noisepregntin realtime seriesowing to measuementerrors,naturalvariability of phenomengetc.
In addtion to thesekinds of errors, the residuds of a modelincludeall variation which cannotbe
explaired by the modd.

Thedoublycyclical series

Two cyclesmayinteractaddtively or multiplicatively. If there aretwo separatesourceemittingthe
samecompoundsothatoneworkswith a diurnalrhythmandthe otherworks with aweekly rhythm,
thenthe two cyclesare presentin the time seriesin sucha way that the contibutions are added
togethe. The presenfactoranalyticmodée is not particularly suitablefor analyzing suchanadditive
interacton. On the otha hand,the emisson strengthof a single sourcemay be moduated by two
periodic effectsin suchawaythattheemisson is propotionalto the produd of thesetwo effects.The
cyclesof thes effectstheninteract multiplicatively. In the following the factor analytic techniqueis
extendedo analyzing suchdoubly periodic sequences

Thegeneraform of theone-ompmentdoublycyclical time serieamodd is definedasa productof
three functions of time. The elemets of the sequace Y(t), consising of mno elements are
represatedby

Y(h,d,w) =H(t)D)T(t) = H(h)D(h,d)T(h,d, w) (7)
HereH(h) is strictly cyclic, with a shortcycle (24 h). The function D(h,d) is also a strictly cyclical

function whose cycle is a fixed multiple of the shortercycle (1 week in this work). The situationis
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Figure3. Syntheticexampleno. 3. The sameseriesasin syntheticexampleno. 2 plusanothercyclical function
with 24 h cycles(a) andalineardownwardtrend(b). (c) The sumof thetwo functions.(d) The samewith added
white noise.

analogougo the sindy cyclical case bothD andT arerequired eitherto be slowly varyingor to be
stepfunctions.In the latter case D(h,d) = D(d) and T(h,d,w) = T(w), giving
Y(h,d,w) = H(h)D(d)T(w) (8)

This form is usedasthe bass for representingcomplex (multicomponen) doubly cyclical series.
An observedioublycyclical timeseriesX(h,d,w) is represatedby alinearsuperpogion of anumkber
p of basicseriesandnoiseaccordng to the key equation

X(h,d,w) = YY(h,d,w) + Y?(h,d,w) + ... + YP(h,d,w) + E(h,d, w)
= H(h)DY(d)T*(w) + H2(h)D?(d)T?(W) + ... + HP(h)DP(d)TP(w) + E(h,d,w)  (9)

The solutionis againdefinedasa suitabk variantof an LS fit. The ses of unknown vectorsHY(h),
DY(d) andTY(w) (v=1,... p) areto bedetermired sothatthe chos@ normof E(h,d,w) is minimized.

THE DECOMPOSITIONS SVD AND PMF OF THE MATRIX OF CYCLICAL TIME SERIES
Castingthe seriesin matrix or array form

The key ideaof the preentwork is thatthe cyclical seriesX(h,d) be castinto matrix form x,q. The
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valuesX(h, 1) will form the first column of the matrix, X(h, 2) the secondcolumn, andsoon. The
transposd arrangements alsopossibé. The doubly cyclical seriesX(h,d,w is similarly castin the
form of athree-wg array, i.e. anarrayindexedwith triple indices

The sequencesi(h) andT(d) from Equation (3) arenow definedto be a columnvectoranda row
vectorrespediely. Themodelseriesheconesamatrix yng. Similarly theresiduds form amatrix e,q.
The problemis now a factor analytictak where the numker of factorsis p=1.

In the multicomporent Equaton (6), all the columnvectorsHY(h) areassenbledinto a matrix H.
Similary all the row vectorsTY(d) are assenbledinto a matrix T. In matrix notatian the equaton
takesthe simpleform

X=HT +E (10)

or in componennotaion

hootia +&ad (h=1,....m d=1,...,n) (11)

P
Xhd =

v=1

Similardy Equaton (9) for doubly cyclical seriesis written in componennotaion as
p
thW:Zth/ddlthv+e|1dW (hzla"'vmv dzla"'vn7 Wzl,...,O) (12)
v=1

wherethefactormatricesH, D andT havebeenformulatedsothatthetime sequaécesrun alongtheir
columns(not rows). Equaton (12) is an exampé of the PARAFAC modé.

Solving Equation (11) meanghatwhenX is given, theunknown matricesH andT aredetemined
sothatachose normof the matrix E is minimized. The mostbast choiceis to minimize the sumof
the squaes of elementsof E or the ‘Frobeniusnorm’ of E. The minimum is found by principal
componentanalysis(PCA). The standardsolution is basedon singula value deconposition (SVD):
computethe SVD of X in the form X =USV'" and keep only the p most significant singula
componergof U, SandV ' Dependingonthedesirechormalization,thesolutionof the PCA problem
(11) may be takenaseither(H =US, T=V") or (H=U, T =SV").

The PCA soluion usualy containsnegative values.Thesearenot desiralte if the quantties of the
model areinherenty non-negative(mass,numker of individuals, enegy, etc). Also, in custonary
PCA, all datavalueshaveequalweight PCAmaythusonly beoptimal if all datavalueshaveequalor
approxmately equalerrors.The newtechnique of ‘positive matrix factorizaion’ (PMF) correcs for
thesedeficiences.For comparisos of PCA and PMF andfor more detdls of PMF, seeReferences
[3,6—8. The individual standard deviationsare also taken into accountby the new maxmum
likelihood principal conponentsapprachof Referencd9].

According to PMF, the quantityto be minimizedin the LS fit is

Q=

m
h=

i -
d=1

>
1d=1%d  h=1 Ohd

Usuallythe minimization of this Q is constainedby non-negavity constaintsfor the unknownshy,,
(h=1,...m v=1,..p) andt,q (v=1,...p, d=1,...,n). Thevaluesonq arethe known (or assumeji
standad deviationsfor eachelement of the datamatrix X.

For solvingthethreedimensonal PARAFAC modd (12), onehasto minimizetheobjectfunction
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M R o - = (Xndw — >0 P Oastu)’
Q=2 =2 > > ) (14)

h=1 d=1 w=1 h=1 d=1 w=1 ghdw

usingiterative techriques.The solution matrices H, D and T may be required to be non-negae.
Herethethree-wg array o is anabgousto the matrix o of Equaton (13). Severalprogramsexistfor
solvingthis difficult task;for acomparison,seeReference10]. In the presentvork the newprogram
PMF3wasused.

Robustanalysis

Thedistribution of environmentaldata(particulaty concentrationg is typically skewedwith asmall
percenageof very large values.Mathematicd transformaibns of the data(log or squae root) are
often usedfor controling the influence of the largestvalues.Howeve, non-lineartrarsformations
may distoit the linear structure of the modeé [7]. In the presentapproachstandad deviationsfor
residuds arespecifed propotional to datavalues.In this way, eachlargevaluegetsweighted down
becausef the large standad deviationassignedo it, andno transbrmationsare necessay.

The progams PMF2 and PMF3 may be setto work in a robust modeaccordng to the Huber
principle theweights for outlying datapointsaredynamically decreaseduringtheiteration sothata
statisticdly robug factotization is obtained[8]. A datapoint is consideed outlying it its residu
exceedsthe correspading standard deviation by a user-speified factor, e.g. four. Such
downweghting guarantesthat a few outlying valuesmay not totally ruin the result. This feature
is extremey valuabk when analyzingenvironmentaldata,which may containnon-repesentatie or
erroneous/alues.The exanplesin the presentwork wererun in the robug mode

Although sorre of the outlying valuesoften are grosserrors,othe outlying valuesneednot bein
erroratall. In orderto deteminetherecurrant featuresof the data,the excepional valuesneedto be
weighteddown evenif theyarefully legitimate values.An exanple: oneanalyzesairbornedustand
triesto attributeconcentrationsto conponentsoriginatingin differentdesertsTheobjectivemightbe
e.g.tofind outwhethe thedustemissonsof somedesertareincreasingwith time. Dug emittedby a
largevolcani erupion would causea few outlying non-aroneoussaluesin themeasuredtime series.
If thesevaluesare not sorehowexcludedfrom the analysis,the resultcould be utter nonsese.In
somesituationsit maybe necessarto reportsepaately on the excludedvalues.Downweightingthe
outlying valuesin the periodic analyss doesnot justify ignoring them altogether unlessthey are
really consideedto be grosserrors.

SVDand PMF of the synhetic exampé matrices

Syntheit exanple no. 1. Thereis only onefactorin the syntheic stepfunction exampleno. 1, and
no noise.The rank is thenrank=1 andthe SVD of the datamatrix y,q indicatesonly one non-
zerosingular value (9188). Both SVD and PMF find the only factor exacty (Figure 4a). It canbe
seenthat the shapeof the cycle is just the sameasin Figure 1, and also the relatve steps arethe
same.

Synthet exampe no. 2. Although thereis only one true factor in synthetic exampe no. 2, the
threefirst singular values of the matrix y,q were non-zero:1633, 120 and 0[05. Threefactors are
neededin the equati; Y =USV" to reproduceY exactly. Howeve, sincethe significance of the
secondandthe third factor is small, the shaps of the 24 h cycle andthe trendfunction are shown
by the first factor of the SVD soluion in Figure 4b. The shapeof (US),; is very similar to the
shapeof onecycle of H(t) in Figure 2, but not exacty the same.The pointsvy; correspondto the
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Figure4. (a) Theexactandonly factorof syntheticexampleno. 1. Thesamevalueswerefoundby bothSVD and
PMF. SVD: Vg = (US)n1(V N 1g. PMF: Vg = hatag. (b) Thefirst factor of syntheticexampleno. 2, assolvedby
SVD.

daily meanvaluesof the function T(t) in Figure2. The one-factorsolutionof PMF agreed with the
first factor given by SVD within the graphcal resdution.

Synthet exampé no. 3. The noisy two-componentexampk, shownin Figure 3d, was analyzed
with PMF and with SVD. The shapesf the factors found by PMF (Figure 5) appraimate well

the original shaps usedto composethe exampe (seeFigures2 and 3). The singularvalues were
obtainel as 2287, 566, 2[81, 2(26, 210, 1[75,..., 0B4. Howeve, the factor shaps producedby

SVD are not meaningful without auxiliary rotation.

THE CARBON MONOXIDE EXAMPLE

As areal exampe, carton monoxideconcentrationsmeasued hourly in the city of Helsinki during
the year 1994 are analyzed The measuringsite is situaed in the nearvicinity of the crossirg of
severaldensedtaffic roads Traffic is the predaninant sourceof carbon monaxide in urbanareas
[11,17, andconsequelty theseriess expetedto bedoublycyclical with diurnalandweeklycycles.
This exampe is calledthe CO exampé.

The mean of the 8718 hourly CO concentrations was 0@ ppm, the median 07 ppm and the
maximum [0 ppm. Of the hourly concentrations 99%werebelow 3[4 ppmand95%below2[2 ppm.

Figure5. UnrotatedPMF resultsof the noisy two-componensyntheticexampleno. 3 (SeeFigure 3d).
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The CO exampe is relativdy simple and could probaly be analyzed without sophisicated
techniqies.The‘true ansver’ to thisexampleis fairly well known, andthustheresultis withoutmuch
scientific value. Howeve, it is felt that suchan ‘eas/’ caseis better suited for illustrating the
techniquethandifficult casesvhereonecould perhapsargueaboutthe correctresit. An easycases
alsoa betterdemonstratio for scientsts working in otherfields of science.

Analyzirg for the diurnal cycleonly

The CO concetrationswereanalyzedy thetwo-way PMF by arrangng the datain a matrix with 24
rows (hours) and 365 columns(days).The standad deviationsof the datavalueswere derivedby
assuminga 01 ppm absolue error anda 15% relaive errorin eachdatapoint. Thesevalueswere
suggestd by expertopinion of the experimendlist. Thesestandad deviationswere usedthroughout
theanalysis.Sometimatheinitially assumedaluesfor standad deviation needto berefinedduring
the analyss if the sizeof residuds is in conflict with the assuned standarddeviation values.In this
work the initially assumedvalues neededno refinemat. No attemptwas made at studying the
distribution of the concentrationvalues.

The soluion of the two-factor PMF is preentedin Figures6aand6c. Becauseboth factorshave
lowestvaluesduringearly morninghours the PMF run wasrepeatedby arrangingthe datamatrix so
thatthefirst measuementstartedat 3 am (Figures6b and6d). It is benefidal to arrangethe endsof
cyclesto bein the middle of a low-concentrgéion periodin orderto minimize therisk of anartefact
jump whenconnectingthe endsof cycles.This arrangenant of the datamatrix in effectchangeghe

1 6 11 16 21 26 31 36 4 46 51 56 61 66
Number of day

1 6 1 16 21 26 31 36 41 46 51 56 61 66
Number of day

Figure6. Thetwo factorsof the CO examplesolvedby thetwo-wayPMF.(a, c) Thefirst measuremerih thedata
matrix startecatmidnight. (b, d) Thefirst measuremerdtartecat 3 am.To clarify thefigure,only thefirst 70days
areshown.l Januaryl994wasa Saturday.
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place of the stepsin the modé step function T(h,d): the stgps now occur at 3 am insteadof at
midnight. The stepsmay beinterpretedasfollows. At thetime of the stepthe modded traffic pattern
switchesoverfrom the patten of the previousdayto the patten of the nextday. If the step wereto
occuratnoon,say,it would meanthatthemodelpredictsthatatnoonthenumber of carsonthestrees
suddety jumps. The jump would represat an increag or decease,dependingon whethe the
coefficient for the nextday is highe or lower thanfor the previous day.

In the diurnal mode of the first factor (full line) a strongmaxmum canbe seenduring the rush
hoursin the morning andanoher maximumin the afterroon. In Finlandthe working time is usually
from 7-8to 16-17five daysaweek. Thediurnalmodeof thesecondactorstartsto rise atabout8 am,
hasabroadmaximumduring theafternoonandeveninghoursanddecreasetowardsmidnight. In the
trend mode the first factor tends to haveits lowest valuesat weekendswhile the secondfactor
behavs in the oppositeway. The high value on the 36th day (5 Februay, a Saurday)wasdueto
meteorobgical condtions: high pressureandaninversion situaion with low tempeatureanda low
wind speed causig stagnangir. Day 61 wasWednesday2 March, andat thattime therewasalso
high presureandan inversion situaion over Scandnavia.

The differencebetwee the solutionswhenthetime serieswasstated at midnight (Figureséaand
6¢) andat 3 am (Figures6b and6d) is mogly dueto rotationd freedomin the soluions. Rotatianal
ambiguiy is alwayspresentin two-way factor analyss unlessnon-neativity (or other addtional
constrants) preventsrotations of the solution. The secondtrend factor (having the maxmum
concentrationatnoon)in Figures6candédis non-zercevelywhere.Suchrotationsareallowedwhere
afraction of thefirst trendfactoris subtactedfrom the secoml, while a similar fraction of the second
diurnal shapes addedto thefirst diurnal shape Thusboth setsof solutions shoull be consteredas
valid. In fact,thedomainof rotationdly possble solutionsextendsevenfurtherin thedirectionwhere
the afterroon rushhour maxmum of thefirst trendfactorincreags.

With midnight and3 am startingtimesthe valuesof Q in Equaton (13) were10788and10479
respedt/ely. Thebetterfit is probablymogly dueto improvedfitting of inversionsituaionswherethe
night-time concentrationsdeceasemuch slowerthanin normal weathe condtions. Howeve, the
differencebetweentheseQ valuesis rathersmdl andmay be called ‘insignificant’. In further two-
way andthree-wg analyseghe time seriesstating at 3 amwill be used.lt is notedin passinghat
ideally (i.e. if standadizedresiduds areindependat andnormallydistributed)the quantityQ should
havea x? distribuion with the numkter of degreef freedomslightly smallerthanthe numter of
pointsin the time series The valuesobtainel for Q aretoo large,apprximately by afactorof 125,
suggesng that the assumedstandad deviationvalueshave beentoo optimistic. In principle, the
analyss shouldbe repeatd with standad deviation valuesincreasedy a factorof v/1-25=1-12.
Howevae, in pradice, sucha small overall adjustmen of the standad deviationsdid not changethe
resultsnoticedly.

Thetwo-way PMF analsiswasalsorunwith threefactors, buttheresut could notbeexplairedin
a usefull way anddid not give any more information aboutthe formation of the CO concentations.

Analyzing for boththe diurnal and 7 day cycles

In thetrendmodeof thetwo-wayPMF (Figure 6), faint weekly periodscouldbeseenin orderto find
out the shapesf thesecycles,the PARAFAC modé was tried, by using the three-wayprogram
PMF3. Thetime seriesof houly CO concentrationswasarrangedasa threeway array startingat 3
amon 1 Januaryl994(Saurday).

Thetwo-factorsolutionwasalsothemostuseful whenrunningthethree-wg PMF (Figure 7). The
high concentrationsduring the morning and afternoonrushhourscanbe seenclearly in the diurnal
modeof the first factor (full line). The shapeof the diurnal modeof the secom factoris now quite
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Figure7. Thetwo factorsof the CO examplesolvedby the three-wayPMF. Startingtime at 3 amon Saturdayl
Januaryl994.

symmaric, with abroadmaximum from aboutnoonto about7 pm. The 7 day modeof thefirst factor
hashigh valuesduringweekdaysndis almostzeroattheweeend,while thesecom 7 daymodehas
its highest valuesat the weekendThe highestvaluesof thetrendmodeof the secondfactorareseen
in Februaryandthe lowestnearmidsummer. The variability of thefirst trendfactoris muchsmadler
andhasno clearseasaality. Thelack of seasonaty is in accodancewith Derwentetal. [13], who
reportthat traffic flows observedn weekdaysdo not exhibit any seasonality

As explainedn theprevioussubsetion, thelocationof thestep in thestepfunction is influencedby
the arrangemenof the datamatrix. The three-waymodé contairs stepsin two directiors. On the
basisof the two-way PMF, it wasdecidedto startthe diurnal cycle at 3 am. In orderto decide the
startingday of theweek,thethree-wayPMF wasrunrepeatedlystartingon differentdays.Therange
of theQ valuesof the soluionswasquite narrow,only 4%. Theworstfits (the highest Q values)were
connectd with stating on Satuday or Sunday. The solutionsobtainal whenstaring on Tuesdg,
WednesdayThursday (Figure8) or Fridaywerealmostidentical sothatFigure 8 is representatie of
themall. It canbe seenthatthediurnalcyclesof bothfactors aresimilar in both Figure 7 (starthgon
Saturday)andFigure 8, but the weekly cyclesdiffer. In Figure 7, Friday behavs just like the other
weekdayshbutin Figure8 it differs from the otherdaysby having high valuesfor both factors.It is
known that Friday differs from otherworking days.Especally in summe, peoplestartto leavefor
their summer cottage earlierandthe night traffic also continues longerthanon the otherweekdays
Thus the modéd in Figure 8 is acceptable and preferableto Figure 7, which has probably been
distortedby the locétion of the stepin the weekly cycle.

ANALYZING THE PROBLEM WITH THE TOOLS OF FOURER ANALYSIS

Severakinusoidalsignalsof differentfrequendesareeasilyseparatedrom eachothe andfrom noise
by using Fourier analyss. Thenonesimply picksthosefrequeng componentsvhich rise sufficiently
high abovethe averagenoise level. The shapeof onenon-snusoida periodicsignalis also efficienty
analyzedwith Fourieranalysisithenonelooksfor an equidistantsetof frequencycomponers with
above-nose amgitude. The patten of amplituces of these different harmont (‘overtone’)
frequengesis related to the periodic shapeof the signal. Yet anoher simple caseis an amgitude-
modulatedsinusoidalsignal,i.e. a signalwhich is the productof a sinecurveanda slowly varying
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Figure8. Thetwo factorsof the CO examplesolvedby thethree-wayPMF. Startingtime at 3 amon Thursday30
December1993.

trend curve. The Fouriertransform(FT) of sucha productsignalis the convoltion of the Fourier
transfams of thetwo sigrals. The carrierfrequencyis spreadnto a harrow bandwhosenarrowness
resultsfrom the slowly varying natureof the trendsignal.

The picture beconeslessclearwhenthe FT of a non-snusoidd signalwith varyingamgitude is
consideed. As an example,the synthetic examplefrom Figure 2 is preented.The computed FT,
shownin Figure 9a, is also a convolution of the FT of the trend sigral with the FT of the non-
sinusodal periodic signal.lt is seerthatboththebast frequeng andall theharmonicsarespreadnto
bandsof identical shapebut differentintensties. The propeties of the original signal may still be
recoverel asfollows. By integratingeachbandarourd theequidigantfrequendes,oneobtainsthe FT
of the shapecurveandhencethe shape By aveiagingall the bands,oneobtainsthe FT of thetrend
curve(themoduating signal)andhencethetrendcurve Howeve, nothingspecialis gainedby doing
this analysisin the frequeng domain. The operationscorrespading to aveiaging and integrating
could alsobe performedin the time doman when the cycle lengh is known.

Figure 9b showsthe FT of the noise-free syntheticexampe from Figure 3c. Now thereare two
superpose comporent signals,eachconsistingof a non-snusoida periodic curve multiplied by a
slowly varying trend curve. The sameset of frequencybandsis visible asin the previouscase.
Howeve, now eachbandcontinsinformationfrom two componentgandalso somenoiseif realdata
areanalyzed. Thereis no simpleway of sepaatingthes componers from eachother,althoughthe
informaton is there,of course Evenif atechrique could be devisedfor analyzingtheinformaton in
the frequeny bands,the non-naativity information would not be availeble; this usetil auxiiary
informaiton is only presentin the time doman. Similarly, weighting of individual datapointsand
downwaeghting of outliers arenot possble in the frequeny doman. It is concludedthat separang
the componerd is not straightbrwardby using Fourier analysisandevenif the separatiorcould be
effected,there are severnl drawbacs in this apprach. In pradice, Fourier analysis is limited to
finding the average periodic shapeand the average trend behavior averagedover all individual
componerg preentin the sysem.

Figure 9c showsthe FT of the 8736h (52 weeks) of the CO time series The peakat frequeny
00417cyclesperhourcorrespondgo the bast 24 h period. The harmonic frequengesarevisible at
0[0833and0125.The weekly periodcity is visible in the sidepeakswhich are 0006 unitsto theleft
andto theright of the basicpeakandits harmonicsThe overalltrendmaybevisible in thespreading
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Figure 9. Realpartsof the Fourierspectra(excludingthe zero-frequencyeak)of the examples(a) Synthetic
exampleno. 2 (SeeFigure2). (b) Syntheticexampleno. 3 (SeeFigure3c). (c) The CO example.

of all thesepeaks It is seenthat the doubly periodic situation createsan even more conplicated
Fouriertransbrm. By using Fourier analysisjt would be possilte to obtan theaverageveely shape.
Howeve, therewould be no way to derive the weekly shapes of the individual componenrd.

ANAL YZING CYCLICAL MULTIVARIATE TIME SERES

Many environmentaltime seriesarein fact multivariate: eitherthereareseveal pardlel simultaneous
measuementsof one quantity, made at different locations, or seveal different quantties are
measuedin paralel from eachsanple. Whenatmoseric pollution is monitored,concentationsof
severalchemial elemants or conpoundsare often deteminedfrom eachsample

Theunivariatetechniqiespresntedin this work areeasilygeneralizd for analyzing multivariate
time series The basicassumpbn is thateachsoure@ hasa consantprofile amongthe setsof pardlel
observabns: eitherthe spatal distribution dueto anyindividual sourcestaysconstanwith time, or
the chenical composiion of the emissionfrom eachsourcestaysconstantThe multivariate analogy
of Equaton (11) is thenthe PARAFAC modd

achnta, +enha (c=1,...,C,h=1....m d=1,...,n) (15)

p
Xchd =

v=1

(In three-wayequatims the factorsusually correspad to columnsin all threefactor matrices. This
differs from the custonary two-way notation.)Thefirst index c enumergesthe pardlel observabns.
Thesecondandthird indicescorrespondo thefirst andsecoml indicesin Equation(11). Thecolumns
of thefirst factor matrix A representthe profilesof theindividual sourceshow strongly eachsource
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contributesto eachof thepardlel obsevations.The meaningof thematricesH andT isthesameasin
the univariate case.

The multivariate modé hasthe samedrawbad asthe univariat modd: thetrendfunctionsTY(d)
areequistantstep functions. In principle, this causeshe modelal concentrationsto contain sudden
jumps at cycle end points (at midnight or at New Year). This may be objectiondle in some
applicaions.

A successfl applcationof the multivariatetechniqie hasheenpublishel by Xie etal. [14]. Arctic
aerosokomposiion data(weeklymeasurerantsduring 11 yeais) wereanalyzed Thesedataexhibita
very clear yeatty cycle. The pollutantconcentrationsdueto different sour@sread their maxmain
the Arctic during different partsof the year. The yearto-yeartrend, if any, would reflect globd
changsin theatmosyhere,eithernatual or anttropogenic The aercsol dataarearrangedn athree-
way arrayXcwy sothatthefirst index c enunerateshe 24 differentcompoundsvhoseconcentrabns
havebeenmeasued, the secom indexw enumergesthe weekswithin a year, andthe third index y
enumergesthe years.The columnsof thefactor matrices A, H andT areinterpretedasfollows: a
represatsthecompositon profile for factork, h, showsthe seasonathapeof the concentationsdue
to factork, andfinally t, represatsthe trendbehaviorof factork.

DISCUSSION

Theimportantquesion of determiningthe number p of comporentshasbeenextersively discussd in
the factor anaytic literature for PCA, seeReference[15,16; for PMF, seeReference [8,17]. For
factor analtic treamentof time seriesproblems,thesereferencesnay be consuted.

No statistcal criteria are currenty availablefor esimating the confiderce limits of results.In
practice,onehasto gain confidertein theresultsby repeatinghe analyss on severalsetsof similar
data, collected e.g. during differentyearsor from neighboring similar geogaphicallocations.By
comparingtheresuts, onemay rejectthoserestlts which arecausel by randam variationof the data
or by locd pecularities which invalidate the modelfor somedatasets.Alternatively, one might be
ableto comparesore of the computel resuts with previously known facts.If ho comparisos are
possibe andthenoiselevelin thedatais high, therestts shout notbetrustedbecawseof therisk that
they might just refled the noiseof the data.

The resuts of the two-way modd suffer from rotationad indeterninacy, familiar from factor
analyss: different combindions of periodic and trend shaps produe identical fits to the data.
Depending onthedata,non-negatity constrants may eliminatesomeor all of this uncertéanty. The
doubly cyclical threeway modé and the multivariate cyclical modd are bastally free from the
rotationd uncetainty.

Resultsof the exampes

Thesimple syntheticexampeswith oneor two componentshowedthatpositivematrix factotization
(PMF) could find the factors well evenin the preenceof high-ampitude noise. The solutions
obtainal using traditional factor analytic methods (singular value decomposion or principal
componentanalysis)were not equally useful. There wasalsoa minor rotational uncerténty in the
resultsgiven by PMF. Rotaticnal uncetainty is alwaysa reality in factor modds, and PMF is of
courseno exception.

The solutionof the CO exampk found by the two-way PMF showedthe realisticdiurnal variaion
of theconcentrabns.A largeamountof rotationd uncertanty wasseenn theserestts. In theday-to-
day trendmode,hints of some7 day periodicty werevaguel visible. The shapeof the 7 day cycle
was only found by three-wayfactor analyss. Becausethe modd forcesthe changs in both the
weekly cycle and the trend function into disaete steps,the locationsof thesesteps influence the
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results:differentstating timesin bothdirectiors (time of day,day of week)leadto slightly different
factorizaions. By repeating the analysiswith differentstartingtimes, it waspossibe to pick steble
represatative solutions.

Similarthreeway analysiswasperformedon otherCO datasetsmeasuedin theyears 1990-193.
Thediurnal shaps werefoundto be stable similar in all results.More variaton wasencouneredin
the weekly shapesFor the work-relatedfactor the ratio of the largestand smdlest valuesamong
(Mon, Tue,Wed, Thu) is below threeto two. Thereis no clearpattenin thevariation In all yearsthe
valuesobtainel for Friday areintermedate betweernweeldayandweeendvalues.Thedifferencesin
weekly shaps of differentyearsweresimilar to the differences betweenFigures 7b and 8h.

Standarddeviationsof datavalues

All factoranalysisis basedon implicit assumptiasaboutthe standad deviationsof the datavalues,
althoughthis basisis not geneally mentionedn textbools [7]. In fact, mostfactoranalyss assunes
thatall standarddeviationsareequalafterthe scaling doneby standardizingthe columns(or rows).It
is essentiathat one commuricates to the modelthe bestinformationthatis avaiable aboutthe data,
including particulaly informationaboutthe stardard deviations In additionto the PMF technique,
individual standad deviations are taken into account by the maximum likelihood principal
componerd apprachof Referencq9].

If thereis no betterinformation than‘all standad deviationsare equal’,thenoneshouldusethis
knowledgeandspecifye.g.ong = 1 for all h andd. Usuallythereis atleast someinformationaboutthe
accuracyof experimenal data,e.g.it is known that small concentations(nea the detecion limit)
have a larger relatve labaratory error but a smaller absolute laboratory error than large
concentations.Suchinformation shoutl be expressedby meansof the oyq values.

Comparisonswith custonary time seriestechniques

Theautoregessivg(AR) modelspredicteachnewdatavalue basednanumter of earliervalues.The
primaryrestt is asetof coefficientsdescriting thisdepenénce In AR modelsaddtive trendmaybe
includad, but multiplicative trend, as neede for descibing the varying amplituce of the periodic
shapejs not available Thereis no way of sepaating the compositesignalinto severalcomponents
with the samefrequeng but unique periodic and trend shaps. Non-negativty is not included in
autoregresse modds. The AR techniqiesareespecidly usefulwhenthe period of the signalis not
fixed. It is seenthat AR techniquesare so differentthat no numerical comparisonsare meaningful.

As discussd in a precedig section, Fourier analyss is ableto extractthe averageperiodic shape
andtheavemlgemultiplicativetrend from a cyclic time series Howeve, individual shapesandtrends
cannotbe obtaned for the individual componerg or ‘factors’. Numeical comparisonsare not
meanirgful betweenthe averageresulton one handandindividually separatd restuts on the other
hand.

Specialpropetties of the doubly cyclical modeland the multivariate modé

Thepropertesof thesingly cyclical modelderivefrom two-wayfactoranalysis. Thesepropertesare
well known. The generaltwo-way solution conainsrotationd ambiguty. Requirirg non-negativty
eliminatessone of the rotations dependhg on the data,the resultsometimesbeconeswell defined
without anyrotationd uncertanty atall. Onthe otha hand,requring non-ngativity and/orappling
individual weighting of datavaluesmay genera¢ local minima of the object function Q which is
minimizedin theLS fit. Thusin sone casethefactorizationproblemdoesnothavea uniquesolution.
The scientisthasto explore the different solutions.Sometime they do not differ significantly from
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eachothe; sometimessomesoluionsmaybenon-plysicalsothattheymaybediscardd;andfinally
in sone case it may be properto reportmore than one possibeé interpretaton of the data. These
guestims havebeendisaussedby Paaterd8].

The propertiesof the PARAFAC solutionarelesswell known, andmary researb problemsstill
remainopen.lt hasbeenshown by Kruskal[18] thatunderrathergeneal conditionsthe PARAFAC
modeldoesnothaverotationd freedom.Simplified, thistheaemstateghatif all threefactormatrices
areof full rank,thenthefactors cannotbe rotated without making thefit worse.In clear-cutcaseghe
uniguenesis astrongresut: onemay accet the factoiizationasit is without consideing altemative
rotationd forms. Thereareborderlinecaseshowever It is intuitively clearthatif thefactormatrices
are almostrank-defigent, then the Kruskal theoremis of little value: althougha rotatedsolution
would havea worsefit, theincrea® in the Q valuewould not be sigrificant. As anexampg, assune
thattwo factors havepradically thesane diurnalshapeThenthereis rotationd freedombetwee the
7 day shape andthe trend shaps of thesetwo factors unlessnon-neativity preventsthe rotations.

Another problemwith the PARAFAC model may be causé by the exigenceof severallocal
solutions.lt is alwaysprudentto assune thatthere aremultiple solutions.Only if the samesolution
keepsreappearingwhenrunningthe analsiswith seveal pseudoandomstartingpointsmay onebe
satisfiel that the soluion is unigue. One shouldnotethat the existenceof competingsoluions (i.e.
local minima of Q) is a propety of the modd andnot of the algarithm usedfor solving the modé.

Future developrents

The CO exampledemonstragd thatthe placemenof cycle startingtimes influencegheresuls. This
wascausel by thefact thata smaoth trend function wasapproaimatedby a stepfunction, causinga
differencebetwea the mathematal modé andthe realworld. Depending on the placenent of the
step, the differenceinfluencesthe resultin different ways. The leastdistortedand mog plausibe
result is obtaned by placing the disoontinuity to a moment where the periodic shapeis at its
minimum.

Aslongasstandad factoranalyticsoftwareis usedthereis nowayto avoid thediscontinuty in the
mathematal model. However, it is also possble to definea mathematal modelwherethe trend
functionis definedasatruly smoothfunction without artificial discontnuities. Thenthe significance
of cyclestartingtimeswill disappeaentirely. Suchmodds maybe easilyformulatedandsolvedwith
the new program ‘Multiline ar Enginé [19]. Resultsof theseexpeimentswill berepoted later.
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