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In this work an alternative method, named SLICING, for two-
dimensional and noniterative T2 decomposition of low-field pulsed
NMR data (LF-NMR) is proposed and examined. The method
is based on the Direct Exponential Curve Resolution Algorithm
(DECRA) proposed by W. Windig and A. Antalek (1997, Chemom.
Intell. Lab. Syst. 37, 241–254) and takes advantage of the fact that
exponential decay functions, when translated in time, retain their
characteristic relaxation times while only their relative amounts
or concentrations change. By such simple translations (slicing) it
is possible to create a new “pseudo” direction in the relaxation
data and thus facilitate application of trilinear (multiway) data-
analytical methods. For the application on LF-NMR relaxation
data, the method has two basic requirements in practice: (1) two or
more samples must be analyzed simultaneously and (2) all samples
must contain the same qualities (i.e., identical sets of distinct T2 val-
ues). In return, if these requirements are fulfilled, the SLICING (tri-
linear decomposition) method provides very fast and unique curve-
resolution of multiexponential LF-NMR relaxation curves and, as a
spin-off, calibrations to reference data referring to individual proton
components require only scaling of the resulting unique concentra-
tions. In this work the performance of the SLICING method (in-
cluding multiple slicing schemes) is compared to a traditional two-
dimensional curve fitting algorithm named MATRIXFIT through
application to simulated data in a large-scale exhaustive experi-
mental design and the results validated by application to two small
real data sets. Finally a new algorithm, Principal Phase Correction
(PPC) based on principal component analysis, is proposed for phase
rotation of CPMG quadrature data, an important prerequisite to
optimal SLICING analysis. C© 2002 Elsevier Science (USA)
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INTRODUCTION

Low-field 1H pulsed NMR (LF-NMR) is a direct and exciting
technology for probing proton mobility in, e.g., food and feed.
The importance of such a probe cannot be overestimated due to
the fundamental impact on food quality of the physics of the two
1 To whom correspondence should be addressed. E-mail: se@kvl.dk.
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major proton-carrying components: fat and water. The hydra-
tion characteristics of food and feed determine to a great extent
its oxidative behavior, as water is the carrier medium of most
oxidation processes including microbiological processes. The
overall water compartmentalization will often mirror the basic
food structure and thus indirectly or directly reflect rheological
and sensory quality attributes. Fat content and solid fat index are
quality attributes of prime importance to the nutritional character
of the food and to the mouth feel, respectively. LF-NMR has the
potential not only to measure all of these important food quality
attributes but also to perform the task as a noninvasive volu-
metric measure. While LF-NMR does not suffer from limitations
in possible pulse and field gradient applications, it suffers from
a crude resolution and is normally only recorded and analyzed
in the time domain.

In the time domain, transverse LF-NMR relaxation data are
assumed to be a sum of exponentials,

x(t) =
N∑

n=1

Mn · exp

( −t
T2n

)
+ e, [1]

where x is a J-vector holding the acquired data for a single sam-
ple, N is the number of exponential functions or components in
the sample, Mn is the concentrations or amplitudes of the nth ex-
ponentials, T2n is the corresponding relaxation time constants, t
is the acquisition time axis, and e is the residual error. While the
T2’s provide a qualitative description of the spin–spin relaxation,
the Mn holds the quantitative description. Normally transverse
LF-NMR relaxation curves obey Eq. [1], but a number of phys-
ical sample effects as described by Diegel and Pintar (2) and
Köpf et al. (3) as well as instrumental effects may give rise to
nonexponential lineshapes.

Two fundamentally different data analytical strategies can be
applied to analyze instrumental multivariate colinear data such
as NMR spectra and relaxation decays: (I) one-dimensional anal-
ysis in which the data structures from each sample are ana-
lyzed individually and (II) two-dimensional analysis in which a
1 1090-7807/02 $35.00
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of generating the three-way data array based on a measured two-
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series of related data structures are analyzed simultaneously. For
exponentially decaying relaxation curves the one-dimensional
data analytical approach has two well-established forms:

(1) Discrete exponential fitting. In this classical approach,
the relaxation profiles are individually decomposed into a limited
number of pure exponential curves (typically less than 5). This
is the classical approach and scientists working in the numeri-
cal field have been struggling with and refining it for more than
200 years (4). More recent numerical approaches include quasi-
Newton least squares fitting using soft line search and factoriza-
tion. Despite the ill-conditioning property of the exponential-
sum fitting problem, in practice numerical methods have become
fairly robust, but unfortunately the iterative methods are rather
time-consuming. More importantly, the final results are often
strongly dependent on the number of exponential components
extracted.

(2) Distributed exponential fitting. Distribution analysis is
the natural generalization of the oligo-exponential analysis
where the relaxation curve is least squares fitted to a contin-
uous distribution of characteristic relaxation times (exponen-
tials) (5, 6 ). This approach is appealing to scientists working
with interpretation of NMR relaxation profiles, as relaxation
components are generally considered as having relatively large
variation in their T2 values. However, if the results of distributed
exponential fitting and discrete exponential fitting for a given
sample are compared, it is often seen that the time constants of
the discrete analysis coincide with the modes of the peaks in the
continuous analysis. For this reason, exponential fitting does, in
fact, reveal useful information about the origin of protons in the
sample. Mathematically speaking, the distributed exponential
fitting problem is ill-posed, for which reason its numerical so-
lution requires regularization. Even with regularization, results
from current algorithms do not converge convincingly and are
exceedingly slow.

The two-dimensional methods are generally more robust and
require fewer assumptions about the data structure. For NMR
time-domain relaxation curves the two-dimensional quantitative
data analytical approach has a minimum of two forms:

(3) Discrete exponential matrix fitting (MATRIXFIT). This
is the two-dimensional analogue to the discrete exponential fit-
ting, in which several relaxation decays are analyzed simulta-
neously assuming that the qualities remain unchanged. In this
approach Mn is a vector of amplitudes with I elements and T2n

are common time constants for all I samples. The entire set of
relaxation decays is thus fitted at the same time to a common set
of underlying exponentials.

(4) Bilinear multivariate data analysis (chemometrics). In
recent years chemometric methods have been applied for analy-
sis of LF-NMR data (7–10). The essence of most chemometric
methods lies in their construction of common latent factors (or

principal components) from underlying latent structures in the
original data from many samples. The mathematical model for
ND ENGELSEN

this problem can be described as

X = T · PT + E, [2]

where X is the transverse LF-NMR data matrix (I × J ; one
relaxation profile per row), P contains the underlying profiles
(J × N ; loadings), and T is the contributing amplitudes (I × N ;
scores). The scalar N is the number of factors resolved and E
(I × J ) holds residual unexplained variation. Chemometric data
analysis has proven to perform well especially in quantitative
calibration problems and to be extraordinarily robust when ap-
plied to LF-NMR data. The disadvantage of using chemometric
models is that it requires data from many samples to be analyzed
simultaneously and the qualitative information (time constants)
is lost due to the common practice of extracting orthogonal la-
tent factors. However, in certain cases where the data from each
sample are two-dimensional, such as in excitation-emission fluo-
rescence spectra, trilinear chemometric methods that can resolve
the underlying non-orthogonal factors uniquely (vide supra) are
available.

In this work we will describe, test, and discuss a new 2D algo-
rithm for the analysis of LF-NMR data that may be considered
as a combination of the best features from (1) and (4), but its so-
lution ideally should be identical to (3). The novel approach is to
upgrade a one-dimensional relaxation curve to become a pseudo
two-dimensional structure and thus facilitate the unique advan-
tages offered by trilinear models. The method is basically built
on the fact that two different time “slices” (Fig. 1) of a given
multiexponential decay curve consist of the same underlying
features (quality, characteristic decay times), but in a new lin-
early related combination of amounts (quantity, concentrations
or magnitudes). Windig and Antalek (1) originally conceived the
idea and proposed a fast alternative to the trilinear least squares
solution, which they called the Direct Exponential Curve Res-
olution Algorithm (DECRA). In other words the new approach
is built on the linear relationship between exponentials,

exp

( −t
T2n

)
∝ exp

(−t + �t
T2n

)
[3]

and similar ideas have also appeared in telecommunication un-
der the generic name ESPRIT (11–13). In their first application,
Windig and Antalek applied the method to perform exponential
curve resolution of first-order reaction kinetics (C = C0 · e−k·t)
as monitored by high-resolution NMR at the process line at
KODAK (U.S.). Since the first publication of DECRA, several
authors have applied the algorithm or modifications of it in a
series of applications such as multivariate image analysis based
on magnetic resonance images (14–17) short-wavelength near
infrared analysis (18), UV-VIS (19, 20), and solid state NMR
and mid-infrared (21). Common to these applications is the step
way matrix, whereas different algorithms are used to perform the
deconvolution. Applications of DECRA reported so far have the
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FIG. 1. (A) Illustration of the concept of rearranging a two-way data matrix
into submatrices and placing them behind each other to create a new linear
direction in the data, i.e., a three-way data structure. The figure shows the case
where data have been lagged lag and two slabs are created. (B) Enlargements
of the representation in (A) for a single sample to improve visualization.

direction of exponential decay between spectra (rows) that are
recorded as time series of the same sample. Such applications,
in which the sample has been left in the spectrometer throughout
the measurements, are ideal sampling situations, increasing the
sampling repeatability and thus eliminating a number of factors
that might otherwise introduce noise and disturbances into the
data. In this work, we propose and examine the combined use
of Windig and Antalek’s “slicing method” and trilinear meth-
ods to analyze low-resolution transverse relaxation decays that
are multivariate exponential decay curves from a set of samples
rather than a multivariate measurement on one sample as a func-
tion of time. The direction of exponentiality here is in the variable
direction rather than in the sample direction, which gives rise
to a few problems that, will be briefly outlined. The algorithm
for analysis of transverse LF-NMR data suggested in this paper
is based on the concept of the “slicing” rearranging data as de-
scribed in DECRA, but a number of steps have been included
in the deconvolution to improve the DECRA algorithm towards
transverse LF-NMR relaxation data. The described algorithm,
optimized to LF-NMR data, will be termed SLICING through-
out this paper, in acknowledgement of the fact that data are sliced

to produce the three-way array. At this point is should be stressed
that the new algorithm as well as algorithms (1)–(3) are based
on the assumption that the relaxation data exhibit “pure” mul-
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tiexponential behavior. The aims of this study are to evaluate
the performance of the new SLICING algorithm using different
slicing principles including an optimized approach and a new
uncorrelated approach and to compare their performances to
the MATRIXFIT procedure. For this purpose a large-scale ex-
haustive experimental design of simulated data was constructed
and finally the results were validated using two simple real
datasets.

THEORY AND METHODS

In this section we will outline the algorithms used in this study
with special emphasis on the new SLICING algorithm, but first
the two-dimensional curve-fitting algorithm is briefly outlined.

MATRIXFIT

For this approach we have chosen a rather pragmatic approach
which to excess has proven robust, reliable, and relatively rapid.
The algorithm was originally written for one-dimensional mul-
tiexponential fitting as stated in Eq. [1], but the extension to
performing multiexponential fitting on two-dimensional data is
straightforward. Rather than optimizing the fit for one sample
at the time the residual error of the optimization is calculated
for the entire data matrix, we use a common time constant for
all samples but with concentrations individual to each sample
calculated by the fit. This way the time constants and concentra-
tions that best describe the entire data matrix for a given number
of components are calculated. In terms of Eq. [1] this implies
that T2n is identical to all samples and only Mn varies for each
sample. An algorithm capable of similar two-dimensional multi-
exponential deconvolution called SPLMOD has previously been
made available on the Internet in a Fortran compilation (22).

Trilinear Theory

Second-order low-rank trilinear data have the distinct advan-
tage that they can be decomposed according to a so-called par-
allel factor analysis (PARAFAC) model (23–25). Approximate
trilinear data follow the model

ximk =
N∑

n=1

tin pmnskn + eimk,
[4]

i = 1, . . . , I ; m = 1, . . . , J ; k = 1, . . . , K .

The data are held in the elements ximk , the parameters tin hold the
so-called loadings pertaining to the first mode typically gathered
in T (I × N ), pmn holds the loadings pertaining to the second
mode held in P (M × N ), skn holds the loadings pertaining to
the third mode held in S (K × N ), and eimk holds residual un-
explained variation (see Fig. 2). The elements ximk are held in a

three-way I × M × K array and are triply subscripted meaning
that the data can be arranged in a three-way cube of data as
opposed to ordinary doubly subscripted data corresponding to
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FIG. 2. Schematic drawing of a three-way array decomposed by a trilinear
model. The dimension of the three-way array is I samples, M variables, and K
slabs, and T represents the score matrix or concentrations, P is the exponential
loadings or latent variables, and S is the slab mode loadings. N is the number of
components deconvoluted.

a matrix. In bilinear modelling of matrices (e.g., principal com-
ponent analysis—Eq. [2]) the parameters are only identified up
to rotation unless a priori constraints such as, for example, uni-
modality and nonnegativity are applied. Thus, even though a set
of several LF-NMR profiles follows the bilinear model, it is not
possible to actually find the exponential profiles and their cor-
responding amplitudes because an infinity of solutions provides
the same fit. For the PARAFAC model, however, the parame-
ters are uniquely identified up to trivial scaling and permutation.
Hence, if the data follow the model, the individual components
can be identified directly (25).

For trilinear modelling, a number of different algorithms
are available including Generalized Rank Annihilation Method
(GRAM) (26) and Direct TriLinear Decomposition (DTLD)
(27) which is a generalization of GRAM and PARAFAC-ALS
(23–25). While the two former algorithms are based on a gen-
eralized eigenvalue problem and computationally relatively “in-
expensive,” they do not provide the least squares solution to the
posed problem. For large data sets with high signal-to-noise ra-
tio and little model error, the deviation from the least squares
solution is usually insignificant. If, however, the least squares
solution to the three-way problem is required, the PARAFAC-
ALS algorithm is a suitable choice. PARAFAC-ALS has certain
advantages, but being an iterative procedure it does not share the
computational efficiency of the GRAM-based methods and will
not be pursued here, since algorithmic speed is one of the pri-
mary goals. Application of GRAM-based algorithms is also rea-
sonable due to properties of the problems typically solved with
DECRA, since these are often based on precise measurements
that closely follow the stipulated model. Also, it is important
to keep in mind that since the data analytical problem initially
is a two-way problem, a least squares solution to the three-way
problem (and hence not to the two-way problem of Eq. [2])
is still no guarantee that the obtained solution is statistically
optimal.

In this study it was desired to obtain a flexible algorithm that
can deal with complex slicing schemes including multiple slices
(see below) and as more than two slices are generated, GRAM
can no longer be used, because GRAM intrinsically requires

that the dimension is two in one of the modes. Direct trilinear
decomposition (DTLD) is a generalization of GRAM that can
handle multiple slices and was therefore chosen for this work
AND ENGELSEN

(27). In the case of having only two slices, the solution calculated
by DTLD is identical to the GRAM solution.

SLICING Procedures

If equitemporally measured transverse LF-NMR data from
two or more samples can be approximated by

X = T · PT
exp, [5]

where the Pexp contain N underlying profiles of length J (J × N )
which are distinct monoexponentials, then it can be shown that
the data can be rearranged into a so-called three-way array Y

¯of size I × M × K as depicted in Fig. 1A. If X has elements
xi j , (i = 1, . . . , I ; j = 1, . . . , J ), then the three-way array Y

¯can consist of two submatrices of dimension I × J − 1, where
the first submatrix contains the first J − 1 columns of X and
the second submatrix contains the last J − 1 columns of X.
Hence, the major part of the two matrices will be identical, but
shifted “horizontally” by a fixed amount. The submatrices in
the resulting three-way array will be referred to as slabs and the
number of columns to shift between the two slabs (in this case
one) will be referred to as lag. The interpretation of lag and slab
is displayed in Fig. 1A with a more detailed picture for only one
sample in Fig. 1B. It can be shown that when the original data
follow the model of Eqs. [1] and [5], then this three-way array
will follow a trilinear model in which the parameters are related
to the parameters in Eq. [4]. This property will be explained in
detail later. This is important, because the PARAFAC model can
be shown to be essentially unique under mild conditions (up to
some trivial scaling and permutation indeterminacies that are
intrinsic to the problem). This again implies that the parameters
in Eq. [1] can be estimated directly from the PARAFAC model;
i.e., the defining exponentials as well as their magnitudes in the
different samples are found directly from the PARAFAC model.
There are multiple slicing choices that can be made to achieve the
pseudo upgrade of the bilinear data to fulfill the requirements
of trilinear modelling. In this study we test and compare four
different slicing schemes described below.

DECRA or SLICING[1;2]

The original DECRA algorithm is based on GRAM and uses
lag equal one and slab equal two (subindicies refer to [lag; slab]),
i.e., the simplest three-way array possible to create from a two-
way matrix by the “slicing” rearrangement. It should be stressed
that the DECRA solutions referred to in this study are not iden-
tical to the original, as it uses the algorithmic scheme outlined
below.

Multiple Odd-Spaced SLICING: SLICING[1-10-100;3]

and SLICING[1-5-10-50-100;5]
In practice, there is nothing to hinder lagging the data more
than one variable, still maintaining two slabs (19) or leading
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plemented in an algorithmic procedure which in the case of
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to possible generation of three or more slabs in the third mode
(20). When the dimension of the third mode increases, the three-
way array Y

¯
, with elements yimk, will now have the dimension

i = 1, . . . , I ; m = 1, . . . , J − L · (K − 1); k = 1, . . . , K with
2 ≤ K ≤ L +1 where L is the selected lag and K is the specified
number of slabs.

A slightly more elaborate approach than DECRA is the gen-
eration of multiple odd-spaced slices. In this approach it is pos-
sible to specify that selected variables must be used to generate
the different slabs. Two representative combinations with three
and five slabs have been included in this study with the first
variables in the three slabs being 1, 10, and 100 (refereed to as
SLICING[1-10-100;3]) and the first variables in the five slabs be-
ing 1, 5, 10, 50, and 100 (refereed to as SLICING[1-5-10-50-100;5]).
The rationale for selecting the variables to generate odd-spaced
three-way structure is the desire to properly represent both short
and long time constants which is expected to be improved in this
way compared with the normal equidistant spacing being better
for either short or long time constants depending on the value
of lag.

SLICINGOPT

The determination of multiple and optimal slab and lag in
SLICING has not yet been described mathematically and differ-
ent applications provide ambiguous results. While Windig et al.
(21) propose that a lag of one and thus only two slabs is the op-
timal solution, Bijlsma et al. (19) propose in another setting that
a lag greater than one, even if only two slabs are used, improves
the obtained result. In another study, Bijlsma and Smilde (20)
investigate the use of both 3 and 4 slabs; however, no significant

improvement over th
a number of parame

e outlined in some
ponential loadings
e two slab models is observed. Presumably,
ters will influence the choices of optimal lag

SLICINGOPT is displayed in Fig. 3 and will b
detail below. The best solution with monoex
FIG. 3. Schematic figure of the steps
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and slab, e.g., the noise level of the acquired data, the number
of samples in the data set, the number of underlying monoex-
ponential components (rank) in the system, and the degree to
which the data follow the stipulated model. In the SLICINGOPT

scheme we investigate the optimal slicing scheme by examining
the model error for a range of combinations of the two meta-
parameters lag and slab to find the optimal lag and slab for a
given number of factors to resolve (N).

Nonredundant SLICING

In this study a completely new approach for slicing the data in
which the slabs use nonredundant information and which avoids
correlated noise is evaluated. The main difference between this
approach and the above “slicing” procedures is that the noise in
the normal SLICING procedure noise is correlated between the
different slabs since data are duplicated and reused to generate
the three-way structure whereas in the new approach all data
points in the three-way structure are unique and the noise is thus
uncorrelated at least by construction.

The new approach is based on the fact that different slabs
can be generated from different data points by letting the first
variable followed by every x th variable span the first slab, the
second variable followed by every x th variable span the second
slab, and so forth. Following this syntax will result in x slabs
and the total number of data points is maintained constant since
no data are duplicated.

The SLICING Algorithm

In this study the different SLICING schemes have been im-
involved in the SLICING algorithm.
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is found through a number of steps. Step 1 is the rearrangement
of the relaxation profiles according to the SLICING model de-
scribed above. Step 2 is the deconvolution of the exponential
decay profiles by DTLD using N factors. From the DTLD al-
gorithm one score matrix (TI×N ) and two loading matrices are
returned, one for the (relaxation) time mode (PM×N ) and one
for the slab mode (SK×N ), where N is the number of compo-
nents resolved. Figure 3 shows the elements resulting from the
trilinear decomposition of the three-way array plus a residual
array. As a consequence of the lagging procedure the time mode
loadings (Pred) will only contain the intersection information
and thus not be of full length compared with the acquired data.
In step 3 full-length time mode loadings (Pfull) are restored us-
ing a least squares regression of the raw data onto the estimated
amplitudes, T,

Pfull = (T+ · X)T, [6]

where T+ is the pseudo inverse of T. This algorithmic step is not
strictly necessary but is performed to conserve the original data
structure. Once Pfull has been found each of the N full-length
loadings (columns of Pfull) are individually monoexponentially
fitted (9), in step 4, to ensure that the relaxation profiles are
in accordance with the model in Eq. [1]. The monoexponential
fitting is a robust and fast calculation and the fitted time constants
and amplitudes are used to reconstruct (step 5) new pure full-
length monoexponential loadings (Pexp), so that Pfull = Pexp +
Eexp. The scores that correspond to the pure exponential loadings
can be calculated from the raw data as

Texp = X · (
PT

exp

)+
. [7]

Steps 4 and 5 can be considered to be guard steps which are
performed (a) to ensure that the calculated scores (concentra-
tions) only relate to pure exponentials, (b) because a compar-
ison between the DTLD loadings and the SLICING loadings
(monoexponentials) can be used as a diagnostic tool, and (c) to
simultaneously determine the characteristic T2 relaxation times.

Finally, in step 6 the model error of the SLICING fit can be
calculated as the squared sum of errors (SSE),

SSE = ∥∥X − Texp · PT
exp

∥∥2
F
, [8]

where subscript F implies the Frobenius norm. It is noteworthy
that neither the initial DTLD solution or the final solution above
provides least squares fit. However, if the assumptions behind
Eq. [3] are valid, the deviation from the least squares solution is
expected to be insignificant. To obtain an estimate of the model
error which is independent of the number of components ex-
tracted, the SSE must be divided by the degrees of freedom to
yield the mean squared error (MSE). It is no trivial matter to

determine the degrees of freedom in a three-way problem, even
more so in this case, where the three-way solution has been trans-
AND ENGELSEN

formed through sequential reestimation in terms of the original
two-way data. A reasonable approximation is to correct for the
number of elements minus the number of parameters used. The
error corrected for degrees of freedom can thus be calculated as

MSE = SSE

I · J − N · (I + J )
. [9]

For each SLICING scheme, steps 1 to 6 must be repeated for
a range of components, N, and the results compared through
the MSE in order to find the optimal N. If the SLICINGOPT

model is to be calculated, steps 1 to 6 are to be repeated for a
range of all three metaparameters lag, slab, and N in order to
find the optimal model. The final outcome of such exhaustive
calculation is a lag-slab-diagram which holds the SSE landscape
of SLICING performance (Fig. 4)—the minimum value is the
SLICINGOPT model for a given N. In general such a plot reveals
typically a complex discontinuous landscape with a trend for
interdependence between the optimal choice of lag and slab
and where large regions of combinations of lag and slab have
practically identical SSE values.

The outlined SLICING algorithm has proven a robust method
for determining the dimension of the system compared to just
examining the DTLD error. Through the pure monoexponential
loadings, the T2 values of the system components are deter-
mined simultaneously. In preliminary simulations no significant
differences in algorithmic performance were found between full
length scores, exponential scores, and DTLD scores, as well as
between PARAFAC and DTLD calculations.

Principal Phase Correction

Typically LF-NMR quadrature data are magnitude trans-
formed to correct for phase errors in the acquisition. This proce-
dure represents a simple and robust transformation independent
of detection of phase angle and can mathematically be described
as in Eq. [10]. Here the two quadrature data channels have been
named a and b, and letting x be the transformed intensity data
then the magnitude transformation can be written as

xmagnitude =
√

a2 + b2. [10]

This transformation does not allow negative values which is a
problem, especially for high noise level data, when the system
has been allowed to relax to zero intensity. This introduces a
bias in terms of nonexponentiality in the magnitude corrected
data that poses a problem since all algorithms based on Eq. [1]
require underlying exponential structures.

The solution to the problem is to phase-rotate the acquired
quadrature data since negative values are allowed and no arti-
problem of using magnitude-transformed data and proposed an
algorithm for phase rotation of the quadrature data. For their
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total of seven
the number of
the T2 times of
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FIG. 4. Lag and slab diagram for SLICINGOPT displayin

proposed method to work it is mandatory that the phase angle
for each sample be known which may be a problem particularly
if the phase drifts during acquisition. In this work we propose
a new, simple, and noniterative procedure for performing phase
correction for LF-NMR CPMG data called Principal Phase Cor-
rection (PPC) which is based on singular value decomposition
(29). PPC is independent of storing phase angles and applica-
ble to most quadrature data and it has the advantage of also
filtering away possible noise in the individual measurements.
Again a and b are two J-vectors holding the two quadrature
channels. Then PPC-rotation is performed by a singular value
decomposition (SVD). Ideally, the second singular value is zero
if there are no changes in phase throughout the measurements.
In practice though, minor differences are observed and the sec-
ond singular component represents this noise as explained, e.g.,
by Malinowski (30). The product of the first left singular vector
times the first singular value provides an optimal representation
of the phase rotated measurements and the influence of noise is
reduced.

Experimental Design

In order to test the robustness of the different algorithms evalu-
ated in this paper an experimental design was carried out where a
variables were varied: the number of components,
data points in the profiles, the distance between
the components, the correlation between concen-
the SSE as a function of the lag and slab metaparameters.

tration profiles (CORR), the uncorrected corrrelation between
profiles (UCC), number of samples in the datasets, and noise,
all of which are expected to be influential for how difficult it is to
estimate the underlying parameters accurately. The correlation
between profiles is a standard measure for expressing similar-
ity. However, as the data are usually not centered, correlations
can be misleading. For example, two profiles, could in princi-
ple have a perfect correlation but be very different because of a
possible offset in one of the profiles. The uncorrected correla-
tion coefficient (or Tuckers congruence coefficient) (31, 32) is
a measure similar to the correlation which does take the offsets
into account. It is defined as

ϕ(x, y) = x′y√
x′x

√
y′y

[11]

and is hence a number between −1 and 1. The closer to one, the
more similar the two vectors are. The experiment was performed
as a full factorial design with each variable at two levels—
high/low—and for each design point, 10 replicates were made,
each replicate based on a new set of scores and new white noise
of the desired level.

The ability of the different algorithms to deconvolute the time

constants used to construct the data sets is evaluated such that
if one or more deconvoluted time constants deviate more than
a specified limit (e.g., 50%) from the known value, the entire
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solution is said to be erroneous. This way the robustness of
the algorithms is not evaluated based on the absolute value of
SSE of the solutions but rather on logic basis: acceptable or
not acceptable. Within the acceptable region, though, a more
quantitative analysis of the results is given.

RESULTS AND DISCUSSION

When working with multiway multivariate data analysis it is
easy to be exalted by the beauty of the SLICING approach. With-
out asking explicitly for exponential loadings the basically non-
iterative algorithm yields near-perfect monoexponential load-
ings which on top are unique solutions in the mathematically
sense. This would appear to be an extraordinarily sound and
healthy property of a multiexponential fitting algorithm, but it
must be stressed that the exponential behavior is implicitly built
into the algorithm per construction and moreover the determi-
nation of the number of components to resolve was not all that
unequivocal in practice.

Before praising a new algorithm, its performance must be
compared to existing related algorithms, which is the purpose
of the following thorough performance test. Initial performance
tests failed to indicate that the performance of the SLICING
algorithm was equal to the MATRIXFIT algorithm. An exam-
ple of such an intitial test is given in Fig. 5 in which the T2

dispersion for 3000 replicate simulations with random noise is
displayed. The figure clearly indicates a narrower distribution
for the SLICINGOPT than for the DECRA; however, the T2 dis-
persion for the MATRIXFIT algorithm was markedly better. For
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FIG. 5. Bar graph displaying the distribution of T2 values as a function of the
2D curve fitting algorithm used: DECRA, SLICINGOPT, and MATRIXFIT. This
preliminary algorithm test was performed with 3000 replicates on simulated data

from 30 samples with 4 components and 200 data points. The data were added
0.1% random noise and the magnitudes were only correlated with a coefficient
of 0.3.
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TABLE 1
Design Variables Used in the Experimental Design along

with the Levels Used for the Different Factors

Factor Low High

Correlation 0.5 0.95
Time distance between components 2 4
Noise (%) 0.5 5
Number of components 2 5
Number of data points 16 512
Number of samples in data set 10 30
UCC 0.5 0.95

these reasons a large scale experimental design with simulated
data was set up in order to investigate in depth if the SLICING
was always performing inferior to the MATRIXFIT algorithm
considering all possible combinations of variables related to its
application including number of components, noise level, time
separation of components, intercorrelation levels, etc.

Application 1: Simulated Data

In practice, it is impossible to produce artificial data that gen-
uinely behave as real data. Therefore, work performed on sim-
ulated data is at most to be considered as an ideal and limiting
case. However, it is instructive to analyze artificial data, because
complete knowledge of the data makes it possible to precisely
investigate the quality of the solutions. In this section the results
of the experimental design will be discussed.

The different design factors and the values are listed in Table 1.
Since the number of components, N, and the difference between
these components’ relaxation times influence the endpoints of
the time axis if proper description of data is to be obtained,
different time axes were created to ensure good description for
all design points. Also, since some of the algorithms examined
can only be applied with a sufficiently large number of vari-
ables, only three algorithms are tested with the low number of
data points. These are MATRIXFIT, DECRA, and SLICINGOPT.
Thus two separate data analyses had to be performed depending
on the number of data points in the profiles. When performing
a full factorial design with 7 variables, each at 2 levels, a total
of 128 experiments can be performed. Since 10 replicates were
performed for each design point a total of 1280 data sets were
generated and analyzed either by 3 or 7 different algorithms de-
pending on the number of data points in the given design point.

Table 2 lists the success rate of the different algorithms when
two different cut-off levels are used: ±50% or ±1% deviation
allowed from the known design values, i.e., the set of T2 values.
Clearly the success rate decreases as narrowing the cut-off limit
increases the demand for precision. Also it is apparent when
comparing the algorithms used for calculation with both 16 and
512 data points that the number of data points describing the
data is very important for the robustness of the algorithms. The

table reveals that MATRIXFIT is the most robust algorithm fol-
lowed by SLICINGOPT, and that the robustness for the different
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TABLE 2
Total Percentage of Calculated Models Where All Time Constants

are within a ±50% Limit (±1% Limit in Brackets)

Algorithm Data points = 16 Data points = 512

MATRIXFIT 51% (22%) 95% (53%)
DECRA 50% (20%) 78% (28%)
SLICINGOPT, correlated noise 88% (48%)
SLICING[1-10-100;3], correlated noise 73% (39%)
SLICING[1-5-10-50-100;5], 78% (41%)

correlated noise
DECRA, uncorrelated noise 49% (11%) 59% (4%)

SLICINGOPT, uncorrelated noise 71% (26%)

Note. The total number of calculated models is 640 for each algorithm.
been reproduced with only the three main algorithms (Fig. 6B)
which reveal a much larger spread for DECRA than for the other
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SLICING approaches is improved when using more than two
slabs.

Figure 6A shows a boxplot indicating the spread of the cal-
culated solutions for the different algorithms used in the study.
Only plots for the results with 512 data points in the data sets
as well as the solution with a cut-off value of ±50% are shown.
Since the success rate of the different algorithms varies, it was
decided to include only the solutions that are found to be good
(within the cut-off limit) for all seven algorithms. Moreover,
some of the algorithm indicators in the boxplot are compressed
due to a much larger spread for other algorithms; the plot has
correlated 
noise

design solutions for all investigated algorithms.
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TABLE 3
Time Consumption in Seconds upon Fitting from Two to Five Components in Simulated Data Sets Where the Number

of Samples (25 or 100) and the Number of Variables (256 or 1024) Have Been Varied in Two Levels

Components 2 3 4 5
Variables
Samples 256 1024 256 1024 256 1024 256 1024

Exponential fit 25 2.1 5.2 5.5 11.1 8.5 23.4 21.3 50.1
100 8.9 19.3 18.2 43.2 54.0 96.1 81.0 184.1

MATRIXFIT 25 0.2 0.5 0.4 1.8 0.7 3.6 1.4 4.7
100 1.0 5.4 1.7 7.9 2.6 13.7 4.6 22.5

DECRA/SLICINGOPT
a 25 0.05 0.1 0.06 0.3 0.07 0.3 0.08 0.45

100 0.09 3.2 0.15 3.3 0.15 3.8 0.14 4.4
a m
Since calculations of the DECRA and the individual SLICINGOPT

“slicing”) these share calculation time.

two algorithms. In Fig. 6C only MATRIXFIT and SLICINGOPT

(with correlated noise) are compared. Once the number of algo-
rithms included in the boxplot is reduced, the number of good
solutions included in the boxplot increases due to the fact that
the highlighted methods represent the more robust approaches
applied.

Based on this experimental design of simulated data it is
clear that in terms of deconvolution of the time constants
the SLICINGOPT produce more consistent deconvolution than
DECRA, and that MATRIXFIT perform slightly better than
SLICINGOPT. This result basically confirms the initial perfor-
mance test described above. Concerning the importance of the
different design parameters it was found that the number of T2

components and the noise level were the most important design
parameters regardless of the number of variables in the profiles.
The importance of all design variables (excluding the number
of variables) in terms of robustness to extract T2 components is
listed in order of priority below:

• 16 variable: factors > noise > correlation > samples >

distance > UCC
• 512 variable: factors > noise > UCC > correlation > sam-

ples > distance.

It is noteworthy that the distance between the T2 components
did not come out as a most important design factor. A second
remarkable observation (Table 2) is the fact that the number
of variables in the simulated profiles is a very important para-
meter for proper description and deconvolution of the underly-
ing T2 components. Clearly not all design parameters are im-
portant when evaluated individually; however, when combined
with other main effects they may become quite important. The
SLICING approach based on uncorrelated noise was found to
perform significantly poorer than its counterparts based on the
normal slicing approach. The rationale behind this approach of
improving the SLICING approach by generating slices without
ndant information and thus without correlated noise was
rly wrong. The reason for this result remains to be elucidated.
odels are based on the same algorithm (only varying in the degree of

Since speed of calculation is an important issue, 4 different
data sets were generated (using the same approach as for the
experimental design) based on 2 to 5 components. All 4 data
sets were generated with 100 samples and 1024 variables (time
points) and calculations on the reduced sets were performed on a
subset of these data sets. In Table 3 the performance of the main
algorithms can be compared in terms of the times required to fit
the different data sets. Both the number of samples as well as the
number of variables in a data set influence the time of consump-
tion, with the 1D exponential fit being more dependent on the
number of samples and the 2D methods being more dependent
on the number of variables (albeit almost negligible). For the 2D
methods the prime importance is the total number of variables
present in the data set. These observations were expected since
for the 1D exponential fitting the fit is calculated for one sample
at the time, obviously giving strong dependence on the number
of samples, whereas for the 2D methods all samples were treated
simultaneously. Clearly, 1D exponential fitting is by far the most
time consuming process with MATRIXFIT, although still iter-
ative, being much faster while the direct noniterative approach
of DECRA/SLICINGOPT by far being the fastest approach for
deconvolution of the underlying time constants. An increase
in algorithmic speed of the multiexponential fitting procedure
(Simplex search (33)) is indeed possible, but according to our
experience the increase is only minimal with other more sophis-
ticated line search methods and far from a speed comparable to
that of the SLICING algorithm.

Application 2: Fat Content in Minced Meat

This data set consists of measurements on 47 samples of
minced meat with a total fat content ranging from 1.2% to
15% (w/w). A multivariate upgrade of the pulsed field gra-
dient stimulated echo experiment (34) was used. In this ex-
periment, called diffusion-CPMG (DIFF-CPMG), the standard
pulsed field gradient stimulated echo experiment is followed by
a 180◦ pulse train, as seen in the CPMG experiment. The orig-

inal purpose of this experiment was to improve the standard
univariate pulse field gradient method for total fat prediction by
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FIG. 7. MSE residual plot as the optimal SLICING solution as a function
of the number of components present in the real data sets: (A) fat content in
minced meat and (B) preslaughter stress.

application of a more robust bilinear multivariate approach using
partial least squares (PLS) regression (35). The samples were
equilibrated at 55◦C for 30 minutes before analysis to ensure
liquid fat phase, and a total of 2048 even echoes were acquired
with a τ of 500 µs. Besides analyzing these data by traditional
multiexponential fitting, data were also analyzed by means of
MATRIXFIT, DECRA, and SLICINGOPT. The results of these
four algorithms are presented in the following.

On this real data set the 1D multiexponential fitting appears
only to support 2 components as evaluated by the decrease in
the residual norm. For MATRIXFIT 3 components appear to be
the optimal choice. Using the SLICING approach the optimal
model was found for a 4-component system (lag = 20; slab =
4) as indicated in the MSE plot in Fig. 7A. In this case the devel-
opment in the MSE of the DECRA model displayed a peculiar
trend with a maximum at the 4-component solution and no op-
timal solution within 6-components. Figure 8 shows a plot of
the SLICINGOPT loadings when extracting 1 to 6 components.
The corresponding time constants and MSEs of the models are
also provided. While the 1- to 5-component SLICING models
generate visually sound loadings, the 6-component SLICING

model appears not to be a valid solution. Examination of the 5-
component solution reveals that 2 of the corresponding DTLD
loadings display nonexponential behavior and have significantly
N OF LOW-FIELD NMR DATA 151

increased noise levels, which is a typical result when an attempt
is made to resolve too many components by the SLICING al-
gorithm. When a 6th component is extracted a negative clearly
nonexponential DTLD loading is the result. Based on these find-
ings, and since the 4-component model based on lag = 20 and
slab = 4 gives the smallest MSE, it can be concluded that there
are a maximum of 4 relaxation components in the system. In
this application, having a quantitative purpose, the performance
of the different algorithms is compared in the following three
steps:

(I) The best-correlating single component concentration
(Mx ) vector resulting from either exponential fit or the men-
tioned two-dimensional algorithms is used for univariate linear
regression prediction of the total fat content. The component
that gives the best univariate linear regression model is assumed
to represent the fat protons.

(II) All concentration vectors resulting from either exponen-
tial fit or the mentioned two-dimensional algorithms are used
for predicting total fat content using multiple linear regression
models.

(III) Entire relaxation decays are used for PLS models, pre-
dicting fat content, and the results are compared to the results ob-
tained by univariate and multiple linear regression using scores
(concentrations) obtained from the different algorithms. This is
the pragmatic and efficient “model-free” approach, which only
suffers from near-orthogonal loadings that cannot be easily in-
terpreted. It is normally to be expected that the best regression
results are obtained with PLS, for which reason the compari-
son is mainly interesting, because it provides an impression of
how close calibration based on the two-dimensional algorithms
comes to the results obtained with PLS.

The proton component with the time constant T22 ranging from
234 to 318 ms from the biexponential fitting displayed a strong
covariation with the fat content of the samples. With MATRIX-
FIT the best correlation for a 3-component model is obtained
using T23 with a time constant of 463 ms and similarly for 4-
component DECRA and SLICINGOPT solutions, a T23 of 246
and 253 ms, respectively, yields the best models. In Table 4 uni-
variate linear regressions based on these concentration vectors
are compared based on the correlation coefficient (r) and a root
mean square of cross validation (RMSECV). For comparison, a
simple DIFF-CPMG measurement of beef lard at 55◦C yielded

TABLE 4
Performance of Prediction of Fat Content for the Different Main

Algorithms When Only the Concentration Vector Best Modelling
the Fat Content is Used

Algorithm T2x (ms) # PC r RMSECV % (w/w fat)

Multiexponential fit 234–318 2 0.98 0.63
MATRIXFIT 463 3 0.99 0.57

DECRA 246 4 0.99 0.57
SLICINGOPT 253 4 0.99 0.55
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models. The axes have been changed to enlarge the interesting part of the loadings. Models based on one to four components clearly generate good loadings,

whereas the 5- and 6-component models are not good solutions. Apparently the 4

no less than three T2 components (75, 186, and 480 ms) of which
the middle component is in fair agreement with the T23 compo-
nent of SLICINGOPT and DECRA models whereas the third
component is in good agreement with T33 of the MATRIXFIT
solution.

For the biexponential fit, inclusion of both concentration (am-
plitude) vectors from the biexponential fit in a multiple linear
regression model did not improve the univariate prediction men-
tioned above. For the other two-dimensional methods, however,
the multiple linear regression model built on all the scores (con-
centrations) from the 3- or 4-component models, respectively,
resulted in a significantly improved prediction model. The per-
formances of these optimal models are compared in Table 5.
If the predictive performance for the three algorithms based on
three to five components is compared (Tabel 5) it appears that
there is only minor differences between these. It appears that
selection of the number of components to use is not too criti-
cal as long as it is within a limited range of the correct number
and all concentrations are used rather than calculating univariate

models based on a single concentration vector.

For comparison the PLS model using the entire relaxation
data yielded a two PLS component solution with a correlation
-component solution is the best model, resulting in the smallest MSE.

coefficient of r = 0.99 and a prediction error of RMSECV =
0.49% (w/w fat). Thus, in this data set the higher-order decon-
volution methods based on exponentiality perform as well as the
PLS model.

Application 3: Preslaughter Stress in Processed Meat

Classification of slaughtered pig carcasses according to their
“stress treatment” may be an informative quality parameter, as
stress will influence the meat quality after slaughter. This data set

TABLE 5
Predictive Performance for Fat in Meat When Using Scores Cal-

culated by MATRIXFIT, DECRA, and SLICINGOPT for Different
Number of Components

Algorithm # PC Correlation RMSECV

MATRIXFIT 3 0.99 0.47
DECRA 4 0.99 0.47

SLICINGOPT 4 0.99 0.48

Note. For all the listed models all scores are used for the prediction.
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(C) DECRA and (D) SLICINGOPT.

consists of CPMG relaxation profiles from 40 porcine meat sam-
ples and is used to test the strength of SLICING in a classifica-
tion problem. The relaxation data have been measured on pro-
cessed meat taken from Musculus semimembranosus from pigs
stressed at four different levels: (I) control, minimum stress prior
to slaughter, (II) pigs running on a treadmill for 10 minutes prior
to slaughter, (III) pigs injected with epinephrine 15 h prior to
slaughter, and (IV) pigs injected with epinephrine 15 h prior
to slaughter and running on a treadmill for 5 minute prior to
slaughter. The data were originally acquired in an experiment
conducted to analyze for warmed over flavor (WOF), and the
samples had therefore been boiled in sealed plastic bags and
then analyzed the following days (35).

Using multiexponential fitting, only two components seemed
to be supported by the relaxation data of the processed meat
samples as evaluated by the reduction in the residual error.
Figure 9A shows a plot of the short time constant, T21, from the
biexponential fitting as a function of the stress level group. The
plot demonstrates a clear visible grouping among the stress level
groups. Only the treatments I and II cannot clearly be separated.
This result is in itself significant. NMR measures a change in the
states of the water protons and therefore in the muscle structure
caused by preslaughter stress which is pertinent to the slaughter,
rigor development, and processing. It is surprising that such a
clear effect of stress can be detected with animals which are less

stressed than at commercial slaughterhouses. That the control
pig (I) and stress treatment (II) could not be separated was con-
scores of T23 for a five-component two-dimensional model: (B) MATRIXFIT,

firmed by biochemical indicators. The long time constant, T22,
ranging from 55 to 63 ms was found to be relatively constant
and insensitive to the level of preslaughter stress.

The results from the biexponential fit indicate that this data set
may not represent the ideal situation for application of the higher
order methods, because the samples are differentiated based on
their change in time constants rather than on the concentrations
of common time constants, as was the case in application 2.
However, since the algorithms allow components to have zero
concentration, extraction of components being present in some
samples but not in others is possible.

From the results obtained in the one-dimensional biexponen-
tial fitting it might seem logical to expect the optimal SLICING
solution to be a 4-component solution: one component for T22

which was fairly constant for all samples and 3 components for
the 3 separable stress levels reflected by T21 in the biexponential
fit. This is, however, not what we found. When the SLICING
models were calculated, the combination of lag = 6 and slab =
2 using five components (0.8, 11, 25, 31, and 75 ms) resulted in
the smallest MSE as also indicated in the MSE residual plot in
Fig. 7B. As indicated by the figure, a 5-component model was
also found by the (lag = 1; slab = 2)-model (0.3, 8, 20, 39, and
83 ms) as well as for MATRIXFIT (0.9, 12, 25, 45, and 103 ms).
Interestingly none of the time constants of the biexponential
fitting is recovered in any of the 5-component two-dimensional

solutions wherefore one or both of the underlying physical mod-
els must be erroneous. Comparing all four subplots in Fig. 9 it
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appears that there is only minor variation between the groupings
in the different subplots reflecting similar ability to extract the
information known to be present in the data set.

CONCLUSIONS

The SLICING method outlined in this study is an elegant alter-
native method based on trilinear decomposition for performing
two-dimensional multiexponential fitting of LF-NMR time do-
main relaxation data. The advantage of the SLICING method is
that the solutions are analytical and that no initial value guesses
are required. Despite the apparent complexity of the SLICING
method the noniterative character makes the method highly per-
formant and this study reveals a substantial speed advantage
when compared to a traditional iterative curve fitting method.
Moreover the computational complexity is independent of the
number of components to be resolved.

Even though the SLICING algorithm is unique and provides
estimates of the underlying T2-components, it is not a fully auto-
mated procedure. It is necessary that the number of components
be chosen correctly because the estimated T2-values vary with
the number of components chosen. However, the SLICING al-
gorithm includes improved diagnostics for determining the num-
ber of T2-components. In the test examples described here and
in other applications we have tested thus far, SLICING tends to
produce clearly unrealistic and/or insignificant relaxation com-
ponents if the number of components is set too large and is
therefore a better probe for system dimensions (number of pro-
ton components) than any other algorithmic approach we have
tested. In this study a number of different schemes for trilinear
upgrade of the multiexponential relaxation decays is tested and
compared. The SLICING algorithm proved to be only mildly
sensitive to the two metaparameters, lag and slab, while a new
original slicing scheme with uncorrelated noise (nonredundant
slab information) surprisingly appeared to deteriorate the per-
formance. The simplest possible slicing scheme with lag equal
to one and slab equal to two (as in the original DECRA algo-
rithm) proved to not be optimal in terms of explained variance
but in practice almost equally well as a more elaborate and time
consuming optimal SLICING approach.

At an early stage the SLICING algorithm in some cases proved
to be adversely influenced by the use of magnitude data. For this
reason a new phase rotation method, principal phase correc-
tion, based on SVD was devised for conversion of quadrature
data without knowledge of the phase angle. This method is gen-
erally applicable and not specifically related to the SLICING
algorithm.

At the bottom line, SLICING is an outmost efficient algorithm
for two-dimensional analysis of time-domain LF-NMR signals
which performs almost equally as well as its numerical brother
algorithms. For this reason we predict an important future for the

SLICING algorithm as a preprocessing tool to provide highly
qualified guesses for robust traditional curve fitting algorithms.
AND ENGELSEN

However, in two-dimensional applications where the number
of samples is low SLICING might be the only alternative as
it brings the additional advantage that calibration to reference
measurements referring to individual proton components require
only simple scaling of SLICING scores.

EXPERIMENTAL

All data were acquired using a MARAN low-field bench-top
instrument (Resonance Instruments, Witney, UK) equipped with
a 23.2-MHz high-quality permanent magnet and using an 18-mm
variable temperature gradient probe. Handling of data and all
subsequent analysis were performed in MATLAB v. 5.3 (Math-
Works Inc., Natic, USA) on a portable PC equipped with a PIII
900-MHz processor, 256 MB RAM running Windows 2000.
Both one-dimensional and two-dimensional exponential fitting
were performed with an algorithm written in house, based on a
Simplex minimization of the nonlinear parameters and a least
squares estimation of the linear parameters inside the function
evaluation call (9) (Pedersen and Engelsen, www.models.kvl.
dk/source/lfnmr). The Direct TriLinear Decomposition (DTLD)
algorithm applied was from the N-way Toolbox v. 1.03 for MAT-
LAB (Andersson and Bro, www.models.kvl.dk/source/nway).
The SLICING algorithm is available from Pedersen, Bro, and
Engelsen, www.models.kvl.dk/source/lfnmr.
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