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least squares estimator of a trilinear decomposition model for multiway data analysis. 
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1. Introduction 

Principal components  and factor analysis are well-known tools in multivariate data 
analysis. For  data represented by X;t over  subjects i = 1 . . . . .  I and variables t = 
I . . . .  , T, these approaches assume a bilinear decomposition: 

K 

Sit-~ Z Akifkt + Eit, (1 )  
k = l  

where K is the number of  components  (factors), A = (Aki)  and C = (Ckt)  are unknown 
matrices of  coefficients, and Eit denotes the error. The K x T matrix C is usually called 
the " loadings"  matrix while the K x 1 matrix A is termed the " s c o r e s "  matrix. 
Generalizing from the bilinear form, a data set may also have an intrinsic three-way 
(three-mode) structure, arising for instance when the variables are repeatedly observed 
for each subject. An example is provided by the evoked brain potential data from which 
the present  work was actually motivated. Here ,  Sil t denotes the voltage recorded for 
subject i at electrode I at time t, where t is measured relative to the onset of  an external 
event  (stimulus) being processed by the subject 's  brain. In the case of  three-mode data, 
Xilt, a natural generalization of  (I) is the trilinear decomposit ion 

K 

Xilt= Z 
k = l  

A k i B k i C , t  + Eilt,  1 <-- i <-- 1, 1 <- l <-- L ,  1 <- t <- T, (2a) 

where B = (Bkt) is a further K × L matrix of coefficients, corresponding to the 
repetition mode. For  brain potential data, (2a) can be well-motivated from biophysical 
considerations (M6cks, 1988a, 1988b). It also has been introduced within the frame- 
work of  multidimensional scaling (Carroll & Chang, 1970; Harshman,  1970). Harshman 
first noticed an important algebraic difference between the decomposit ions (1) and (2a). 
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The matrix A and C in (1) are obviously not unique, since one can premultiply A by any 
nonsingular matrix H'  (where a prime denotes the transpose),  provided that C is pre- 
multiplied by H - l  (hence, one usually imposes orthogonality conditions on A, but then 
A and C are still unique only up to a rotation). By contrast,  the decomposit ion in (2a) 
can be shown (Harshman, 1970) to be essentially unique under mild conditions, a result 
subsequently generalized by Kruskal (1976, 1977). (Note that a different model for  
three-mode data has been introduced by Tucker,  1966, under the name " th ree -mode  
factor  analysis" .  This model, however,  does not possess the uniqueness property) .  

Although previous work (e.g., Harshman & Lundy,  1984; Kruskal,  1984) studied 
algebraic properties and algorithmic questions for obtaining the least squares est imator 
in the model in (2a), nothing is known about their statistical properties.  The present  
work attempts to partially fill this gap. It is shown that the least squares est imator is 
consistent and asymptotically normal, and the limiting covariance matrix is computed.  

2. Preliminaries and Notations 

Equation (2a) can be written in compact  form using tensor  (or Kronecker)  product  
notation. The d a t a X  m can be viewed as an element X of  the tensor  space E t  ® RL ® 
R T, and (2a) may be written 

K 

X =  ~] a k ® b ~ ® c k + E ,  
k = l  

where a k, b k, and c~ denote the k-th rows of  A, B, and C, considered as elements of  
R l ,  R L , and 1~ r ,  respectively,  and E is the tensor (Eilt). It is also convenient  to retain 
the matrix notation, but care is needed not to confuse the dimension of  the matrices 
involved. For  this reason, we will sometimes adopt Tucker ' s  (1966) notation, where the 
dimensions of  a matrix are indicated by a pre- and a post-subscript: /~B L , for  example,  
denotes a K × L matrix. The data X can then be viewed as a I L  × T matrix by writing 
it as H Xr .  Likewise, one may regard the data as a I T  × L matrix t~rX L , or as a L T  x 
I matrix LTX 1. To write (2a) in matrix form, we shall use Rao 's  (1973, p. 30) "n e w  
p roduc t "  (with a different notation): A*B denotes the K × I L  matrix the rows of  which 
are the vectors a k x b k. Likewise for B * C and A * C. Then (2a) can be written in the 
following equivalent forms: 

ILXr = (A * B) 'C + ILEr ,  

IrXL = (A * C) 'B  + 1 tEL,  (2b) 

L T X I  : (B * C) 'A + L T E I  . 

Any of  the above notations will be used according to convenience;  also, for simplicity, 
we will drop pre- and post-subscripts on the matrices X and E when there is no risk of  
confusion. 

Suppose that the errors Eil t in (2) are independent identically distributed random 
variables with zero means and variance or 2. Then (2) can be viewed as a variant of  the 
factor  analysis model in which the errors have the same variance, the factor scores Aki 
can be regarded as unknown constants rather than random variables, and the loading 
matrix has a special structure, namely B * C. The assumption that the Aki  are fixed 
constants is not essential. It only serves to justify the use of  the least squares method,  
and one could also work with random scores without affecting the asymptot ic  results 
shown below. Note that the above assumption makes it possible to treat A, B, and C in 
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a symmetric  way; for  example,  one can regard A * B as the loading matrix and C as the 
scores. Likewise,  A * C can be conceived of  as a loading matrix and B as the scores. 

The simplest method to estimate the parameters  of  the above model is the least 
squares which consists of  minimizing the sum of squares of  the errors,  

X - ak @ bk ® Ck , 
k = l  / t Q = ~'  ~ X i l t -  AkiBk lCk t  = 

i = 1  / = 1  t = l  k = l  

(3) 

where II • II denotes the Euclidean norm. To minimize Q, one may equate to zero its 
(partial) derivatives with respect  to the parameters  Aki ,  Bkl ,  and Ckt.  For  fixed B and 
C, (2) is a linear model with respect  to A, hence the derivative of the criterion Q with 
respect  to A ki can be obtained in the same way as in linear models. Thus, we obtain the 
equation 

SbcA  = (B * C ) L T X I ,  

where Sbc = (B * C)(B * C) ' .  Similarly, by equating to zero the derivatives of  Q with 
respect  to B and C, respectively,  one gets the equations 

Sac B = (A * C)ITXL, SabC = (A * B)tLXT, 

where Sab and Sac are defined in the same way. The above three equations define the 
least squares estimators/~,  II, and C of  A, B, and C. It can be seen that these estimators 
are defined only up to a scale factor and a permutation of their rows. Indeed,  the above 
equations are unchanged when one premultiplies A, B, and C with PDa, PDb, and PD c , 
respectively,  where P is a permutation matrix and Da, Db, and Dc are diagonal matrices 
with a product  equal to the identity matrix. 

In the following, the asymptotic properties of  the least squares estimators will be 
studied when one of  the dimensions, say I,  goes to infinity while the others remain 
fixed. This is one possible way to introduce "asympto t i c s . "  Clearly, it makes no sense 
to assume all three dimensions tend to infinity simultaneously, since then the number  
of  parameters  would also increase to infinity. We could consider the case when two of  
three dimensions go to infinity while the remaining stays fixed, but for  simplicity, we do 
not. In the case when 1 goes to infinity and L and T remain fixed, the parameters  Aki ,  
i = 1 . . . .  , I ,  cannot  be estimated consistently, but we can expect  consistency and 
asymptotic  normality of  the estimators of  the parameters Bkl , l = I , . . . ,  L and Ckt,  
t = 1 . . . .  , T. One may regard our model as specified by K ( L  + T) parameters  
Bkl,  • • • , BkL,  and Ckl . . . . .  CkT, k = 1, . . .  , K, and K sequences of numbers A k l ,  
Ak2 . . . .  , k = l ,  . . .  , K. Only the first K ( L  + T) parameters  will be estimated; the 
Aki  play the role of  nuisance parameters.  Another  possibility is to assume (Ali  . . . . .  
A r i ) ' ,  i = 1, 2 . . . . .  I be independent identically distributed (i.i.d.) random vectors ,  
in which case the index i may be viewed as a replication index and I as the sample  size. 
Our results hold for both situations. Specifically, we shall assume 

(M0) (A l i ,  . . .  , At~i)' , i = 1, 2, . . .  are either a deterministic or random se- 
quence of  vectors in R ^ ,  such that the matrix with (k, k ' )  element (Z/=l  AkiAk , i ) / l  
converge almost surely to a limit R a as I ~ ~.  

Note  that in the case where (A li . . . . .  AKi) '  are random vectors,  (M0) holds by the 
strong law of  large numbers if they are iid and admit second moments.  Also when 
(Ali ,  • • • , AKi) '  are deterministic, they denote the true unknown parameters ,  and not 
free parameters  as in the criterion (3). 
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For the asymptotic normality of the estimators, we will need a further assumption 
as follows: 

(MI) For all k = 1, . . .  , K ,  m a x t = j A  Zi/I --~ 0 almost surely as I ~ ~. 

This is a very weak assumption. For example, it would hold if for some 6 > 0, 
z l = l  tAk i t2+6/ I  is bounded almost surely as I ~ ~, since [maxA2i/I] 1+~/2 <- 
[Z/=l t Aki[2+8/I]/I~/2. In the case where the vectors (A~i,  . . .  , AKi ) '  are random, 
the latter condition follows from strong law of large numbers, provided that they are iid. 
and admit 2 + 6 absolute moments. 

Although (2a) has the form of a (nonlinear) regression model (in the case where A ik 
are deterministic), standard asymptotic theory for nonlinear least squares estimation 
does not apply, since the number of the parameters Aki  goes to infinity with I. Our 
method consists of eliminating these parameters leading to an estimation criterion Q*, 
given by (4) below, containing only the parameters Bk/and Ckt.  However, this criterion 
does not have the form of a sum of squares so that new arguments are needed to obtain 
the almost sure consistency and the asymptotic normality of the estimate (although for 
the latter property, the proof follows rather closely the standard arguments). 

For fixed B and C, the least squares criterion Q, defined in (3), is minimized when 
A = Sb~ I(B * C)X. Inserting this into Q, we obtain 

tr (IXPLTLTXI)- tr [/X~T(B * C)'Sbc~(B * C)LrXI].  

Using the relation tr (AB), = tr (BA), the above expression equals 

Q* = tr {[I - (B * C)'Sbcl(B * C)]XX'} = tr [(I - PB.  c )LrXX~r] ,  (4) 

where I denotes the identity matrix, and 

PB,  c = (B * C)'SbcI(B * C) 

denotes the projector that projects orthogonally onto the linear subspace spanned by 
the rows of B * C. Thus, the least squares estimators 13 and (~ of B and C are those that 
minimize the criterion Q*, defined by (4). 

3. Consistency of the Least Squares Estimators 

Before discussing the consistency of the estimator, one must ensure that the model 
is identifiable; that is there exists no other set of parameters leading to the same model. 
The following conditions are sufficient for identifiability, up to a scale factor and a 
permutation: 

(A0) The vectors a z, . . .  , aK are linearly independent. 

(A1) The tensor products b I ® e I , . . .  , b K ~ e K are linearly independent and the 
linear subspace spanned by them contains no other tensor product (of a vector in ~L 
with a vector in I~ r) but their multiples. 

To see that (A0) and (A1) imply uniqueness of the model (up to a scale factor and 
a permutation) note that E(LTX/) = (B * C)'A, and hence, the linear independence of 
the ak implies that the columns of the matrix E(LrX/)  span the same linear subspace as 
the bk ® ok. The latter subspace is thus unique and the uniqueness of the b k and e k then 
follows from (A1). 
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Since we are interested in the asymptotic behavior of the estimates, (A0) needs 
hold only for  I large enough and it should continue to hold for I --* ~. Thus,  we can 
replace (A0) by 

(A0') The matrix R a in (M0) is nonsingular. 

Condition (AI) is not sufficient for proving the consistency of the estimators, and 
therefore,  a stronger condition must be introduced (which was also considered in 
Harshman,  1970, and M6cks, 1988a): 

(A2) The vectors e l ,  • • • ,  cK are linearly independent and no two of  h i ,  • • • , bK 
are a multiple of each other.  

(It is noted that condition (A2) is not symmetric with respect to B and C since the 
stronger linear independence requirement on the c k makes it possible to weaken the 
requirement on the b~. In practice, it may happen that the dimension L is less than K 
so the bk cannot be linearly independent.  Of course, one could replace (A2) by an 
analogous condition in which the matrices B and C are interchanged.) 

To see that (A2) implies (A1), consider the linear relation X~:=~ /-~bk ® e~ = 0, or 
equivalently,  E~:=1 l~B~tek = 0 for all l. The linear independence of the ek implies 
~kBkt = 0 for all k and l, but this is not possible unless ~k = 0 for all k. In the same 
way, if Y.~;=l/~kb k ® ek = b ® e, for some set of  coefficients ~k and some vectors  b 
and e of  ~/~ and ~ r ,  respectively, then the linear independence of  the e k imply that 
t~kBkl must be of  the form fl~ Yk. But then the second condition in (A2) implies that all 
but one/~k must be zero. 

The vectors ak, bk, and ek in the above conditions refer to the true values of  the 
model parameters while the matrices B and C in the criterion Q* represent free pa- 
rameters.  To avoid confusion, we shall reserve in this section, the notation B and C, 
and bk and c k for the true values. We also normalize the bk and e k to have unit norm 
to eliminate the scale factor. The free parameters are viewed as an element in the set 
O of  all * products  of  a K × L and a K ® T matrix, with rows having unit norm. Thus,  
the least squares estimators of  B * C is the matrix I~ realizing the minimum of  
tr [(I - PH)LTXX'LT] for among all H in ®. Once I:l has been found, it may be factored 
(with respect  to the * product) to get the least squares estimators I~ and C of B and C. 

The consistency study of  the !~ and C presents two technical difficulties. First, the 
function tr [ ( I  - PH)L~'XX~,r] is not everywhere  continuous in ®, since HH'  may be 
singular (in this case, PH is still defined as the projector  to the linear subspace spanned 
by the rows of  H, but this space has dimension less than K, while the one corresponding 
to other  points in O, however  close to H, generally has dimension K; hence,  the 
discontinuity). Secondly,  the matrix H E O may not admit a unique factorization, 
unless its factors satisfy (AI). Of  course,  one may exclude such H from the parameter  
set, but then it will not be closed, and the standard argument for proving consis tency no 
longer applies. Moreover ,  in practice, the minimization of  the criterion Q* is usually 
performed without any restriction on ®. Therefore,  the full set O will be retained as 
parameter  set and a specific proof  for the consistency of the estimator will be provided. 
Observe that the criterion tr [(I - PH)LrXX~r] ,  as a function of  Pn ,  is a well-behaved 
function. Thus,  we introduce the set 1-I = {PH, H C ®} and consider the minimization 
o f t r  [(I - P)LTXX'LT] with respect to P E II. Since l-I is not closed (ifHn is a sequence 
in O converging to a matrix of  rank less than K,  then PB,, could converge to a projector  
not of  the form Pn for some H ~ ®), we must enlarge it to Pl, the closure of  H (i.e., the 
set of  points that can be approached arbitrarily close by points in I-l). Then we can apply 
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standard techniques to prove that the minimizer P of tr [(I - P)mrXX~r]  in 9 ,  con- 
verges almost surely to PB • c as I --> 00. The difficult part consists of  showing that P 
must belong to I / ( i . e . ,  P = Pfi for  some IZI E ® or the existence of  the least squares 
estimator) for  I large enough, and that the convergence of  P to P B .  C implies that of  I:I 
to B * C. However ,  due to the fact that the model is unchanged when the rows of  A, B, 
and C are permuted,  one can only expect  that IZI converges to B * C up to a permu- 
tation. To make this concept  more precise, we introduce the "d i s t ance"  d(H,  G) = 
d ! ( H ,  G) + d2(H, G), where 

dl(H, G) = Max (Min Hhk -- grH), 
k = l  . . . . .  K r = l  . . . . .  K 

d2(H,  G) = Max ( M i n  llhr - gkll),  
k = l  . . . . .  K r = l  . . . . .  K 

and hk and gk denote  the row vectors of  H, G. It can be shown that d ( . ,  .) possesses 
the proper ty  of  a distance if matrices having the same row vectors up to a permutation 
are identified as the same (clearly, d l (H ,  G) = 0 implies hk is one of  the g l ,  • • • , gg ;  
and d l ( H ,  G) = 0 implies gk is one of  the h i ,  . . . ,  h r ;  hence,  d(H,  G) = 0 implies 
hi . . . .  , h K is a permutat ion of g l ,  • • • , gK). 

Theorem 1. Under  the assumptions (MO) and (AO') and supposing that B * C has 
rank K, the minimizer ~ of  tr [(I - P)XX'] in l] converges almost surely to PB * C as 
I ------> ~ °  

The proof  of this Theorem is based on the following Lemma.  

Lemma 1. Under  assumption (M0), LTXX'LT/I converges almost surely to 
(B * C) 'Ra(B * C) + OrEI as I--> ~. 

Proof. A simple computat ion shows that LTXX'LT/I equals 

(B* C)' (B* C ) + ( B *  C)' I +EB' ~ + ~ -  

The first term converges to (B * C) 'Ra(B * C) by assumption. The last term converges 
to o21 by the strong law of  large numbers.  The second term is the matrix with the 
element  ((l, t),  ( l ' ,  t ' ) )  o f  the form ~ff=j BklCkt (~//=1 AkiEirt'/I), which converges  
to 0 as I ---> o% by a strong law for sums of  independent  random variables (e.g., see 
Lo~ve,  1963). The same is true for the third term and the result follows. [ ]  

Proof  o f  Theorem 1. We first note that F' is the maximizer of  tr (PLTXX[~r) in H. 
By Lem m a  l,  this function converges almost surely as I --> o0 to tr  [P(B * C)' 
Ra(B * e l  + Or2 tr (P). Now, P can be written as Y.K=' 1 PkP~-, where {pl . . . . .  PK'} is 
a or thonormat  basis of  the image space of  P; hence, tr (P) = K '  -< K, and P is bounded 
in H, implying that the above convergence is uniform in 1]. Thus,  to show that P --> 
P B .  c ,  one needs only to show, by a simple standard argument,  that the function 
tr [P(B * C) 'Ra(B * C)] + O rE tr (P) is maximized in li at P = PB • c .  Since B * C has 
rank K,  t r ( P B . c )  = K -> t r (P) ,  and since t r [ P a , c (  B *  C ) ' R a ( B *  C)] = 
tr [(B * C) 'Ra(B * C)], it suffices to show t h a t  



TUAN DINH PHAM AND JOACHIM MOCKS 209 

tr [(I - P)(B * C) 'R, , (B * C)] > 0, for all P #- PB * C, P ~ H. 

The above left-hand-side can be written as tr [(I - P)(B * C) 'Ra(B * C)(I - P)] since 
tr (AB) = tr (BA) and the projector P is idempotent (p2 = p). Now,  

tr [ ( I  - P ) ( B  * C ) ' R o ( B  * C ) ( I  - P ) ]  > 0 ,  

since the trace of  a positive semidefinite matrix is nonnegative. Equality is attained 
if and only if (B * C)(I - P) = 0, since R a is positive definite. Suppose that 
(B * C)(I  - P) = 0, or equivalently, PB * C( I -- P) = 0. Then, again from the identity 
tr (AB) = tr (BA) and the idempotence of  projectors, 

t r ( P B , c - P )  Z = t r  ( P B , c  + P - 2 P B * c P )  

= 2 tr [PB.  C(I  -- P)] + tr (P) - tr (PB.  c)  -- 0. 

But the left-hand-side is the sum of squares of  all elements of PB * C -- P, and therefore, 
P must equal PB • c .  [ ]  

Lemma 2. Under (A1), for any sequence I-I(/), I = 1, 2 . . . .  in ® such that 
PI-I(t) ---> PB • c ,  one has d I [H(I), B * C] ---> 0. Suppose that additionally the following 
condition holds: 

(C) For  any sequence of  matrices H(I) with Putt) ---> PB * C, and with row hk(1) 
converging as I ---> ~ to some row bj, @ e A of B ® C, the subscr ip t s j l ,  . . .  , jtc must 
be distinct; 

then also d 2 [H(1), B * C] ---> 0. 

Proof. Denote by hk(1) the row vectors of H(I). Since the set of  sequences hk(I),  
k = 1, . . .  , K, are bounded, for any set of  subsequences hk(In),  one can extract a 
further set of  subsequences,  denoted by hk(l~,), that converge to h k, say. But 
Pi-i(t)hk(I) = h~(1) and by assumption Pn(t) ---> PB * C as I ---> o0. Thus, by taking the 
limit along the subsequence I~,, hk must be in the linear subspace spanned by the rows 
o f B  * C, namely the tensor products hi ® el . . . .  , bK @ etc. By (A1), h k must be a 
multiple of  one of  these tensor products (i.e., hk = bjk ® cj, for somejk  in {1 . . . . .  K}), 
since the b k ® c k and hk all have unit norm. The indexes J l ,  • • • , Jtc need not be 
distinct, but under the condition (C) they are so. 

Now,  suppose that the first conclusion of  the lemma does not hold. Then there 
exists some k E {1, . . .  , K} such that one can extract from the sequence hk(I),  a 
subsequence,  say hk(ln), for which its distances to b I ® el ,  . . .  , b K @ c K are all 
greater than a positive constant. From the above result, one can extract a further couple 
of  subsequences,  denoted by hk(In) ,  that converge to b A ® c A, for s o m e j  k in {1 . . . .  , 
K}, leading to a contradiction. This proves the first result of the lemma. 

We prove the second conclusion of  the lemma again by contradiction. If  it does not 
hold, there exists k* in {1 . . . .  , K} and subsequences hi (In) . . . .  , hK(l  . )  that are at 
a distance to b k ,  @ Ok. greater than a positive constant. But by the result at the 
beginning of  the proof, there is a further subsequence h l (In) . . . . .  hK (In),  converging 
to bj, Q ej~, . . .  , bj~ ® cjK. Clearly, the indexes Jl . . . . .  JK must differ from k*, 
contradicting the condition (C). Hence the desired result. [ ]  

Corollary: Under  the condition of  Lemma 2, any element P of  H close enough to 
PB • C is also an element of  II. 
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Proof. Since the row vectors b k and c k of  B and C satisfy the condition (A1), any 
set of  vectors  sufficiently close to them also satisfy the same condition. Thus,  there 
exists r / >  0 such that if H = B * C E 1-I and d(H,  B * C) -< rt, then the row vectors  
bk and ~'k of  B and C also satisfy (A1). It follows that that mapping H +-~ PH is 
continuous and one-to-one from On = {H, d(H, B * C) -< ~/} onto a subset 1]n of  I]. The  
latter is compact  being the image of  a compact  set by a continuous mapping. Now,  let 
e n, n = 1, 2 . . . .  be a sequence of  positive numbers tending to 0. We claim that for  
n sufficiently large, the set {P E 17, l i p  - P B ,  cll < ~ .}  is included in Yln (here, 
IIMI[ = tr (MM')i/2 denotes the Euclidean norm of  the matrix M). Indeed, if this is not 
true, there is a sequence P,, = PH,, in II such that liP, - PB • cll < e~, but Pn ~ l-In; 
that is, d(H~, B * C) > ~. But this contradicts Lemma 2 since Pn ~ PB * C" Thus,  we 
have proved that for some e > 0, P ~ 17 and liP - PB • c II < ~ implies P E FI n. Now, 
for any P E n and satisfying lIP - PB • c[[ < e, there exists P in 17 arbitrarily close to 
it so that liP - PB • c II < e, and hence, P E Fin" But since P can be taken arbitrarily 
close P, the latter belongs to the closure of FI n which coincides with Fin because of  
compactness.  [ ]  

Condition (C), used in Lemma 2, is rather technical and difficult to check.  The 
following lemma shows that it is implied by the simpler condition (A2). 

Lemma 3. Under  (A2), condition (C) of  Lemma 2 is satisfied. 

Proof. Suppose that there exists a sequence hk(I) = bk(l) ® eK(1), k = 1 . . . .  , 
K, satisfying the properties stated in (C), but the subscr ipts j l  . . . . .  J r  as defined there 
are not distinct. We shall show that this leads to a contradiction. By renumbering, we 
may assume tha t jk  = k f o r k  = 1 . . . .  , K ' , j  k E {I, . . .  , K ' } f o r k  = K '  + 1, . . .  , 
K, with K '  being the number of dist inctjk.  Note  that the assumption hk(I) ~ b L ® c A 
implies bk(l) ~ b A and ok(l) --* c j .  Indeed, if this is not true, there exists a pair of  
subsequences bk(I ") and ck(l  ") that are at a distance to bj~ and c A greater than some 
positive constant.  Since these subsequences are bounded,  one may extract  from them 
a further pair of subsequences bk(l~,) and ck(I',,) converging to bk and ~:k distinct f rom 
bjk, Cj. But this contradicts the fact that hk(l) ~ bj~ ® e j .  

Let  ck(1)* be obtained by orthogonalizing the ck(l) ;  that is, the ck(1)* form an 
orthonormal system of  vectors satisfying 

ck(l)  = h k(l)ck(1)* + u k - 1 ( I ) ,  k = 1, . . .  , K, 

where Ak(I) is a scalar and uk_l ( l )  is an element of  the linear subspace Uk-l(1)  
spanned by cl (I) . . . . .  ck- i  (/) (u0 = 0) and Uo(1) = {0}, by convention).  Thus,  

hk(1) = h/~(1)bt(l) ® ck(1)* + bk(1) ® u~_ 1(1). 

Clearly, bk(I) ® ok(l)* is orthogonal to the space E L Q Uk_ 1 (I) consisting of  all 
linear combinations of  tensor products of a vector  in E/~ and a vector  in Uk-  l (I). This 
space contains hi(1) . . . . .  hk_ l ( l )  and bk(1) ® uk - l ( l ) -  Let  Vk_ 1 (I) be spanned by 
h~(1) . . . .  , hk_ l(1) (Vo(I) = {0}, by convention) and denote  by Yk-I the difference 
between bk(1) ® Uk-l (I) and its orthogonal projection onto V k_ 1(1). Then,  

hk(1) = A , ( I ) b , ( I )  ® c , ( 1 ) *  + y , _  i(I)  + a tensor  in V,_  i(1), 

and the sum of  the first two terms of  the above right-hand-side is orthogonal to V k_ 1- 
Define 
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vk(I)  = tx~(I)[Ak(l)bk(1) ® ck(l)* + Y/,- l (I)],  

where  t~k(I) is chosen such that vk(1) has unit norm. Then vl (I) ,  . . .  , vk(I) const i tute 
an or thonormal  basis of  Vk(1). Since zk- l  (I) = ~k(1)yk_l (I) and t~k(l)Ak(1)bk(1) ® 
ck(I)* are orthogonal to each other,  both have norm less than 1, and since Ilbk(1) ® 
ck(/)* II = 1, /zk(I)Ak(1) is bounded.  Therefore,  one can extract  a subsequence,  say I n , 
such that~k(In)Ak(In), Ck(In)*, and Zk_l(In) all converge to some limit vk, ck and 
z k - l ,  say. Since bk(In)  converges  to bj,, vk(In)  converges  to v k = vkbjk(l) ® ek(I)* 
+ zk-~.  Since vk(I) ~ Vk(I), which is spanned by the row vectors  of  H(I) ,  Pn<1)vk(I) 
= vk(1), and by taking the limit along In, one gets P ~ ,  cvk = vk- The linear subspace  
spanned by  v l ,  • . .  , vK thus is contained in the one spanned by the row vectors  of  
B * C,  and since both have dimension K,  they must  be identical. On the other  hand, the 
linear subspace  Uk(I) is spanned by c 1 (1) . . . .  , c/c(/) which converge to e l ,  • • • , e/c 
as I ~ ~;  hence, any converging sequence in Uk(I) must  converge  to some vec tor  in 
Uk,  the linear subspace spanned by el . . . .  , cK. It follows that vk, being the limit of  
a sequence in ~/~ ® Uk(I), must  belong to ~/~ ® Uk. Since the v l ,  • • • , vK spanned 
the same linear subspace  as bk ® ck, k = I . . . .  , K,  the latter must  be in ~ L  ® Uk, 
and hence,  e~, k = 1 . . . .  , K ,  must  be in U/c. But the above  vectors ,  by assumpt ion,  
are linearly independent,  implying that there is a k 0 in 1 . . . . .  K for which ck0 is not 
in U/c_1, since this linear subspace has dimension K - 1. Note  that k0 is necessari ly 
greater  than K '  since we have assumed c~(1) ~ c~, for k -< K ' .  Let  A), and A'~, denote  
the coordinates of  eko and bk, ® e~o with respect  to the basis e l ,  . . .  , e ~  of  U/c and 
v~, . . . ,  v/c of  V/c, respectively.  Then,  bk0 ® ck o can be expressed  alternatively as 

K K 
t n [b '  ~ . a~b~o®C~= ~ a~  ~ ~,®e~+z~_~) 

k = l  k = l  

From the above  equality and the fact that zk ~ ~ L ® Uk,  it is seen that for fixed l, the 
K-th  coordinate  of  the vector  Bkdeko with respect  to the basis e] . . . .  , e ~ ,  is equal to 
A~:Bkot and also to A'/CuKBjA. Since A), # 0 by the choice o f k  0, this implies that b~0 
must  be a multiple of  b j .  This contradicts (A2) because  k 0 > K '  -> j/~. The  p roof  of  
the L e m m a  is completed.  [ ]  

Theorem 2. Under  the assumptions (M0), (A0') and (A2), for I sufficiently large the 
least squares  est imators  1] and C of  B and C exist and converge  almost  surely to their 
true values as I ~ ~ ,  up to scaling and permutat ion of  their rows.  

Proof. From the above lemmas and corollary,  for I sufficiently large, there exists 
I:I in O such that Pfl minimizes tr (I - PH)/ . rXX~r]  in O and d(l:I, B * e) ~ 0 as I 
~ ,  a lmost  surely. By definition, I:I is of  the form 1~ ® ~,  and 1~ and ~ are precisely the 
least squares est imators  of  B and C. Let  1~ I , . . .  , l~/c be the row vectors  Itl and denote  
by r k (which depends on 1) the index r for which h r is closest  to b k ® ek. Then,  f rom 
d2(I2I, B * C)--~ 0, l~r~ ~ b k @ e k and f rom d2(12I, B * C)--* 0, the r k must  be distinct 
for I large enough, meaning that {r I , . . .  , r/c} is a permutat ion o f { l ,  . . .  , K}. On the 
other  hand, l]r, --~ bk ® ck implies 6r, ~ hk and ¢Zr, ~ c~ by the same argument  as at 
the beginning of the proof  of  L e m m a  3. [ ]  

4. Asymptot ic  Normali ty  of  the Least  Squares Est imator  

To eliminate scale factors,  we have normalized the rows of  our  est imators  1~ and 
to have unit norm. The result is that the elements of  these matr ices are not functionally 
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independent. The set of all possible values of them is a manifold in ~tcz" x ~KT = 
R K~L+T). Any sufficiently small open neighborhood of a point in it can be mapped 
"smoothly" to some open set in R D, the integer D denoting the number of functionally 
independent coordinates. Here D -- K ( L  + T - 2) since each row vector ofl~ or ~ can 
be specified by L - 1 or T - 1 of its coordinates. These coordinates may be taken as 
the first ones, but since they do not contain information on the sign of the last coordi- 
nate, it is necessary to restrict oneself to a small neighborhood of the point of interest 
where the unspecified coordinates keep a constant sign (one may have to choose the 
unspecified coordinate other than the last one to satisfy the above condition). In this 
section we shall restrict ourselves to a small open neighborhood of the true parameter 
point, since our estimators, being consistent, will eventually enter it. This neighbor- 
hood is then mapped one-to-one to an open subset of ~ o,  denoted by O (note that the 
definition of O has been somewhat changed with respect to that of section 3). Thus, a 
point 0 in O corresponds to matrices B = B(0) and C = C(0) and the criterion Q* 
becomes a function of 0: Q* = tr [(I - P~0) • C~0))LrXX~r] (note that at this stage, 0, 
B and C denote free parameters). The maps 0 +--> B and 0 +-~ C can be assumed to be 
twice continuously differentiable, and thus, Q* is twice continuously differentiable with 
respect to 0. Let 0 denotes the least squares estimator of 0. It is the solution of the 
equations (oQ*/OOr)(O) = O, r = 1, . . .  , D, where the notation OQ*/OOr denotes the 
partial derivative of Q* with respect to the component Or of 0 (the argument 6 means 
that it is evaluated at this point). Then a Taylor development of (OQ*/OO~)(O) around 
the true parameter point 0 yields 

D o2Q,  
oO* = OQ* + ~ OOrO0--------~ ('O)(Os - Os), 0= vr(b) a0,. , -I  

where O 2 Q*/e30rO 0 s denotes the partial second derivative of Q* with respect to Or and 
Os, and 0 is a point lying on the segment joining 0 and 0 (here, 0 denotes the true value 
and oQ*/oor denotes the derivative evaluated at the true value; a similar convention is 
used for the second derivative). Since 0 converges to 0, it can be shown that the 
difference between 02Q*/OOrOOs)(O)/l and (c32Q*/OOrOOs)/l tends to zeros as I--> oo. 
Thus, one has 

- 0 = 0--~5--+ o(1) I O0 ' (5) 

where o(1) denotes a term tending-to 0 almost 3urcly as I --~ ~, and oQ*/OO and 
02Q*/oO 2 denote the vector with components o Q*/OOr and the matrix with elements 
02 Q*/o OrO 0 s , respectively. 

Computing the derivative in (5), 

OOr P ~ * c  (I P ~ * c )  ( B *  C) Sb'cl(B* C) 

Hence, from the identity tr (AB) = tr (BA), 

. . . . .  t r  (B * C ) '  S ; : ( B  * C ) L r X X k r ( I -  P B ,  c) • (7) 



TUAN DINH PHAM AND JOACHIM MOCKS 213 

The second derivatives of  Q* are more complicated. But they simplify when taking the 
limit as 1 ~ ~.  Indeed, by Lemma 1, LrXX'Lr/I tends to A = (B * C) 'Ra(B * C) + 
0-21. Thus,  the limit of  (Ü2Q*/OOr OOs)]l can be obtained by differentiating (7) and 
replacing LrXX'Lr/I by A. Noting that (B * C)A(I - PB * C) = 0, and from (6), 

(B*  C) A ( I - P B , c ) - ( B  * C)A OOs PB.C 

= SbcR.  (B * C) (I - P B .  c ) ,  

one obtains, 

I O 0 r  00~ ~ 2 t r  ( B *  C) '  R,, ( B *  C) ( I - - P B . C )  = 2 W , s ,  say. 

(8) 

We now derive the asymptotic distribution of  (oQ*/O Or)/~/l. 

Lemma 4. Under  the assumption assumptions (M0), (M1) and suppose that the 
Eil t have zero third and fourth cumulant,  the random variables (OQ*/OOr)/(2V'-I) is 
asymptotically normal with mean zero and covariance matrix V with general element  

Vrs = 0 -2 tr ( I - - P B . c )  ~ ( B  * C) '  (Ra + S - I o  "2~[ 0 - - ~ - b c  ' [00s  ( B *  C) . 

It is noted that the above condition of third and fourth cumulants of  Eil t being zero is 
not indispensable, but it allows simpler expression for the asymptotic covariance ma- 
trix. As can be seen in the proof  below, the asymptotic normality of  (oQ /o or)/Vl only 
requires that Ejl t has finite fourth (hence third) cumulant.  

Proof. Letting M r = 0(B * C)'/O0 r, we have from (7) and (2b) 

1 OQ* 1 
2 r-Vl dot VI'-- {tr [ ( M , A t E ~ r ) ( I  - P B ,  C)] 

+ tr  [MrS~! (B  * C)LTEE'LT(I -- PB * C)]} 

l K 

V ~ i= ,  ~'~ [e~mr,i + e ' ( I  -- P B .  c ) (B * C)SffelMrei], 

where e i and mr, / denote the i-th column of LTEI and of  (I - PB • c )Mr  A, respectively.  
To obtain the joint asymptotic normality of  the above random variables, a simple 
method is to show that any linear combination of  them is asymptotically normal. Such 
a linear combination can be written as Y fi--I (Yi + Zi ) /VI  where Yi = ~D= 1 °tre~mr,i, 
Zi = Y-~=I C~re~(I - PB * c)MrSbc I (B * C)ei and ar  are given coefficients. Assume for  
the moment  that the Aki, i = 1, 2 . . . .  are deterministic sequences.  Then,  the random 
variables Yi + Zi are independent having zero mean (since tr [(I - 
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PB * c)MrSb~ 'l (B * C)] --- O) and finite variance, and the Central Limit Theorem ap- 
plies. A sufficient condition for this Theorem is the Lindeberg's condition (e.g., Lo~ve, 
1963, p. 280). It can be checked that this condition is satisfied if max/=l  ]]mr,i] ] 2/I 
0, for all r, which from the definition of mr. i, is implied by (M1). Let  us now compute 
the variance of  Z/K__t (Yi + Zi). Since the third cumulant ofEi l  t is zero, Yi and Z i are 
uncorrelated, and hence, this variance is the sum of  the variances of Yi and Zi.  We 
have 

K D D K 

v a r ( Y / ) = 0 .  2 ~] ~ ~ Otr°lsmr,ims,i 
i = 1  r = l  s = l  i = 1  

D D 

---- 0 -2 £ £ OtrOt s t r  [(I - P a .  c ) M r A A ' M s ] ,  

r = t  s = l  

K D D 

Z v a r  (Zi)  = go.  4 Z Z °lr°ts t r  [ ( I -  PB.  c)MrSb'clMs]- 
i = 1  r = l  s = l  

The last equality follows from the fact that the Eil t a r e  independent with mean zero, 
variance 0 .2 and fourth cumulant zero; hence, cov (EiltEil,t,, EiarEilt, ¢,) = 0 unless (1, 
t) = (A, ~'), (1' ,  t ' )  = (a ' ,  r ' )  or (1, t) = (a ' ,  r ' ) ,  (1 ' ,  t ' )  = (A, z), in which case it 
equals 0 "4, or (1, t) = ()t, r) = (1 ' ,  t ' )  = (A', r ' ) ,  in which case it equals 20 -4, which 
yields the formula: cov {tr ( e~Fe i ) ,  tr (e~Gei)} = 0 .4 tr (FG' + FG) for any matrices F, 
G. From (M0) and the above computations, the asymptotic variance of  Z ~ l  (Yi ÷ 
Zi)/~v/l is precisely Zff=j Xff=l o~r a s Vrs and the result follows. In the case where the 
Aki are random, one considers the conditional distribution given these random varia- 
bles. Since the limiting conditional distribution does not depend on the distribution of 
the Aki (provided that (M0) holds), it is the same as the limiting unconditional 
distribution. [] 

From (5), (8), and the above lemma, we obtain 

Theorem 3. Under the assumptions of  Theorem 2 and Lemma 4, the least squares 
estimator b of 0 is asymptotically normal with mean 0 and covariance matrix 
W -  1VW- I/I,  where W is defined by its general element given in (8), and V denotes the 
matrix of  Lemma 4. 

In practice, 0 .2 is often small and Sb~ 1 0 -2 may be negligible with respect to R a . If  
this term is neglected, V reduces to 2W, and the asymptotic covariance matrix of the 
estimator then simply equals (2/I)W -1 , 
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