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Abstract

An exploratory analysis of the effects of permanent (Zr) and conventional (Mg and a mixture of Pd+Mg) chemical modifiers
on L’vov platforms for electrothermal atomic absorption spectrometry (ETAAS) was performed in this work by using two
chemometric tools. Twelve L’vov platforms were used for Al, Cd and Pb determination in biological slurry samples. For each
platform, a different combination of chemical modifier, number of heating cycles and determined analyte was employed. The
morphology of the platforms was evaluated using scanning electron microscopy (SEM) and the obtained data was analysed
with image principal component analysis (image PCA). The results allowed differentiating the platform treated with Mg from
the other platforms. In addition, eight residual species (P, S, Ca, Ti, Fe, Zr, Hf and Pd) distributions were obtained by using
micro synchrotron radiation X-ray fluorescence (�SRXRF) in the same platforms for 100 points across the horizontal axis.
These data were modelled with orthogonal constrained PARAllel FACtor analysis (PARAFAC) and a global characterisation of
the platforms was achieved. Four platforms presented a particularly behaviour, being so different among themselves, that it was
necessary one specific factor (1–4) to model each one. Factor 5 demonstrated that two platforms presented a similar behaviour
characterised by high Ca and, to a lesser extent, Ti content. Finally, factor 6 modelled the correlated behaviour of five platforms
characterised by Zr content. It was also observed that the platform morphology has a good connection with the residual species
found in its surface. This kind of study can open a vast field to exploratory analysis of L’vov platforms in ETAAS.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Nowadays, the amount and the complexity of infor-
mation in analytical chemistry are increasing due to
the development of new and faster techniques. Among
these techniques, those related to atomic absorption
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spectrometry have received special attention. In elec-
trothermal atomic absorption spectrometry (ETAAS)
with graphite tube atomiser, there has been a consid-
erable development in devices and processes, such
as ultrasound probe[1], background corrector based
on Zeeman-effect with transversal heated graphite
atomiser (THGA)[2] and stabilised temperature plat-
form furnace (STPF)[3]. The combination of these
tendencies with permanent chemical modifiers and
slurry analysis has been subject to a great number of
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investigations in the recent literature. The applications
can be found in a large way from simple biological[4]
to more complex sediment samples[5]. In addition, the
use of slurry samples shows the advantage of a sim-
pler pre-treatment process with less time consumption
and reduction or elimination of contamination prob-
lems [6]. Nevertheless, few contributions have been
made related to graphite surface interactions with per-
manent modifiers and atomisation mechanisms using
the conditions described in the present work[7].

It is important to note that such kind of studies can
lead to a better understanding of problems related to
atomisation mechanisms. However, it is not an easy
task to shed light on this kind of matter, as mentioned
by Volynsky [8], who has investigated the mecha-
nisms of the action of chemical modifiers for ETAAS.
He has emphasised the difficulties and limitations that
analytical chemists have faced when proposing these
mechanisms and the ineffectiveness of some of the
published previous studies to propose suitable mech-
anisms when chemical modifiers are applied. Taking
these considerations into account, a better understand-
ing of the effects of chemical modifiers on ETAAS
must combine this technique with other types of ana-
lytical and image techniques. These analytical and/or
image techniques should provide in situ analysis of
the platform surface, such as scanning tunnelling mi-
croscopy (STM)[9], scanning electron microscopy
(SEM) [10], laser desorption mass spectrometry and
differential scanning calorimetry[11], X-ray pho-
toelectron spectroscopy (XPS)[12] and micro syn-
chrotron radiation X-ray fluorescence (�SRXRF)
[13]. The�SRXRF, used in this work, is particularly
a versatile non-destructive technique that allows the
analysis of non-conducting samples without coating or
vacuum requirements and avoids sample preparation.

On the other hand, this combination of analytical
techniques generates a large amount of data and it is
almost impossible to handle them only by observing
graphics or images. In such a case, it is necessary
to use more powerful and accurate tools to extract
information from the data. Chemometric methods
have widely been used for exploratory investigation
of analytical data and the most common is the prin-
cipal component analysis (PCA)[14]. PCA projects
the high dimensional data onto lower dimensional
space. This procedure permits to get a few linear
combinations of the original variables (principal

components, PCs) and allows the interpretation of
better-summarised information. Notwithstanding, the
increasing complexity of analytical data has limited
the use of the PCA in several situations.

In the last decade, a three-way (or three-mode) anal-
ysis was introduced in the field of chemometrics[15].
A three-way array may be obtained by collecting data
tables with a fixed set of objects and variables under
different experimental conditions such as sampling
time, temperature, pH, etc. The tables collected under
various conditions can be stacked providing a three-
dimensional arrangement of data. The most common
type of data analysed by these methods has been
that generated by hyphenated methods, such as fluo-
rescence spectroscopy[16,17] and high-performance
liquid chromatography with diode array detection
(HPLC-DAD) [18]. Other types of three-way data
suitable for chemometric analysis can be found in
QSAR modelling[19], process control[20], kinetic
[18] and environmental[21] analysis. The main
three-way methods are PARAllel FACtor analysis
(PARAFAC) [22,23], Tucker3[24] and N-PLS[25].
Three-way data can also be unfolded to a two-way
matrix and treated with the PCA[23]. This strategy
is usually employed in multivariate image analysis
[26,27], in whose context it is namely image PCA.

The exploratory analysis is not actually a model,
but a process, where each proposed model gives new
insight and knowledge of the physicochemical phe-
nomena that generate the data. The main purpose of
an exploratory analysis is to learn from the data the
interrelationship between variables and objects with a
minimum of a priori assumptions. However, the pur-
pose of modelling data with PARAFAC has mainly
been to solve problems related to curve resolution and
calibration[22,23]. In fact, PARAFAC has been used
for exploratory analysis[28] to a lesser extent. Be-
sides, in spite of its increasing application in analyt-
ical chemistry, its use in atomic spectrometry is not
common. In this sense, only two articles have applied
PARAFAC for atomic spectrometry data: Marcos et al.
[29] have investigated long-term stability in ICP-OES
and Moreda-Piñeiro et al.[30] have studied systematic
error in ICP-OES and mass spectrometry.

According to what was discussed above, the aim of
this work was to perform an exploratory analysis of
the effects of different chemical modifiers (permanent
and conventional) on L’vov platforms for ETAAS with
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the aid of two chemometric tools. It was the purpose
of this work to correlate the visual information ob-
tained with micrographs and surface distributions of
remain species after atomisation processes. This infor-
mation was obtained from 12 L’vov platforms treated
with a permanent chemical modifier, Zr, or conven-
tional modifiers, such as Mg and a mixture of Pd and
Mg. These platforms were used for Al, Cd and Pb de-
termination in biological slurry samples. The visual
information was obtained as micrographs using SEM
and treated with image PCA. Species distribution on
platforms surface was obtained with�SRXRF and
a global characterisation of the effects of modifiers
or concomitants was possible by using PARAFAC in
combination with image PCA.

2. Theory

2.1. Multivariate image analysis and unfolded-PCA

A multivariate image is a three-way array of data,
with two of the ways being geometrical image co-
ordinates (pixels coordinates) and one a “variable”,
allowing the use of PCA for data interpretation in
variable space. In contrast to the analysis of a two-way
data matrix, the majority of the results can be shown
visually. It must be understood that two of the ways
are essentially different from the third one and they
are usually treated as a pair, because the horizontal
and vertical image dimensions work together to de-
scribe the image plane. The variable way is much
more different from the other two, since it can rep-
resent wavelength, electron energy, mass, chemical
modifier on platform for ETAAS (our case), etc.
[26,27].

In situations where the variable space is emphasised,
it may be useful to ignore temporarily the geometry
of the image. Then, the three-way arrayX of dimen-
sionsI, J andK can be reorganised (unfolded) into a
long matrixX of sizeI × J × K and this new matrix
treated with a two-way PCA. Notice that the image
pixels are treated as objects, which vary with the third
dimension. This is the image PCA. The data arrayX is
decomposed into a sum of pixel image score matrices
T a and variable loading vectorspa according to the
following formula (1), whereE is a matrix of resid-
uals,a = 1 to A the number of principal components

and the symbol∗ means the Kronecker product[23]

X =
A∑

a=1

T a ∗ pa + E (1)

So, loading plots are useful for carrying out ex-
ploratory analysis or classification of the entities
under study, as exemplified by Pereira-Filho et al.
[31]. Finally, it is important to note that image PCA
is not a proper three-way method, because it uses a
two-way decomposition for three-way data.

2.2. PARAFAC

PARAllel FACtor analysis is a decomposition
method for three-way data, which was first devel-
oped by psychometricians in the early 1970s. The
decomposition is made into triads or trilinear factors.
Instead of one score vector and one loading vector, as
in bilinear PCA, each factor consists of three loading
vectors. It is not usual to distinguish between scores
and loadings since they are treated numerically as
equals. Another important difference between PCA
and PARAFAC is that in PARAFAC there is no need
of requiring orthogonality to identify the model. As a
consequence, non-orthogonal PARAFAC models are
not nested, i.e. the parameters of anF +1 factor model
are not equal to the parameters of anF factor model
plus one additional factor. PARAFAC can also be
considered a constrained version of the more general
Tucker3 method[24] with a superidentity core matrix.
It is less flexible, uses fewer degrees of freedom and
provides a unique solution that is not dependent on
rotation. This last feature, known as uniqueness, turns
PARAFAC very suitable for some kind of data, such
as those originated from hyphenated methods[22].

Three loading matrices,A, B andC, with elements
aif , bjf and ckf , give the structural model behind
PARAFAC. The model is adjusted to minimise the
sum of squares of the residualseijk in the following
Eq. (2):

Xijk =
F∑

f=1

aifbjfckf + eijk (2)

wheref = 1 to F is the number of factors. Finally,
another important aspect to mention is the use of con-
straints aiming at improving the interpretability or the
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stability of the PARAFAC model. The fitness of a con-
strained model will always be lower than the fitness
of an unconstrained model, but if the constrained one
is more interpretable and realistic, these facts justify
the decrease in fitness. The most used constraints are
non-negativity, orthogonality and unimodality[23].

3. Experimental

3.1. Apparatus

A Perkin-Elmer Analyst 600 atomic absorption
spectrometer (Überlingen, Germany) was employed
using a longitudinal Zeeman-effect background cor-
rection system, as well as graphite atomiser tubes
with integrated L’vov platforms. All measurements
were based on integrated absorbance and performed
at 309.3, 228.8 and 283.3 nm for Al, Cd and Pb,
respectively. A hollow cathode lamp was used as
primary radiation source for Al determination, and
electrodeless discharge lamps (EDL) were used for
Cd and Pb determinations. The electron micrographs
were obtained by employing a Jeol model JSM-T300
electron-scanning microscope (Tokyo, Japan). A TCE
S440 scanner was used for images digitalisation. The
experiments using�SRXRF were made at the Brazil-
ian National Laboratory of Synchrotron Light (LNLS,
Campinas, Brazil)[32,33].

3.2. Reagents, solutions and slurry samples

Deionised water was used throughout the exper-
iments. Al and Pb standard stock solutions (1000
mg l−1) were prepared from Al(NO3)3·9H2O and
Pb(NO3)2 (Ecibra, São Paulo, Brazil), respectively.
A 1000 mg l−1 Cd standard stock solution was pre-
pared from CdCl2·H2O (Merck, Darmstadt, Ger-
many). A 1 g l−1 Zr solution was prepared from
ZrO(NO3)2 (Acros, USA). The Mg conventional
modifier [0.003 mg of Mg(NO3)2] was prepared from
Mg(NO3)2·6H2O (Merck) and the mixture of Pd and
Mg used as a conventional modifier [0.005 mg of
Pd + 0.003 mg of Mg(NO3)2] were prepared from
Mg(NO3)2·6H2O and Pd(NO3)2 (Aldrich, Milwau-
kee, USA). In the determination procedure, 10�l of
Mg or Pd+ Mg as a conventional modifier was in-
troduced together with a slurry sample into the L’vov

platform. The solutions of these conventional mod-
ifiers were prepared according to the user’s manual
[34].

A commercial milk powder was used for preparing
the slurry samples for Al determination. The slurry
was prepared by weighting 1000 mg of milk powder
(particle size 75–150�m) in a 100 ml volumetric flask.
Certified samples were used for Cd and Pb determina-
tions. Slurries were prepared with a bovine liver (SRM
1577b) sample (100 mg in 25 ml) and a beech leaves
(CRM 100) sample (40 mg in 10 ml) for Cd and Pb, re-
spectively. Nitric acid 0.2% (v/v) (Merck) was used to
complete the volumes. An ultrasound bath (Branson,
5200, Danbury, USA) was used for previous slurries
homogenisation and stabilisation.

3.3. Platforms and chemical modifiers

Twelve different platforms were studied in this
work. Two platforms (numbers 1 and 2) were analysed
without any previous use. One of them was analysed
brand new, without any chemical modification. The
other new platform was treated with 500�g of Zr fol-
lowing the heating program procedure described in a
previous work[7]. In this procedure, 50�l of 1 g l−1

Zr solution were collected using the auto-sampler
pipette and delivered into the L’vov platform and then
a heating program was performed. This procedure
was repeated 10 times.

Other five platforms (numbers 3–7) were treated
with Zr and were used for Al determination in a
commercial milk powder prepared as slurry sample.
These platforms were used for 50, 100, 150, 200 and
500 heating cycles, and the Zr treatment was repeated
after 50 determinations. This procedure was adopted
because the temperatures for Al pyrolysis (1100◦C)
and atomisation (2400◦C) are very high. The heating
program for Al determination can be seen inTable 1.

Aiming at comparing the Zr performance as a per-
manent chemical modifier for Al determination, a plat-
form (8) treated conventionally with Mg was used for
500 heating cycles. Two platforms (9 and 10) were
treated only one time with 500�g of Zr and were
utilised for Cd and Pb determination in bovine liver
and beech leaves slurries, respectively. Cd and Pb were
determined for 1100 and 864 heating cycles, respec-
tively. The performance of two another platforms (11
and 12), treated conventionally with a mixture of Pd



E.R. Pereira-Filho et al. / Analytica Chimica Acta 495 (2003) 177–193 181

Table 1
Heating programs employed for Al, Cd and Pb determination

Step Temperature
(◦C)

Ramp (s) Hold (s) Ar flow rate
(ml min−1)

1 110 5 25 250
2 130 15 30 250
3 a 10 20 250
4 b 0 c 0
5 d 1 3 250

a Pyrolysis temperatures of 1100, 400 and 700◦C for Al, Cd
and Pb, respectively.

b Atomisation temperatures of 2400, 1900 and 2000 for Al,
Cd and Pb, respectively.

c Hold time of 3 s for Al and Cd and 4 s for Pb.
d Clean temperature of 2450 for Al and 2200◦C for Cd and Pb.

and Mg as chemical modifier, was also checked for
Cd and Pb determinations. In this case, the numbers
of heating cycles were 200 and 416, respectively. The
heating programs used for Cd and Pb determination
are also shown inTable 1.

For Cd and Pb determination, the platforms were
treated only once at the beginning of the experi-
ments with Zr. The criterion for stopping the analysis
was applied after carefully watching the integrated
absorbance of 2 and 50�g l−1 standard solution, re-
spectively. This criterion was established when the
difference observed between the first and the last
results was more than 20%. In some cases, this ob-
servation was not used because several platforms
were broken due to the high frequency of heating
cycles.

Table 2
Summary of experiments carried out with L’vov platforms

Platform number Analyte Modifiera

(number of treatments)
Number of
heating cycles

Slurry sample

1 – – – –
2 – Zr (1) – –
3 Al Zr (1) 50 Milk powder
4 Al Zr (2) 100 Milk powder
5 Al Zr (3) 150 Milk powder
6 Al Zr (4) 200 Milk powder
7 Al Zr (10) 500 Milk powder
8 Al Mg (500) 500 Milk powder
9 Cd Pd+ Mg (200) 200 Bovine liver

10 Cd Zr (1) 1100 Bovine liver
11 Pb Zr (1) 864 Beech leaves
12 Pb Pd+ Mg (416) 416 Beech leaves

a Zr was used as permanent chemical modifier. Mg and the mixture of Pd+ Mg were used as conventional modifiers.

The use of conventional chemical modifiers (Mg
and Pd+ Mg) was made as in a previous work[7],
and the heating programs were the same used when
Zr was employed as permanent modifier (Table 1). In
order to get a better comprehension, a summary of the
studied L’vov platforms is shown inTable 2.

3.4. Scanning electron microscopy and
µSRXRF analysis

After metals determinations the morphology of each
platform was visualised by using a scanning electron
microscope. Ten images were sequentially acquired
across the horizontal axis from each platform. The
magnification was 500 times, the accelerating voltage
was 20 kV and the distance between each consecu-
tive micrograph was around 1 mm, covering the whole
platform extension (around 10 mm).

During the experiments with�SRXRF, a white
beam light of 30�m in diameter was used. Each
platform was mapped during 2 h. Signals from 113
points on the platform surface were collected. The
first 13 points were rejected because during the data
acquisition a contribution from the sample holder was
observed at the first points of the scanning process.
Each point was analysed during 60 s and the evaluated
distance between two consecutive points was approx-
imately 62�m. The measurements started from the
fixation point of the L’vov platform in the THGA tube
to approximately 7 mm in the same direction. This
procedure performed a scanning across the horizontal
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axis (in the same way as for micrographs acquisition).
The used 100 points were from 812.5 to 7000�m
across the horizontal axis of the platforms. During
the scanning process, neither vacuum requirement
nor platform treatment with a conductive material
were necessary. The system set-up used in the plat-
forms scanning was the same employed in a previous
work [7]. After scanning experiments a total of eight
species were found: Ca, Fe, Hf, P, Pd, S, Ti and Zr.

3.5. Data handling

3.5.1. Multivariate image analysis
The data were handled using MATLAB software,

version 6.1 (The MathWorks, Natick, USA). The im-
age PCA routine comes from the “PLS Toolbox”, ver-
sion 2.0 (Eigenvector Technologies, Manson, USA).
After micrographs acquisition was finished, the im-
ages were digitalized using Photo Suite software. Then
the images were converted into bitmap files and read
using MATLAB. Finally, 120 matrices were obtained,
i.e. 10 images from each platform, each one with
425 rows by 650 columns. The resolution used was 8
bits, which corresponds to 256 tonalities varying from
black to white. Using multivariate image analysis, the
images were transformed into numerical information,
which can be treated as analytical data. In order to use
image PCA, 120 matrices were arranged in a three-
dimensional array of 650 columns× 425 rows× 120
variables. No image pre-processing was performed.

3.5.2. PARAFAC
The data were handled using MATLAB. PARAFAC

modelling was carried out using “TheN-way Toolbox
for MATLAB”, version 2.00 (R. Bro, Foodtechnology,
Kopenhagen, Denmark)[35]. A 12×8×100 three-way
array was built: 12 different L’vov platforms, 8 re-
main species signals obtained using�SRXRF after
atomisation processes and 100 points collected across
the horizontal axis for each platform surface and for
each remain species. The data pre-processing used
was scaling within the second mode to unit square
variation, in order to give equal weights to each vari-
able/remain species distribution in the model. Scaling
three-way data should take the trilinear model into ac-
count[22,23,36]and therefore, whole matrices instead
of rows must be scaled. Direct trilinear decomposition
was used for initialisation.

It was used the core consistency diagnostic (COR-
CONDIA) as a tool for model validation. CORCON-
DIA has been suggested for determining the proper
number of factors for three-way models[23,37]. As
PARAFAC can be considered a special case of Tucker3
[24] with a superidentity core matrix, the core consis-
tency is based on the calculation of aG Tucker3 core
matrix from the PARAFAC factor matrices. IfG ma-
trix has all the superdiagonal elements close to one
and the off-superdiagonal elements close to zero, the
PARAFAC model is not overfitted and the core con-
sistency is close to 100%. Hence, a core consistency
above 90% can be considered as indicative of an ap-
propriate model, whereas a value in the neighbour-
hood of 50% indicates a problematic model with some
lack of trilinearity. A core consistency close to zero
or negative means an invalid PARAFAC model, which
is not describing trilinear variation in the data. An in-
valid core consistency indicates that too many factors
have been extracted, the model is either miss-specified
or gross outliers are disturbing it. The core consis-
tency decreases slightly with the increase in the num-
ber of factors, but very sharply when the correct num-
ber is exceeded. Therefore, the chosen model should
have the highest number of factors and a valid core
consistency.

A final remark is the use of constraints. Orthogonal-
ity constraints[22,23]can help to avoid problems with
degeneracy, thus stabilising the solution. In this work,
we imposed orthogonality constraint in the first mode
aiming at extracting more factors. Orthogonality con-
straints are rarely used to chemometrics approaches,
because they are not adequate for the most common
applications in curve resolution. However, they can
be useful for more exploratory purposes, as they per-
mit variance partitioning of the otherwise correlated
factors, allowing a more straightforward interpretation
of the data. It is important to note that in this case,
as in PCA, the solution of the PARAFAC model is
nested.

4. Results and discussion

4.1. µSRXRF analysis

The platforms ofTable 2were analysed employ-
ing �SRXRF. In these experiments, 113 points were
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scanned across the horizontal platform axis (the same
procedure used in micrographs acquisition). After
scanning experiments, a total of eight species were
found. Zirconium was found in all platforms, which
were treated permanently with this metal. In addition,
Hf and Ti were also found in the platforms treated
with Zr and used for more than 500 heating cycles.
The Zr, Hf and Ti fluorescence intensities follow the
same distribution on the platform heated by 500 cy-
cles and used for Al determination, as observed in the
previous work[7]. On the other hand, the distribution
of these metals on the platforms treated with Zr and
used for Cd and Pb determination (platforms 10 and
11) does not show the same trend. The presence of Hf
and Ti together with Zr can be explained as impurities
presented in the Zr salt. However, these metals did
not offer any problems for Al, Cd and Pb determina-
tions, since they have also been used as permanent
chemical modifiers[38,39].

Palladium was found mainly in the platforms
treated with a mixture of Pd and Mg (platforms 9 and
12). High calcium fluorescence intensity was detected
mainly in the platforms treated with conventional
modifiers (Mg and Pd+ Mg). This fact can prove that
the conventional modifiers were not successful in the
concomitant elimination. It was verified that the plat-
forms treated with conventional modifiers presented
more residual species (for example Cd determination
using Pd+ Mg (platform number 9)) than the plat-
forms treated with Zr. On the other hand, platforms
used for Cd determination (400 and 1900◦C for py-
rolysis and atomisation, respectively) presented more
residual species than the other platforms. Platforms
used for Cd and Pb determination did not present flu-
orescence intensity for these metals, confirming that
the heating programs (Table 1) used were efficient for
analytes determinations.

4.2. Scanning electron microscopy and multivariate
image analysis

Ten equally spaced micrographs were sequentially
obtained across the horizontal platforms axes in the
scanning electron microscopy. This procedure was
adopted to obtain a more in-depth platform morphol-
ogy characterisation. After micrographs acquisition,
120 images were obtained from the 12 platforms
already described inTable 2.

After multivariate image analysis, it was obtained
a model with PC1 accounting for 63.4% of the vari-
ance and the remaining information distributed in very
small contributions from tens of components. This
type of behaviour is typically observed in image PCA
[7,27,31]. Each following PC’s accounted for only
0.4% or less of the variance and did not represent any
clearly interpretable trend. The loading plot of PC1 is
showed inFig. 1. The image loadings were presented
from the beginning (fixation point) to the end for each
platform. The new platforms (1 and 2), the more pre-
served ones, showed high loading values on PC1. The
platforms treated with Zr and used for Al determina-
tion for 50–150 heating cycles (3–5) presented, mainly
in the edges, a similar behaviour, indicating that their
surfaces were almost so preserved as the new plat-
forms. The platforms treated with Zr and used for Al
determination for 200 and 500 heating cycles (6 and
7) showed lower values on PC1, probably due to more
abraded surfaces. The platform treated with Zr and
used for Cd determination (10) presented, even heated
for 1100 heating cycles, PC1 values similar to the
new platforms. The platforms treated with Pd and Mg
(9 and 12) presented surfaces different from the new
ones. It is interesting to point out that these platforms
were used for only 200 and 416 heating cycles.

The most remarkable trend observed inFig. 1 was
related to platform 8, used for Al determination and
treated with Mg. Micrographs obtained from the plat-
form centre presented the smallest values for PC1,
leading to the conclusion that this platform has the
most abraded surface. In this case, the modification
with Mg was not so effective as Zr for the platform
surface preservation. It is important to point out that
these observed differences were not clear only by ob-
serving the images. In this case, after image PCA anal-
ysis it was found some evidences that probably the
chemical modification was responsible for this sepa-
ration. A more in-depth investigation can be a corre-
lation between the visual information and the residual
species observed.

4.3. PARAFAC

An univariate analyses of this data could be
performed, but in this case, due to the number of
platforms (12), remained species (8) and scanned po-
sitions (100), a great number of graphics (at least 96)
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Fig. 1. Loading plot of PC1 (63.4%) obtained in image PCA for 120 micrographs. The micrographs for each platform are sequentially
presented from the beginning to the end, and the numbers in parenthesis represents the platform order (Table 2).

has to be generated and some information about, for
example, a specific platform position, could be lost
or not detected by the analyst. In this way, to sum-
marise and better visualise the results obtained by the
�SRXRF analysis, it was tried to use a multivariate
chemometric tool to aid data analysis.

According to the results obtained when the image
PCA was applied, it is expected to get a relation be-
tween the images from a specific platform and its
residual species distributions obtained with�SRXRF.

In this context, it was firstly tried to apply
bi-dimensional PCA to an unfolded array of scanning
remain species distributions. A matrix composed by
96 samples (12 platforms× 8 species) and 100 vari-
ables (scanning positions) was analysed. The data
were autoscaled prior to analysis and a scatter plot
of PC1× PC2 (not shown) only clearly separate two
points from the rest, platform 9/Ti (content of Ti on
platform 9) and platform 12/Pd. After withdrawing
these two points, another PCA analysis was carried
out and the result showed that PC2 separated platform
10/Ti from the rest while the other points were dis-
tributed along PC1 axis. However, it was not possible
to characterise the platforms treated with Zr and Mg
(the most abraded platform according to image PCA)
and used for Al determination (3–8). Also, a joint
interpretation of loading and scores was not leading
to any clearly conclusion. The limitations of the re-

sults obtained by unfolding PCA can be understood
by a comparison with true multi-way models, such
as PARAFAC. Unfolding PCA ignores the multi-way
structure of the data, while PARAFAC model imposes
more structure to the data and hence, filters away
more variation/noise, leading to a more robust, more
interpretable and parsimonious model[23].

An array composed by 12 platforms× 8 species×
100 scanning points was modelled by PARAFAC.
The assumption is that our data may present a trilin-
ear behaviour and the PARAFAC modelling allows
to better platforms characterisation as a function of
their previous chemical modifications. Without any
constraint imposed to the data, a four-factor was con-
sidered the best model with a core consistency of
99.9% and accounting for 71.1% of the total vari-
ance. A five-factor model was considered inappropri-
ate because it presented a negative core consistency
(−1.9%). Since we observed that some trends in data
were out of the model (mainly Ca and Ti and some
platforms presented high values in the residues), we
decided to impose orthogonality constraint on the
first mode, aiming at modelling more variance and
evidencing the differences among platforms. As a
consequence, the obtained factors corresponding to
the platforms were forced to be non-correlated. Then,
a six-factor constrained model was considered the
best with a core consistency of 95.0% and accounting
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Fig. 2. PARAFAC results for factor 1: (a) platform mode; (b) species mode; and (c) position mode loadings.
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Fig. 3. PARAFAC results for factor 2: (a) platform mode; (b) species mode; and (c) position mode loadings.
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for 82.2% of the total variance. A seven-factor model
was considered inappropriate because it presented a
core consistency of 35.0%. The first four factors of
the six-factor constrained model were very similar to
the four factors of the previous unconstrained model.

Figs. 2 and 3show the results found for factors 1 and
2, respectively. These factors were related to the plat-
forms treated with Pd+Mg and used for Pb (platform
12) (Fig. 2) and Cd (platform 9) (Fig. 3) determination,
respectively. The platform 12 is mainly characterised
by the presence of Pd and Fe (Fig. 2b) in the platform
centre (Fig. 2c). On the other hand, the platform 9
has a great S influence (Fig. 3b) on the platform edge
(Fig. 3c). Sulphur can be originated from the bovine
liver certified samples, which presented a concentra-
tion of 7850�g g−1. The application of PARAFAC
modelling showed the differentiation of the preferen-
tial places where some phenomena occurred consider-
ing Cd or Pb atomisation in the L’vov platform. In the
platform treated with Pd+ Mg, it seems that the cen-
tral part of the platform plays a more important role in
the Pb determination (Fig. 2c). In addition, when Cd
is considered (platform also treated with Pd+ Mg),
the edges of the L’vov platform are more influenced
by the atomised Cd (Fig. 3c). These observations are
in agreement with those obtained with image PCA

Table 3
Summary of results obtained by PARAFAC

PARAFAC factor number
(explained variance (%))

Platform
modelled

Species with
more influence

Platform region with
more influence

Remark

1 (18.6) 12 Fe and Pd Centre In spite of the presence of Pd from
the conventional modification, this
metal was not successful in Fe
elimination.

2 (18.0) 9 P, Ca, Pd, Fe, Ti
and mainly S

Edges S, P, Ca and Fe were probably
from the slurry sample.

3 (17.8) 7 Hf and Zr Centre and right side Platform used for Al determination
and 500 heating cycles.

4 (11.4) 10 Ti and mainly P Left side P is probably from the bovine liver
slurry sample.

5 (11.3) 8 and 11 Ti and mainly Ca Centre and right side Mg and Pd+ Mg conventional
modifiers were not successful in Ca
elimination; as previously indicated
by image PCA, the centre of
platform 8 has a particular
behaviour.

6 (5.0) 2–6 and 10 Zr All As observed by using image PCA
and confirmed by PARAFAC, these
platforms presented the same
behaviour.

(Fig. 1), which indicate that the central part and edges
present morphology different from the rest of the plat-
forms.

Fig. 4shows the results of PARAFAC factor 3. This
factor modelled the platform treated with Zr and used
for 500 heating cycles in Al determination (Fig. 4a,
platform 7). As it is observed inFig. 4b, this plat-
form has signals of significant fluorescence intensity
produced by Hf and Zr. The most significant posi-
tions were at the centre and the right side (Fig. 4c).
This information was not observed when applying
bi-dimensional PCA.

Figs. 5a and 6ashow that platforms treated with
Zr and Mg and used for Cd, Pb and Al determina-
tions (platforms 10, 11 and 8, respectively) have a re-
markable influence due to a high P and Ca content
(Figs. 5b and 6b). For the platform 10, modelled by
factor 4, and used for Cd determination, this influence
was mainly observed at the left side of the platform
(Fig. 5c). The platforms 11 and 8, both modelled by
factor 5, presented Ca in all positions (Fig. 6c), but
higher fluorescence intensity at the centre of the plat-
form. The presence of a high Ca signal in the platform
8 can be attributed to a not complete platform modi-
fication by Mg. This fact probably lead to higher sur-
face degradation, which was showed for platform 8 in
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image PCA. This information was also not observed
when applying bi-dimensional PCA.

Finally, Fig. 7shows factor 6. This figure shows the
new platform treated with Zr and the platforms also
treated with this modifier and used for Al determina-
tion for 50, 100, 150 and 200 heating cycles (Fig. 7a).
All platforms were separated and mainly characterised
by Zr presence (Fig. 7b) in the whole platform exten-
sion (Fig. 7c).

Table 3 summarises all the information extracted
from the PARAFAC data modelling, including the
positions of L’vov platforms that contribute on the
phenomena involved in the Al, Cd or Pb determi-
nations. As it can be seen from this table, for those
elements presenting lower atomisation temperature
(Cd and Pb (platforms numbers 9–12)) the processes
involved in the atomisation take place preferentially
at the edges for Cd and in the centre for Pb. How-
ever, when Al (platforms numbers 2–8) is considered,
these processes seem to occur in different positions
on the platform surface and depend on the number
of heating cycles and on the modifier. For the plat-
forms used for 500 heating cycles (platforms 7 and
8), the main atomisation process occur at the centre
and at the right side when the platform is treated with
Zr (platform 7) and mainly at the centre when the
platform is treated with Mg (platform 8). Conversely,
the platforms numbers 2–6 (0, 50, 100, 150 and 200
heating cycles) presented a similar behaviour among
them, where the Zr is equally distributed in the whole
extension of platforms. In addition, as the atomi-
sation temperature in this case is high (2400◦C),
the agitation of the system is increased, thus con-
tributing to the diffusion of the species through the
platform. Such kind of diffusion depends on the
modifier, for example, Zr was efficient in Ca elimi-
nation, but when Mg was used Ca was detected as a
concomitant.

5. Conclusion

It is important to point out that the use of image
PCA in combination with PARAFAC allowed to ex-
tract information according to the morphology and the
surface metal interactions at different positions in the
L’vov platforms. The PARAFAC modelling of the data
obtained by�SRXRF permitted to get a global char-

acterisation of the platforms, summarised inTable 3.
Four platforms, 12, 9, 7 and 10, presented a particu-
larly behaviour, being so different among themselves,
that it was necessary one specific factor (1–4) to model
each one. Factor 5 demonstrated that platforms 8 and
11 presented a similar behaviour characterised by high
Ca and, to a lesser extent, Ti content. Finally, factor
6 modelled the correlated behaviour of platforms 2–6
characterised by Zr content.

In addition, with this work it was observed that the
platform morphology has a good connection with the
residual species found in its surface. A good example
is the platform used for Al determination and treated
conventionally with Mg. This platform presented Ca
distributed in its whole extension, and, mainly at the
central partFigs. 1 and 6c). The platforms used for Al
determination, treated with Zr and heated for 50, 100,
150 and 200 times presented only Zr in its surface
(Fig. 7) and presented a similar behaviour when image
PCA was applied (Fig. 1).

As already mentioned in the PARAFAC section
(Section 4), an univariate analyses of this data could
be performed, but in this case this procedure can lead
to visualisation and interpretation problems due to the
great amount of data. As an example, S content in
platform 9 was only evidenced by using PARAFAC.
If the data were analysed in an univariate way, this
important information probably could be not detected,
because the S signal is too small when compared to
the other species present in this platform.

Such kind of studies can open a vast field to ex-
ploratory analysis of L’vov platforms in ETAAS. With
the results obtained in this work we suppose that the
atomisation rate might be different depending on the
position and/or pathways, the modifier, the sample and
the analyte.
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Braśılia, Brazil) for fellowships to MMS, RJP and
MAZA.



E.R. Pereira-Filho et al. / Analytica Chimica Acta 495 (2003) 177–193 193

References

[1] N.J. Miller-Ihli, J. Anal. At. Spectrom. 4 (1989) 295.
[2] W. Frech, D.C. Baxter, B. Hütsch, Anal. Chem. 58 (1986)

1973.
[3] W. Slavm, D.C. Manning, Spectrochim. Acta Part B 37 (1982)

955.
[4] N.J. Miller-Ihli, Spectrochim. Acta Part B 44 (1989)

1221.
[5] F. Barbosa Jr., E.C. Lima, F.J. Krug, Analyst 125 (2000)

2079.
[6] C. Bendicho, M.T.C. Loos-Vollebregt, J. Anal. At. Spectrom.

6 (1991) 353.
[7] E.R. Pereira-Filho, C.A. Pérez, R.J. Poppi, M.A.Z. Arruda,

Spectrochim. Acta Part B 57 (2002) 1259.
[8] A.B. Volynsky, Spectrochim. Acta Part B 53 (1998) 139.
[9] Z. Benzo, A. Garaboto, F. Ruette, M. Quintal, V. León,

Spectrochim. Acta Part B 52 (1997) 1305.
[10] J.P. Matousek, H.K.J. Powell, Talanta 44 (1997) 1183.
[11] V. Majidi, R.G. Smith, N. Xu, M.W. McMahon, R. Bossio,

Spectrochim. Acta Part B 55 (2000) 1787.
[12] E. De Giglio, L. Sabbatini, L. Lampugnani, V.I. Slaveykova,

D.L. Tsalev, Surf. Interface Anal. 29 (2000) 747.
[13] K.H.A. Janssens, F.C.V. Adams, A. Rindby, Microscopic

X-ray Fluorescence Analysis, Wiley, Chichester, 2000.
[14] H. Martens, T. Naes, Multivariate Calibration, Wiley, New

York, 1989, pp. 97–108.
[15] A.K. Smilde, Chemon. Intell. Lab. Syst. 15 (1992) 143.
[16] L. Moberg, G. Robertsson, B. Karlberg, Talanta 54 (2001)

161.
[17] J.C.G.E. da Silva, J.M.M. Leitão, F.S. Costa, J.L.A. Ribeiro,

Anal. Chim. Acta 453 (2002) 105.
[18] P. Hindmarch, K. Kavianpour, R.G. Brereton, Analyst 122

(1997) 871.
[19] J. Nilsson, S. de Jong, A.K. Smilde, J. Chemom. 11 (1997)

511.
[20] B.M. Wise, N.B. Gallagher, S.W. Butler, D.D. White, G.G.

Barna, J. Chemom. 13 (1999) 379.

[21] R. Leardi, C. Armanino, S. Lanteri, L. Alberotanza, J.
Chemom. 14 (2000) 187.

[22] R. Bro, Chemon. Intell. Lab. Syst. 38 (1997) 149.
[23] R. Bro, Multi-way analysis in the food industry, Ph.D. Thesis,

Amsterdan, 1998.
[24] P.M. Kroonenberg, Three Mode Principal Component

Analysis: Theory and Applications, DSWO, Leiden, 1983.
[25] R. Bro, J. Chemom. 10 (1996) 47.
[26] P. Geladi, H. Grahn, K. Esbensen, E. Bengtsson, Trends Anal.

Chem. 11 (1992) 121.
[27] P. Geladi, H. Grahn, Multivariate Image Analysis, Wiley,

Chichester, 1996.
[28] L. Munck, L. Norgaard, S.B. Engelsen, R. Bro, C.A.

Andersson, Chemon. Intell. Lab. Syst. 44 (1998) 31.
[29] A. Marcos, M. Foulkes, S.J. Hill, J. Anal. At. Spectrom. 16

(2001) 105.
[30] A. Moreda-Piñeiro, A. Marcos, A. Fisher, S.J. Hill, J. Anal.

At. Spectrom. 16 (2001) 360.
[31] E.R. Pereira-Filho, R.J. Poppi, M.A.Z. Arruda, Mikrochim.

Acta 136 (2001) 55.
[32] C.A. Pérez, M. Radtke, H.J. Sánchez, H. Tolentino, R.T.

Neuenshwander, W. Barg, M. Rubio, M.I.S. Bueno, I.M.
Raimundo, J.J.R. Rohwedder, X-ray Spectrom. 28 (1999) 320.

[33] H.J. Sánchez, C.A. Pérez, M. Grenón, Nucl. Instrum. Method
Phys. Res. B 170 (2000) 211.

[34] The THGA Graphite Furnace: Techniques and Recommended
Conditions, Technical Documentation, Realise 1.2, Boder-
seerwerk Perkin-Elmer GmbH, Uberlingen, Germany, 1995.

[35] C.A. Andersson, R. Bro, Chemon. Intell. Lab. Syst. 52 (2000)
1.

[36] R. Bro, A.K. Smilde, Centering and scaling in component
analysis, J. Chemom. 17 (2003) 16.

[37] R. Bro, H.A.L. Kiers, A new efficient method for determining
the number of components in PARAFAC models, J. Chemom.,
in press.

[38] S. Imai, Y. Kubo, A. Yonetani, N. Ogawa, Y. Kikuchi, J.
Anal. At. Spectrom. 13 (1998) 1199.

[39] M.C. Almeida, W.R. Seitz, Appl. Spectrosc. 40 (1986) 4.


	Exploratory analysis of L'vov platform surfaces for electrothermal atomic absorption spectrometry by using three-way chemometric tools
	Introduction
	Theory
	Multivariate image analysis and unfolded-PCA
	PARAFAC

	Experimental
	Apparatus
	Reagents, solutions and slurry samples
	Platforms and chemical modifiers
	Scanning electron microscopy and µSRXRF analysis
	Data handling
	Multivariate image analysis
	PARAFAC


	Results and discussion
	µSRXRF analysis
	Scanning electron microscopy and multivariate image analysis
	PARAFAC

	Conclusion
	Acknowledgements
	References


