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SUMMARY

A technique is presented for determining the underlying components in a cyclical time series which is influenced
by one prominent cycle (the diurnal or the yearly cycle). The separation of the components is based on their
different shapes within this period, assuming that the shape of each component stays approximately constant with
time and that the amplitude of each component is a slowly changing function. The series is folded into matrix
shape so that each cycle forms one column. The matrix is factorized by principal component analysis or by
positive matrix factorization (non-negatively constrained factor analysis with individual weighting of data
values), resulting in the shape and amplitude functions for the underlying components. Synthetic two-way
demonstration examples are analyzed. As a real-life example, traffic-induced carbon monoxide concentrations in
urban air are analyzed. The CO has a diurnal concentration cycle which changes shape on weekends. This
behavior is explained by two factors, identified with work-related and other traffic. The CO data in fact contain
another multiplicative cycle, the weekly workdays/weekend pattern. Arranging the data according to time of day,
day of week, and week of the year creates a three-way array. The method is extended to the analysis of such
arrays. Existing software for the well-known PARAFAC model is used for solving the three-way model. Two
factors are again obtained. Their diurnal and weekly cycles correspond to the work-related and weekend-related
traffic patterns. Analysis of cyclical multivariate data is discussed: such data are also governed by the three-way
PARAFAC model. The advantage of the PARAFAC model relative to customary two-way methods is
emphasized: there is usually no rotational ambiguity in PARAFAC results. Copyright 2000 John Wiley &
Sons, Ltd.

KEY WORDS: factor analysis; principal component analysis; positive matrix factorization; cyclical time
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INTRODUCTION

In this work the term ‘time series’ is used in its basic meaning, denoting that some quantity has been
observed repeatedly over time. An analysis is made of cyclical time series, i.e. of series in which
similar values occur repeatedly in a fixed, previously known cycle. The amplitude of the cyclical
signal varies with time. It is assumed that the cyclic behavior is clear and evident, so that there is no
doubt about the existence or length of the cycle. In nature, many such cyclical series depend on the
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diurnal rhythm or on the yearly rhythm. If a series depends on two rhythms which interact
multiplicatively, then it is called a doubly cyclical series. The repetitivebehavioris caused by the
influenceof external periodic circumstances, e.g.temperature,levelof illumination,rainfall patterns,
etc. In this work, univariate time seriesaremostly discussed. Importantenvironmentalmultivariate
applicationsalsoexist. Theseapplicationsarementionedlater on.

Usingtheterminologyof signalprocessing,theelementary signalsto bestudied maybedescribed
asamplitude-modulated signalswhere the carrierwave is not sinusoidal but hasa specific constant
periodic shape.The measured‘composite signal’ consists of a superposition of several such
elementary signals. All thesesignals havethe sameperiodof the carrierwave. However, both the
periodic shapeof thecarrierwave andtheshapeof themodulating signal areunique for eachof the
elementarysignals. Theelementarysignalsareto beseparatedfrom eachother,basedontheseunique
properties.At theoutset,thesepropertiesareunknown. Theresultcomprisesboththeperiodicshapes
andthemodulationshapesfor eachelementarysignal.In customarysignalprocessing,theelementary
signalsthat shouldbe separatedfrom eachother are usually of different frequencies. The present
problemis more difficult becauseall the componentsignalshavethe samefundamental frequency.

It is not assumedthat the observed quantity behaves according to the assumptions which are
customary in traditional ‘time seriesanalysis’.Ecological, economic andalsosome environmental
timeseriesmayexhibit dynamicor intrinsicperiodicities,sothattheperiodis nota priori known,and
usuallythelengthof theperiodis not fixed.Suchoscillationsaregovernedby thedynamic feedback
propertiesof theprocess,andsuchtime seriesarewell handledby customary ‘time seriesanalysis’
[1,2], perhapswith the autoregressive models. Suchseriesarenot consideredfurther in this work.

Theessential ideaof thepresentwork is that thecyclical seriesto beanalyzedis foldedsothat it
formsamatrix.Thedatafor onecycleform onecolumnof thematrix,thedatafor thenextcycleform
the next column,andso on. In this way the regularities of the seriesare transformedso that they
appear asproperties of the matrix. The existingmathematical tools for analyzing matrices arewell
advanced: they includee.g.principal componentanalysis (PCA), which is basedon singularvalue
decomposition (SVD), andthenewpositivematrix factorization (PMF), which is especially suitable
for positively constraineddata[3]. Theseestablishedtechniquesareapplied in thepresentwork: no
new computer programsare neededand the mathematical properties of the solutions are already
known. Thesetechniquesallow oneto determine theshapesof thecomponentsof cyclic phenomena
instead of merelyidentifying that a periodicity is present.

A doubly cyclical seriesis analogously folded so that it forms a three-wayarray.The three-way
part of the present work is basedon the PARAFAC model,sometimescalled CANDECOMP:

xijk �
Xp

h�1

aihbjhckh �1�

ThePARAFAC model wasfirst introducedby Harshman[4]. Later, RossandLeurgans[5] added
positivity constraints and weighting basedon standard deviationsof data values. An efficient
algorithm ‘PMF3' for solvingPARAFAC modelswasrecentlyintroducedby Paatero[6].

It hasbeensuggested to theauthorsthat no specialtechniquesareneededfor solving thepresent
task.According to thesesuggestions, the usualtools of Fourieranalysis would be sufficient. In the
view of the authors, this is not true.This question will bediscussed in a separatesection, later on.

Themultivariate case

Insteadof a scalarvariablex, the time seriesmay also consistof observations of a vector-valued
variablex. Theprecedingdiscussionappliestheretoo.In thesinglycyclical casethemultivariatedata
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arearrangedin the form of a three-wayarraywhich may be viewedasa matrix of vector values.
Again, the PARAFAC model is neededfor approximating the data array. In order to keep the
exposition as simple as possible, the main part of this paperdescribes the univariate case.The
multivariate equationsaregiven later, in a dedicatedsection.

Terminology, notation

Theword cyclical denotesherea function or sequencewhich repeatssimilar behaviour with a fixed
known cycle length, without repeatingitself exactly. Only valuesmeasured at discrete timesare
considered. In typical real-life applications the data points would typically be hourly, daily or
monthly.Theexamplesin this work arebasedon hourly dataobeying a 24h or diurnalcycle. In the
doubly cyclical example the longercycle is 1 week. The notationis basedon thesetime units.For
otherapplicationsonewould haveto translate the units accordingly. The spanof the measurement
denotesthe time spanfrom the very first to the very last measuredvalue.

Equidistant stepfunction denotesa function which is constantwithin the openintervals (a� nr,
a� (n� 1)r), n = 0,1,….Such a function may only changeat the step instancesa� nr, n = 0,1,….
Superscriptsdenotethe individual components (factors)in a multicomponentmodel.

Therepresentationsof thesequencein thedifferenttimeframesarecalledmodes. Thefirst modeis
the cyclical diurnal (hour-to-hour) shape. In doubly cyclical modelsthereis alsoa second cyclical
mode.Thelast modeis thenon-cyclical trendmodewhichcoversthewholespanof themeasurement.
Thetrendmodeis alwaysdenotedby T. Thetrendmodeshowshowtheamplitudeof theoscillation(s)
evolveswith time.

t time; the index of the datapoint in the sequencesX(t) andY(t)
X(t) the tth valueof the sequenceof observeddatavaluesX
Y(t) the tth valueof the model sequenceY
h hour; hour-of-dayvalue of any instance t
d day; day-of-week of any instance t
w week;weekof any instance t
(h,d) equivalent representationof t in singly cyclical models (the cycle length is 24h)
(h,d,w) equivalent representationof t in doublycyclical models(24h and1 weekcycles)
X(h,d) a value of the sequenceX(t) of datavalues,indexedwith hourandday indices
xhd the valuesof the sequenceX(h,d), understood asa matrix X
X(h,d,w) a value of the sequenceX(t), indexedwith threeindices(hour, dayandweek)
xhdw the valuesof the sequenceX(h,d,w), understoodasa three-way arrayX
�hd standard deviation of xhd

�hdw standard deviation of xhdw

H(t) = H(h) a strictly cyclical hourly function with a diurnal cycle of length = 24 h
D(t) a function with cyclic behavior; thecycle length is 1 week in this work, but could be

e.g.1 yearin otherapplications
T(t) a non-cyclic trend function whosechangeis slow or nil within the shorter time

frame(s); in this work, T(t) = T(d) or T(t) = T(w)
p the numberof basiccomponents(factors)in the model
� an index enumeratingthe basic components(factors), � = 1,2…,p
m, n the numberof datapointsin the cycle, the number of cyclesin the span
m, n, o numbersof datapoints in the shortercycle, shortercyclesin the longer cycle, and

longercyclesin the spanof a doubly cyclical sequence
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MATHEMATICAL MODELS FORCYCLICAL AND DOUBLY CYCLICAL TIME SERIES

Thebasiccomponent: the product of a cyclical function andan equidistant stepfunction

The first basicbuilding block is a sequenceY(t) = Y(h,d) which hasthe representation

Y�t� � Y�h; d� � H�h�T�d� �2�

Any valueof thesequenceY(h,d) is obtainedastheproductof anhourlyvalueH(h) andadaily value
T(d). Theouterproduct of a column vectorH(h) (h = 1,…,m) anda row vectorT(d) (d = 1,…,n) also
definesamatrix yhd of dimensions(m,n). Thismatrixhasrank= 1.Therankof thesequenceis defined
to beequalto therankof thecorrespondingmatrix.Thusthefirst basicbuildingblock is asequenceof
rank= 1. It hasthe sameshapeon all days,but on different daysit hasa different amplitude or
‘strength’.

ThefunctionsH(h) andT(d) of Equation(2) maybewrittenasfunctionsof t: H(h) = H(h,d) = H(t)
andT(d) = T(h,d) = T(t). HerethefunctionH(h,d) doesnotdependond, andsimilarly T(h,d) doesnot
dependonh. ThusH(t) is astrictly cyclical functionwith cycle= 24h.Similarly T(t) is anequidistant
stepfunction. It hasa constant valuebetweenthe midnightswhen the stepsoccur.

The simplesttime seriesmodelrepresents an observedsequenceX(h,d) asthe sumof a rank= 1
sequenceY(h,d) andrandom noiseE(h,d) according to the model

X�h; d� � Y�h; d� � E�h; d� � H�h�T�d� � E�h; d� �3�

WhenX(h,d) is given, solving the modelmeans that the unknown vectorsH(h) andT(d) are to be
determined so as to minimize somenorm of the residual sequenceE(h,d). Non-negativity may be
required for H(h) and/or for T(d). Equation (3) definesauseful non-trivial problem,sincesomesimple

Figure1. Syntheticexampleno.1. Y(t) = Y(h,d) = H(h,d)T(h,d) is a cyclic functionwith 24h cycles.H(h,d)does
not dependon d. T(h,d) is a stepfunction which doesnot dependon h.
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realseriesmaywell berepresentedby this model. Thecomputational taskis easy,with thesolution
beingobtained usingsimpleiterativetechniques.

In this section, threesynthetic examplesdemonstratehow thetime seriesfunctionsarecomposed
of acyclical shapefunction andatrendfunction. In latersectionsthesameexamplesareusedto show
how to approximate the original functionsby applying PMF to the time series. The first example,
consistingof four cyclesof a sequencewith a cycle length of 24h, is presented in Figure 1. The
exampleshavebeenconstructed so that they areunrealistically ‘easy’: the differentfeaturesdo not
overlapeachother. Theshapesof thecomponentsmaybediscernedby carefully looking at them.In
many real-life problems the overlap is severe and the shapes cannotbe determined without using
computational tools.

Theproductof a cyclical function anda slowly varying function

In the preceding subsectionthe trendfunction T wasassumedto be a stepfunction havingchange
pointsat thebeginning of eachday(in otherapplicationsthechangescould happenateachNewYear,
say).Thesuddenchangeis sometimesarealisticassumption,but in many situationstheassumptionis
definitelynot true.A morerealistic assumption is often that thechanges occurgradually.Themodel
now becomes

Y�h; d� � H�t�T�t� � H�h�T�h; d� �4�
Equation(4) represents an exampleof the secondbasicbuilding block for modelingtime series.

AgainH(t) is astrictly cyclic function,butnowthetrendfunctionT(t) = T(h,d) dependsonbothh and
d. Qualitatively it is assumedthatT(t) is aslowly varyingfunction.In somecasesthevariation in T(t)
is soslowthatonemaysafely approximateT(h,d) with T(d). Suchapproximationmightbeacceptable
wheneverrandom variation of the data is more significant than this artefactof the mathematical
model.

A syntheticexample consistingof 12 periodsof a 24h cycle is presentedin Figure2. Thereis an
upwardtrendduring the first 7⋅5 periods,after which the trend is downward.

A morecomplicatedseries:a superpositionof several basiccomponentsandnoise

The one-componentEquations (3) and (4) are rarely adequatein real-world situations.Usually a
multicomponent‘complex’ model is needed.ThecomplexmodelseriesY(h,d) is constructedasasum
of p basicbuilding blocks:

Y�h; d� � Y1�h;d� � Y2�h; d� � . . .� Yp�h; d�
� H1�h�T1�h; d� � H2�h�T2�h; d� � . . .� Hp�h�Tp�h; d� �5�

This serieshas rank= p if eachTv(h,d) is replaced with Tv(d). A real measured seriesX(h,d) is
approximatedby the model of Equation(5) according to the key equation

X�h; d� � Y1�h; d� � Y2�h; d� � . . .� Yp�h; d� � E�h; d�
� H1�h�T1�h; d� � H2�h�T2�h; d� � . . .� Hp�h�Tp�h; d� � E�h; d� �6�

whereE(h,d) represent the random or noisepart of the measurement.
Thepracticalcomputational problem,given themeasurementX(h,d), is to determine theunknown

vectorsHv(h) andTv(d) (v = 1,…,p) (approximatingTv(h,d)) so that a suitablenorm of the residual
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seriesE(h,d) is minimized.This problemis bestsolvedwith the existingtechniquesdevelopedfor
factor analysis.

A cyclical time serieswith two componentsandaddednoise is shownin Figure 3d. Thestandard
deviationof thenormally distributedrandomerrors is 30%of themeanof theseries. Thereis always
noisepresent in real time seriesowing to measurementerrors,naturalvariability of phenomena, etc.
In addition to thesekinds of errors, the residuals of a model includeall variationwhich cannotbe
explainedby the model.

Thedoublycyclical series

Two cyclesmayinteractadditively or multiplicatively. If therearetwo separatesourcesemittingthe
samecompoundsothatoneworkswith a diurnalrhythmandtheotherworks with a weeklyrhythm,
then the two cyclesare presentin the time seriesin sucha way that the contributions are added
together. Thepresentfactoranalyticmodel is not particularly suitablefor analyzing suchanadditive
interaction. On the other hand,the emission strengthof a singlesourcemay be modulatedby two
periodic effectsin suchawaythattheemission is proportional to theproduct of thesetwo effects.The
cyclesof these effectstheninteract multiplicatively. In thefollowing thefactoranalytic techniqueis
extendedto analyzing suchdoubly periodic sequences.

Thegeneralform of theone-componentdoublycyclical timeseriesmodel is definedasaproductof
three functions of time. The elements of the sequence Y(t), consisting of mno elements, are
representedby

Y�h; d;w� � H�t�D�t�T�t� � H�h�D�h; d�T�h; d;w� �7�

HereH(h) is strictly cyclic, with a shortcycle (24h). The function D(h,d) is also a strictly cyclical
function whose cycle is a fixed multiple of the shortercycle (1 week in this work). The situationis

Figure2. Syntheticexampleno.2. Y(t) = Y(h,d) = H(h,d)T(h,d) = H(h)T(h,d)), whereH is a cyclic functionwith
24h cycles;H doesnot dependon d. The trendfunction T(h,d)dependson bothh andd.
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analogousto thesingly cyclical case: bothD andT arerequired eitherto beslowly varyingor to be
stepfunctions.In the latter case, D(h,d) = D(d) andT(h,d,w) = T(w), giving

Y�h; d;w� � H�h�D�d�T�w� �8�
This form is usedasthebasis for representingcomplex (multicomponent) doubly cyclical series.

An observeddoublycyclical timeseriesX(h,d,w) is representedby a linearsuperposition of anumber
p of basicseriesandnoiseaccording to the key equation

X�h; d;w� � Y1�h; d;w� � Y2�h; d;w� � . . .� Yp�h; d;w� � E�h; d;w�
� H1�h�D1�d�T1�w� � H2�h�D2�d�T2�w� � . . .� Hp�h�Dp�d�Tp�w� � E�h; d;w� �9�

The solutionis againdefinedasa suitable variantof an LS fit. The sets of unknown vectorsHv(h),
Dv(d) andTv(w) (v = 1,…,p) areto bedeterminedsothat thechosen normof E(h,d,w) is minimized.

THE DECOMPOSITIONS SVD AND PMF OF THE MATRIX OF CYCLICAL TIME SERIES

Castingthe seriesin matrix or array form

Thekey ideaof thepresentwork is that thecyclical seriesX(h,d) becastinto matrix form xhd. The

Figure3. Syntheticexampleno.3. Thesameseriesasin syntheticexampleno.2 plusanothercyclical function
with 24h cycles(a)anda lineardownwardtrend(b). (c) Thesumof thetwo functions.(d) Thesamewith added

white noise.
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valuesX(h, 1) will form the first column of the matrix, X(h, 2) the secondcolumn, andso on. The
transposedarrangementis alsopossible. The doubly cyclical seriesX(h,d,w) is similarly castin the
form of a three-way array, i.e. an arrayindexedwith triple indices.

ThesequencesH(h) andT(d) from Equation(3) arenow definedto bea columnvectoranda row
vectorrespectively. Themodelseriesbecomesamatrixyhd. Similarly theresiduals form amatrixehd.
The problemis now a factor analytictask where the number of factorsis p = 1.

In themulticomponentEquation (6), all thecolumnvectorsHv(h) areassembledinto a matrix H.
Similarly all the row vectorsTv(d) areassembled into a matrix T. In matrix notation the equation
takesthe simpleform

X � HT � E �10�

or in componentnotation

xhd �
Xp

��1

hh�t�d � ehd �h� 1; . . . ;m; d � 1; . . . ; n� �11�

Similarly Equation (9) for doubly cyclical seriesis written in componentnotation as

xhdw�
Xp

��1

hh�dd�tw� � ehdw �h� 1; . . . ;m; d � 1; . . . ; n; w� 1; . . . ; o� �12�

wherethefactormatricesH, D andT havebeenformulatedsothatthetimesequencesrunalongtheir
columns(not rows). Equation (12) is an example of the PARAFAC model.

SolvingEquation(11)meansthatwhenX is given, theunknown matricesH andT aredetermined
sothatachosen normof thematrix E is minimized.Themostbasic choiceis to minimizethesumof
the squares of elementsof E or the ‘Frobeniusnorm’ of E. The minimum is found by principal
componentanalysis(PCA). The standardsolution is basedon singular value decomposition(SVD):
computethe SVD of X in the form X = USVT and keep only the p most significant singular
componentsof U, SandVT Dependingonthedesirednormalization,thesolutionof thePCAproblem
(11) may be takenaseither(H = US, T = VT) or (H = U, T = SVT).

ThePCAsolution usually containsnegative values.Thesearenot desirable if thequantities of the
modelare inherently non-negative(mass,number of individuals,energy, etc.). Also, in customary
PCA,all datavalueshaveequalweight: PCAmaythusonly beoptimal if all datavalueshaveequalor
approximatelyequalerrors.Thenewtechniqueof ‘positive matrix factorization’ (PMF) corrects for
thesedeficiencies.For comparisons of PCA andPMF andfor more details of PMF, seeReferences
[3,6–8]. The individual standard deviationsare also taken into accountby the new maximum
likelihood principal componentsapproachof Reference[9].

According to PMF, the quantityto be minimizedin the LS fit is

Q�
Xm

h�1

Xn

d�1

e2
hd

�2
hd

�
Xm

h�1

Xn

d�1

xhdÿ
Pp

��1 hh�t�d
ÿ �2

�2
hd

�13�

Usuallytheminimizationof this Q is constrainedby non-negativity constraintsfor theunknownshhv

(h = 1,…,m, v = 1,…,p) and tvd (v = 1,…,p, d = 1,…,n). The values�hd arethe known (or assumed)
standard deviationsfor eachelement of the datamatrix X.

Forsolvingthethree-dimensionalPARAFAC model (12),onehasto minimizetheobjectfunction

248 P. PAATERO AND S. JUNTTO

Copyright 2000JohnWiley & Sons,Ltd. J. Chemometrics2000;14: 241–259



Q�
Xm

h�1

Xn

d�1

Xo

w�1

e2
hdw

�2
hdw

�
Xm

h�1

Xn

d�1

Xo

w�1

xhdwÿ
Pp

��1 hh�dd�tw�
ÿ �2

�2
hdw

�14�

using iterative techniques.The solutionmatrices H, D andT may be required to be non-negative.
Herethethree-way arrays is analogousto thematrix s of Equation (13). Severalprogramsexistfor
solvingthisdifficult task;for acomparison,seeReference[10]. In thepresentwork thenewprogram
PMF3wasused.

Robustanalysis

Thedistribution of environmentaldata(particularly concentrations) is typically skewed,with asmall
percentageof very largevalues.Mathematical transformations of the data(log or square root) are
often usedfor controlling the influenceof the largestvalues.However, non-lineartransformations
may distort the linear structureof the model [7]. In the presentapproach,standard deviationsfor
residuals arespecifiedproportional to datavalues.In this way,eachlargevaluegetsweighteddown
becauseof the largestandard deviationassignedto it, andno transformationsarenecessary.

The programsPMF2 and PMF3 may be set to work in a robust modeaccording to the Huber
principle: theweightsfor outlyingdatapointsaredynamically decreasedduringtheiteration sothata
statistically robust factorization is obtained[8]. A datapoint is considered outlying it its residual
exceeds the corresponding standard deviation by a user-specified factor, e.g. four. Such
downweighting guarantees that a few outlying valuesmay not totally ruin the result.This feature
is extremely valuable when analyzingenvironmentaldata,which maycontainnon-representative or
erroneousvalues.The examplesin the presentwork wererun in the robust mode.

Although some of theoutlying valuesoftenaregrosserrors,other outlying valuesneednot be in
errorat all. In orderto determinetherecurrent featuresof thedata,theexceptional valuesneedto be
weighteddown evenif theyarefully legitimate values.An example: oneanalyzesairbornedustand
triesto attributeconcentrationsto componentsoriginatingin differentdeserts. Theobjectivemightbe
e.g.to find outwhether thedustemissionsof somedesertsareincreasingwith time. Dust emittedby a
largevolcanic eruption wouldcauseafew outlyingnon-erroneousvaluesin themeasuredtimeseries.
If thesevaluesarenot somehowexcludedfrom the analysis,the resultcould be utter nonsense.In
somesituationsit maybenecessary to reportseparatelyon theexcludedvalues.Downweightingthe
outlying values in the periodic analysis doesnot justify ignoring them altogether, unlessthey are
really considered to begrosserrors.

SVDandPMF of the synthetic example matrices

Synthetic example no. 1. Thereis only onefactor in the synthetic stepfunction exampleno. 1, and
no noise.The rank is then rank= 1 and the SVD of the datamatrix yhd indicatesonly one non-
zerosingular value (9⋅58). Both SVD andPMF find the only factor exactly (Figure 4a). It canbe
seenthat the shapeof the cycle is just the sameas in Figure1, andalso the relative steps are the
same.

Synthetic example no. 2. Although there is only one true factor in synthetic example no. 2, the
threefirst singular valuesof the matrix yhd werenon-zero:16⋅33, 1⋅20 and0⋅05. Threefactors are
neededin the equation Y = USVT to reproduceY exactly. However, sincethe significance of the
secondandthe third factor is small, the shapes of the 24h cycle andthe trendfunction areshown
by the first factor of the SVD solution in Figure 4b. The shapeof (US)h1 is very similar to the
shapeof onecycle of H(t) in Figure2, but not exactly the same.The points�d1 correspondto the
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daily meanvaluesof the function T(t) in Figure2. The one-factorsolutionof PMF agreedwith the
first factor given by SVD within the graphical resolution.

Synthetic example no. 3. The noisy two-componentexample, shownin Figure 3d, was analyzed
with PMF and with SVD. The shapesof the factors found by PMF (Figure 5) approximate well
the original shapes usedto composethe example (seeFigures2 and3). The singularvalueswere
obtained as 22⋅87, 5⋅66, 2⋅51, 2⋅26, 2⋅10, 1⋅75,…, 0⋅54. However, the factor shapes producedby
SVD arenot meaningful without auxiliary rotation.

THE CARBON MONOXIDE EXAMPLE

As a real example, carbon monoxideconcentrationsmeasuredhourly in the city of Helsinki during
the year 1994 are analyzed. The measuringsite is situated in the nearvicinity of the crossing of
severaldense-traffic roads. Traffic is the predominant sourceof carbon monoxide in urbanareas
[11,12], andconsequently theseriesis expectedto bedoublycyclical with diurnalandweeklycycles.
This example is calledthe CO example.

The mean of the 8718 hourly CO concentrations was 0⋅9 ppm, the median 0⋅7 ppm and the
maximum9⋅0 ppm.Of thehourlyconcentrations, 99%werebelow 3⋅4 ppmand95%below2⋅2 ppm.

Figure4. (a)Theexactandonly factorof syntheticexampleno.1.Thesamevalueswerefoundby bothSVD and
PMF. SVD: yhd = (US)h1(V

T)1d. PMF: yhd = hh1t1d. (b) Thefirst factorof syntheticexampleno. 2, assolvedby
SVD.

Figure5. UnrotatedPMF resultsof the noisy two-componentsyntheticexampleno. 3 (SeeFigure3d).
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The CO example is relatively simple and could probably be analyzed without sophisticated
techniques.The‘true answer’ to thisexampleis fairly well known,andthustheresultis withoutmuch
scientific value. However, it is felt that such an ‘easy’ caseis better suited for illustrating the
techniquethandifficult caseswhereonecouldperhapsargueaboutthecorrectresult. An easycaseis
alsoa betterdemonstration for scientistsworking in otherfieldsof science.

Analyzing for the diurnal cycleonly

TheCOconcentrationswereanalyzedby thetwo-wayPMFby arrangingthedatain amatrixwith 24
rows (hours) and365 columns(days).The standard deviationsof the datavalueswerederivedby
assuminga 0⋅1 ppm absolute error anda 15% relative error in eachdatapoint. Thesevalueswere
suggested by expertopinionof theexperimentalist. Thesestandard deviationswereusedthroughout
theanalysis.Sometimes theinitial ly assumedvaluesfor standard deviationneedto berefinedduring
theanalysis if thesizeof residuals is in conflict with theassumedstandarddeviationvalues.In this
work the initially assumedvalues neededno refinement. No attemptwas madeat studying the
distribution of the concentrationvalues.

Thesolution of the two-factor PMF is presentedin Figures6aand6c. Becauseboth factorshave
lowestvaluesduringearlymorninghours, thePMFrunwasrepeatedby arrangingthedatamatrix so
that thefirst measurementstartedat 3 am(Figures6b and6d). It is beneficial to arrangetheendsof
cyclesto be in themiddleof a low-concentration periodin orderto minimize therisk of anartefact
jump whenconnectingtheendsof cycles.This arrangementof thedatamatrix in effectchangesthe

Figure6.Thetwo factorsof theCOexamplesolvedby thetwo-wayPMF.(a,c) Thefirst measurementin thedata
matrixstartedatmidnight.(b,d) Thefirst measurementstartedat3 am.To clarify thefigure,only thefirst 70days

areshown.1 January1994wasa Saturday.
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place of the stepsin the model step function T(h,d): the steps now occur at 3 am insteadof at
midnight.Thestepsmaybeinterpretedasfollows.At thetime of thestepthemodeled traffic pattern
switchesover from thepattern of thepreviousdayto thepattern of thenextday.If thestep wereto
occuratnoon,say,it wouldmeanthatthemodelpredictsthatatnoonthenumberof carsonthestreets
suddenly jumps. The jump would represent an increase or decrease,dependingon whether the
coefficient for the next day is higher or lower thanfor the previousday.

In the diurnal modeof the first factor (full line) a strongmaximum canbe seenduring the rush
hoursin themorning andanothermaximumin theafternoon.In Finlandtheworking time is usually
from 7–8to 16–17fivedaysaweek. Thediurnalmodeof thesecondfactorstartsto riseatabout8 am,
hasabroadmaximumduringtheafternoonandeveninghoursanddecreasestowardsmidnight.In the
trend mode the first factor tends to have its lowest valuesat weekends, while the secondfactor
behaves in the oppositeway. The high value on the 36th day (5 February, a Saturday)wasdueto
meteorological conditions:high pressureandan inversionsituation with low temperatureanda low
wind speed, causing stagnantair. Day 61 wasWednesday2 March,andat that time therewasalso
high pressureandan inversionsituation overScandinavia.

Thedifferencebetween thesolutionswhenthetime serieswasstartedat midnight(Figures6aand
6c) andat 3 am(Figures6b and6d) is mostly dueto rotational freedomin thesolutions.Rotational
ambiguity is alwayspresentin two-way factor analysis unlessnon-negativity (or other additional
constraints) preventsrotations of the solution. The secondtrend factor (having the maximum
concentrationatnoon)in Figures6cand6dis non-zeroeverywhere.Suchrotationsareallowedwhere
a fractionof thefirst trendfactoris subtractedfrom thesecond, while asimilar fraction of thesecond
diurnalshapeis addedto thefirst diurnalshape. Thusbothsetsof solutionsshould beconsideredas
valid. In fact,thedomainof rotationally possiblesolutionsextendsevenfurtherin thedirectionwhere
the afternoonrushhourmaximum of the first trendfactor increases.

With midnight and3 amstartingtimesthevaluesof Q in Equation (13) were10 788and10 479
respectively. Thebetterfit is probablymostly dueto improvedfitting of inversionsituationswherethe
night-time concentrationsdecreasemuch slower than in normal weather conditions. However, the
differencebetweentheseQ valuesis rathersmall andmay be called‘insignificant’. In further two-
way andthree-way analysesthe time seriesstarting at 3 am will beused.It is notedin passingthat
ideally (i.e. if standardizedresiduals areindependent andnormallydistributed)thequantityQ should
havea �2 distribution with the number of degreesof freedomslightly smallerthanthe number of
pointsin thetime series. The valuesobtained for Q aretoo large,approximately by a factorof 1⋅25,
suggesting that the assumedstandard deviationvalueshavebeentoo optimistic. In principle, the
analysis shouldbe repeated with standard deviation valuesincreasedby a factor of

����������
1�25
p � 1�12.

However, in practice, sucha small overall adjustment of thestandard deviationsdid not changethe
resultsnoticeably.

Thetwo-wayPMFanalysiswasalsorunwith threefactors,but theresult could notbeexplainedin
a useful way anddid not give anymore informationaboutthe formation of the CO concentrations.

Analyzing for both the diurnal and7 daycycles

In thetrendmodeof thetwo-wayPMF(Figure6), faint weeklyperiodscouldbeseen.In orderto find
out the shapesof thesecycles,the PARAFAC model was tried, by using the three-wayprogram
PMF3.The time seriesof hourly CO concentrationswasarrangedasa three-way arraystartingat 3
am on 1 January1994(Saturday).

Thetwo-factorsolutionwasalsothemostuseful whenrunningthethree-way PMF (Figure7). The
high concentrationsduring the morning andafternoonrushhourscanbeseenclearly in the diurnal
modeof the first factor (full line). The shapeof the diurnal modeof the second factor is now quite
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symmetric, with abroadmaximum from aboutnoonto about7 pm.The7 daymodeof thefirst factor
hashighvaluesduringweekdaysandis almostzeroat theweekend,while thesecond 7 daymodehas
its highest valuesat theweekend.Thehighestvaluesof thetrendmodeof thesecondfactorareseen
in Februaryandthe lowestnearmidsummer.Thevariability of thefirst trendfactor is muchsmaller
andhasno clearseasonality. The lack of seasonality is in accordancewith Derwentet al. [13], who
reportthat traffic flows observedon weekdaysdo not exhibit any seasonality.

As explainedin theprevioussubsection,thelocationof thestep in thestepfunction is influencedby
the arrangement of the datamatrix. The three-waymodel contains steps in two directions. On the
basisof the two-way PMF, it wasdecidedto start the diurnal cycle at 3 am. In orderto decide the
startingdayof theweek,thethree-wayPMF wasrunrepeatedly, startingondifferentdays.Therange
of theQ valuesof thesolutionswasquitenarrow,only 4%.Theworstfits (thehighestQ values)were
connected with starting on Saturday or Sunday.The solutionsobtained whenstarting on Tuesday,
Wednesday, Thursday(Figure8) or Fridaywerealmostidentical, sothatFigure8 is representativeof
themall. It canbeseenthatthediurnalcyclesof bothfactorsaresimilar in bothFigure7 (startingon
Saturday)andFigure8, but theweeklycyclesdiffer. In Figure 7, Fridaybehaves just like theother
weekdays, but in Figure8 it differs from theotherdaysby having high valuesfor both factors.It is
known that Friday differs from otherworking days.Especially in summer, peoplestartto leavefor
their summercottages earlierandthenight traffic also continues longerthanon theotherweekdays.
Thus the model in Figure 8 is acceptable and preferableto Figure 7, which has probably been
distortedby the location of the stepin the weekly cycle.

ANAL YZING THE PROBLEM WITH THE TOOLSOF FOURIER ANALYSI S

Severalsinusoidalsignalsof differentfrequenciesareeasilyseparatedfrom eachother andfrom noise
by using Fourieranalysis.Thenonesimplypicksthosefrequency componentswhich risesufficiently
highabovetheaveragenoise level.Theshapeof onenon-sinusoidal periodicsignalis also efficiently
analyzedwith Fourieranalysis:thenonelooks for anequidistantsetof frequencycomponents with
above-noise amplitude. The pattern of amplitudes of these different harmonic (‘overtone’)
frequencies is related to the periodic shapeof the signal.Yet another simple caseis an amplitude-
modulatedsinusoidalsignal,i.e. a signalwhich is the productof a sinecurveanda slowly varying

Figure7. Thetwo factorsof theCOexamplesolvedby thethree-wayPMF.Startingtime at 3 amon Saturday1
January1994.
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trendcurve.The Fourier transform(FT) of sucha productsignal is the convolution of the Fourier
transformsof thetwo signals.Thecarrierfrequencyis spreadinto a narrow bandwhosenarrowness
resultsfrom the slowly varying natureof the trendsignal.

Thepicture becomeslessclearwhentheFT of a non-sinusoidal signalwith varyingamplitude is
considered. As an example,the synthetic examplefrom Figure 2 is presented.The computed FT,
shownin Figure 9a, is also a convolution of the FT of the trend signal with the FT of the non-
sinusoidalperiodic signal.It is seenthatboththebasic frequency andall theharmonicsarespreadinto
bandsof identical shapebut different intensities. The properties of the original signal may still be
recovered asfollows.By integratingeachbandaround theequidistantfrequencies,oneobtainstheFT
of theshapecurveandhencetheshape. By averagingall thebands,oneobtainstheFT of the trend
curve(themodulatingsignal)andhencethetrendcurve. However, nothingspecialis gainedby doing
this analysisin the frequency domain.The operationscorresponding to averaging and integrating
could alsobe performedin the time domain when the cycle length is known.

Figure9b showsthe FT of the noise-freesyntheticexample from Figure3c. Now therearetwo
superposed component signals,eachconsistingof a non-sinusoidal periodic curvemultiplied by a
slowly varying trend curve. The sameset of frequencybandsis visible as in the previouscase.
However, noweachbandcontainsinformationfrom twocomponents(andalso somenoiseif realdata
areanalyzed). Thereis no simpleway of separatingthese components from eachother,althoughthe
information is there,of course.Evenif a techniquecould bedevisedfor analyzingtheinformation in
the frequency bands,the non-negativity information would not be available; this useful auxiliary
information is only presentin the time domain. Similarly, weighting of individual datapointsand
downweighting of outliers arenot possible in the frequency domain. It is concludedthat separating
thecomponents is not straightforwardby using Fourier analysis,andevenif theseparationcouldbe
effected,thereare several drawbacks in this approach. In practice, Fourier analysis is limit ed to
finding the average periodic shapeand the average trend behavior, averagedover all individual
components present in the system.

Figure9c showsthe FT of the 8736h (52 weeks) of the CO time series. The peakat frequency
0⋅0417cyclesperhourcorrespondsto thebasic 24h period.Theharmonic frequenciesarevisible at
0⋅0833and0⋅125.Theweeklyperiodicity is visible in thesidepeakswhichare0⋅006unitsto theleft
andto theright of thebasicpeakanditsharmonics.Theoveralltrendmaybevisible in thespreading

Figure8.Thetwo factorsof theCOexamplesolvedby thethree-wayPMF.Startingtimeat3 amonThursday30
December1993.
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of all thesepeaks. It is seenthat the doubly periodic situationcreatesan evenmore complicated
Fouriertransform.By using Fourieranalysis,it wouldbepossible to obtain theaverageweekly shape.
However, therewould beno way to derive the weekly shapes of the individual components.

ANAL YZING CYCLICAL MULTIVARI ATE TIME SERIES

Manyenvironmentaltimeseriesarein factmultivariate:eitherthereareseveral parallel simultaneous
measurementsof one quantity, made at different locations, or several different quantities are
measuredin parallel from eachsample.Whenatmosphericpollution is monitored,concentrationsof
severalchemical elementsor compoundsareoftendeterminedfrom eachsample.

Theunivariatetechniquespresentedin this work areeasilygeneralized for analyzing multivariate
time series. Thebasicassumption is thateachsourcehasaconstantprofileamongthesetsof parallel
observations:eitherthespatial distribution dueto any individualsourcestaysconstantwith time, or
thechemical composition of theemissionfrom eachsourcestaysconstant.Themultivariateanalogy
of Equation (11) is thenthe PARAFAC model

xchd �
Xp

��1

ac�hh�td� � echd �c� 1; . . . ;C; h� 1; . . . ;m; d � 1; . . . ; n� �15�

(In three-wayequations the factorsusually correspond to columnsin all threefactor matrices.This
differs from thecustomary two-waynotation.)Thefirst index c enumeratestheparallel observations.
Thesecondandthird indicescorrespondto thefirst andsecond indicesin Equation(11). Thecolumns
of thefirst factormatrix A representtheprofilesof theindividual sources:how strongly eachsource

Figure9. Realpartsof the Fourierspectra(excludingthe zero-frequencypeak)of the examples.(a) Synthetic
exampleno. 2 (SeeFigure2). (b) Syntheticexampleno. 3 (SeeFigure3c). (c) The CO example.
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contributesto eachof theparallel observations.Themeaningof thematricesH andT is thesameasin
the univariatecase.

Themultivariatemodel hasthesamedrawback astheunivariate model: thetrendfunctionsTv(d)
areequidistantstep functions. In principle,this causesthemodeled concentrationsto contain sudden
jumps at cycle end points (at midnight or at New Year). This may be objectionable in some
applications.

A successful applicationof themultivariatetechniquehasbeenpublished by Xie etal. [14]. Arctic
aerosolcomposition data(weeklymeasurementsduring11years)wereanalyzed. Thesedataexhibita
very clear yearly cycle. Thepollutantconcentrationsdueto differentsourcesreach their maxima in
the Arctic during different partsof the year. The year-to-year trend, if any, would reflect global
changes in theatmosphere,eithernatural or anthropogenic. Theaerosol dataarearrangedin a three-
way arrayxcwy sothat thefirst indexc enumeratesthe24 differentcompoundswhoseconcentrations
havebeenmeasured,thesecond indexw enumeratestheweekswithin a year, andthe third index y
enumeratestheyears.The columnsof thefactormatrices A, H andT areinterpretedasfollows: ack

representsthecompositionprofilefor factork, hwk showstheseasonalshapeof theconcentrationsdue
to factor k, andfinally tyk represents the trendbehaviorof factor k.

DISCUSSION

Theimportantquestion of determiningthenumberp of componentshasbeenextensivelydiscussed in
the factor analytic literature: for PCA, seeReferences [15,16]; for PMF, seeReferences [8,17]. For
factor analytic treatmentof time seriesproblems,thesereferencesmay beconsulted.

No statistical criteria are currently availablefor estimating the confidence limi ts of results.In
practice,onehasto gainconfidencein theresultsby repeatingtheanalysis on severalsetsof similar
data,collected e.g. during different yearsor from neighboring similar geographical locations.By
comparingtheresults, onemayrejectthoseresults which arecaused by random variationof thedata
or by local peculiarities which invalidate the modelfor somedatasets.Alternatively, onemight be
able to comparesome of the computed results with previously known facts.If no comparisons are
possibleandthenoiselevel in thedatais high,theresults should notbetrustedbecauseof therisk that
they might just reflect the noiseof the data.

The results of the two-way model suffer from rotational indeterminacy, familiar from factor
analysis: different combinations of periodic and trend shapes produce identical fits to the data.
Depending on thedata,non-negativity constraints mayeliminatesomeor all of this uncertainty. The
doubly cyclical three-way model and the multivariate cyclical model are basically free from the
rotational uncertainty.

Resultsof the examples

Thesimplesyntheticexampleswith oneor two componentsshowedthatpositivematrix factorization
(PMF) could find the factors well even in the presenceof high-amplitude noise. The solutions
obtained using traditional factor analytic methods(singular value decomposition or principal
componentanalysis)werenot equallyuseful.Therewasalsoa minor rotationaluncertainty in the
resultsgiven by PMF. Rotational uncertainty is alwaysa reality in factor models, and PMF is of
courseno exception.

Thesolutionof theCO example foundby thetwo-wayPMFshowedtherealisticdiurnalvariation
of theconcentrations.A largeamountof rotational uncertainty wasseenin theseresults. In theday-to-
day trendmode,hintsof some7 dayperiodicity werevaguely visible. Theshapeof the7 daycycle
was only found by three-wayfactor analysis. Becausethe model forces the changes in both the
weekly cycle and the trend function into discrete steps,the locationsof thesesteps influence the
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results:differentstarting timesin bothdirections (time of day,dayof week)leadto slightly different
factorizations.By repeating the analysiswith differentstartingtimes,it waspossible to pick stable
representativesolutions.

Similar three-wayanalysiswasperformedonotherCOdatasets,measuredin theyears1990–1993.
Thediurnal shapes werefoundto bestable, similar in all results.More variation wasencounteredin
the weekly shapes.For the work-relatedfactor the ratio of the largestand smallest valuesamong
(Mon, Tue,Wed,Thu) is below threeto two. Thereis noclearpattern in thevariation. In all yearsthe
valuesobtained for Fridayareintermediatebetweenweekdayandweekendvalues.Thedifferencesin
weekly shapes of different yearsweresimilar to the differences betweenFigures7b and8b.

Standarddeviationsof data values

All factoranalysisis basedon implicit assumptionsaboutthestandard deviationsof thedatavalues,
althoughthis basisis not generally mentionedin textbooks [7]. In fact,mostfactoranalysis assumes
thatall standarddeviationsareequalafterthescaling doneby standardizingthecolumns(or rows).It
is essentialthatone communicates to themodelthebestinformationthat is availableaboutthedata,
including particularly informationaboutthe standarddeviations. In additionto the PMF technique,
individual standard deviations are taken into account by the maximum likelihood principal
components approachof Reference[9].

If thereis no betterinformation than‘all standard deviationsareequal’, thenoneshouldusethis
knowledgeandspecifye.g.�hd = 1 for all h andd. Usuallythereis at leastsomeinformationaboutthe
accuracyof experimental data,e.g. it is known that small concentrations(near the detection limit)
have a larger relative laboratory error but a smaller absolute laboratory error than large
concentrations.Suchinformation should be expressedby meansof the�hd values.

Comparisonswith customary time seriestechniques

Theautoregressive(AR) modelspredicteachnewdatavaluebasedonanumberof earliervalues.The
primaryresult is asetof coefficientsdescribing thisdependence.In AR models,additive trendmaybe
included, but multiplicative trend,as needed for describing the varying amplitude of the periodic
shape,is not available. Thereis no way of separating thecompositesignalinto severalcomponents
with the samefrequency but uniqueperiodic and trend shapes. Non-negativity is not included in
autoregressive models. TheAR techniquesareespecially usefulwhentheperiodof thesignalis not
fixed. It is seenthat AR techniquesaresodifferentthat no numerical comparisonsaremeaningful.

As discussed in a preceding section, Fourier analysis is ableto extracttheaverageperiodic shape
andtheaveragemultiplicativetrendfrom acyclic timeseries. However, individualshapesandtrends
cannot be obtained for the individual components or ‘factors’. Numerical comparisonsare not
meaningful betweenthe averageresulton onehandandindividually separated results on the other
hand.

Specialproperties of the doubly cyclical modeland the multivariate model

Thepropertiesof thesinglycyclical modelderivefrom two-wayfactoranalysis.Thesepropertiesare
well known.The generaltwo-way solution containsrotational ambiguity. Requiring non-negativity
eliminatessome of therotations; depending on thedata,theresultsometimesbecomeswell defined
withoutanyrotational uncertainty at all. On theother hand,requiring non-negativity and/orapplying
individual weighting of datavaluesmay generate local minima of the object function Q which is
minimizedin theLS fit. Thusin somecasesthefactorizationproblemdoesnothaveauniquesolution.
Thescientisthasto explore the different solutions.Sometimes they do not differ significantly from
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eachother; sometimessomesolutionsmaybenon-physicalsothattheymaybediscarded;andfinally
in some cases it may be properto reportmore thanone possible interpretation of the data.These
questionshavebeendiscussedby Paatero[8].

The propertiesof the PARAFAC solutionarelesswell known, andmany research problemsstill
remainopen.It hasbeenshown by Kruskal [18] thatunderrathergeneral conditionsthePARAFAC
modeldoesnothaverotational freedom.Simplified,thistheoremstatesthatif all threefactormatrices
areof full rank,thenthefactorscannotberotated without making thefit worse.In clear-cutcasesthe
uniqueness is astrongresult: onemayaccept thefactorizationasit is without considering alternative
rotational forms.Thereareborderlinecases,however. It is intuitively clearthatif thefactormatrices
are almost rank-deficient, then the Kruskal theoremis of little value: althougha rotatedsolution
would havea worsefit, theincrease in theQ valuewould not besignificant.As anexample,assume
thattwo factorshavepractically thesamediurnalshape. Thenthereis rotational freedombetween the
7 dayshapes andthe trendshapes of thesetwo factors unlessnon-negativity preventsthe rotations.

Another problemwith the PARAFAC model may be caused by the existenceof severallocal
solutions.It is alwaysprudentto assume that there aremultiple solutions.Only if thesamesolution
keepsreappearingwhenrunningtheanalysiswith several pseudorandomstartingpointsmayonebe
satisfied that the solution is unique. Oneshouldnotethat the existenceof competingsolutions (i.e.
local minima of Q) is a property of the model andnot of the algorithm usedfor solving the model.

Future developments

TheCO exampledemonstratedthat theplacementof cycle startingtimes influencestheresults.This
wascaused by the fact thata smooth trend functionwasapproximatedby a stepfunction, causinga
differencebetween the mathematical model andthe real world. Depending on the placementof the
step,the differenceinfluencesthe result in different ways.The leastdistortedand most plausible
result is obtained by placing the discontinuity to a moment where the periodic shapeis at its
minimum.

As longasstandard factoranalyticsoftwareis used,thereis nowayto avoid thediscontinuity in the
mathematical model.However,it is also possible to definea mathematical modelwherethe trend
function is definedasa truly smoothfunction without artificial discontinuities.Thenthesignificance
of cyclestartingtimeswill disappear entirely.Suchmodels maybeeasilyformulatedandsolvedwith
the newprogram ‘Multiline ar Engine’ [19]. Resultsof theseexperimentswill be reported later.
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