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A robust version of the Tucker3 model
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Abstract

A new procedure for identification of outliers in Tucker3 model is proposed. It is based on robust initialization of the
Tucker3 algorithm using Multivariate trimming or Minimum covariance determinant. The performance of the algorithm is
tested by a Monte Carlo study on simulated data sets and also on a real data set known to contain outliers. q 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

N-way methods based on the alternating least
Ž .squares ALS algorithm are least squares methods

that are highly influenced by outlying data points.
One outlying sample can strongly influence the re-
sulting model. As for 2-way PCA and related meth-
ods, there are two possibilities to deal with outliers:
statistical diagnostics can be used or a robust algo-
rithm can be constructed. Statistical diagnostics tools
can be applied to the already constructed models and
are usually based on the detection of the ‘leverage
points’, defined as points that are far away from the
remaining data points in the model space. This ap-
proach does not always work for multiple outliers
because of the so-called masking effect. Robust ver-
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sions of modeling procedures aim at building models
describing the majority of data without being influ-
enced by the outlying objects. By data majority, we
mean the data subset containing at least 51% of ob-
jects. Robust procedures are characterized by the so-
called breakdown point, defined as a percentage of
data objects that may be corrupted while the model
still yields the proper estimates. A subset of data,
containing no outliers is called a ‘clean subset’.

In the arsenal of chemometrical methods, there are
already many robust approaches, such as robust PCA,

w xPCR, PLS 1–4 . The aim of our study was to con-
struct a robust version of the Tucker3 approach, one
of the most popular N-way methods.

2. Theory

2.1. N-way methods of data exploration

Several methods were proposed for N-way ex-
ploratory analysis, for instance CANDECOMPr

w xPARAFAC 5,6 and the family of Tucker models
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Fig. 1. The Tucker3 model.

w x7,8 . In the present study, only the Tucker3 model is
considered. Most of the N-way methods are based on
ALS. The principle of ALS is to divide the parame-
ters into several sets and for each set, the least squares
solution is found conditionally on the remaining pa-
rameters. The estimation of parameters is repeated
until a convergence criterion is satisfied. Fig. 1 shows
the decomposition according to the Tucker3 model.
The 3-way data matrix X is decomposed into three

Ž . Ž .orthogonal loading matrices A I=L , B J=M , C
Ž . Ž .K=N and the core matrix Z L=M=N which
describes the relationship among them. The largest
squared elements of the core matrix Z indicate the

most important factors in the model of X. Mathemat-
ically, the Tucker3 model can be expressed as

L M N

x s a b c z qe 1Ž .Ý Ý Ýi jk i l jm k n lm n i jk
ls1 ms1 ns1

2.2. Data unfolding

For computational convenience, the Tucker3 algo-
rithm used does not perform calculations directly on
N-way arrays. The X matrix is unfolded to standard
2-way matrices. This can be done in three different

Ž .ways see Fig. 2 . Unfolded matrices are denoted as:

Fig. 2. Three different ways of unfolding of a 3-way data matrix.
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X Ž I=JK ., X Ž J=IK . and X ŽK=I J .. To calculate the load-
ing matrices, several procedures can be used. Ander-

w xson and Bro 9 tested most of them with respect to
speed and found NIPALS to be the fastest for large
data arrays. In our algorithm, SVD is used for the es-
timation of A, B and C matrices.

2.3. Algorithm of Tucker3 model

Ž . Ž0 Initialize B and C as random orthogonal ma-
.trices .

Ž . w x Ž Ž I=JK .Ž . .1 A,v,d ssvd X CmB , L .
Ž . w x Ž Ž J=IK .Ž . .2 B,v,d ssvd X CmA , M .
Ž . w x Ž ŽK=I J .Ž . .3 C,v,d ssvd X BmA , N .
Ž .4 Go to step 1 until the relative change in fit is

small.
Ž . T Ž .5 ZsA X CmB .

where symbols L, M, N denote numbers of factors
in matrices A, B and C, respectively, and the symbol
m denotes Kronecker multiplication: AmB yields
the element-by-element multiplication of B with the
elements from A, expressed as:

a B a B PPP11 12

a B a B PPPAmBs 21 22
. . .. . . .. .

2.4. Robust PCA

One could think about robust initialization of the
ALS algorithm, i.e. finding a clean subset for the
matrix X Ž I=JK ., but in reality, as the loading matri-
ces B and C are only just initialized, the resulting

Ž Ž I=JK .Ž ..matrix X CmB of dimensionality I=MN
should be taken into account. The clean subset can be
determined using such methods as for instance, mul-

Ž . w xtivariate trimming MVT 11 or minimum covari-
Ž . w xance determinant MCD 12 . Robust initialization of

the Tucker3 algorithm seems to be the most impor-
tant step to determine the final model and because this
step is placed out of the main loop, the algorithm does
not lead to oscillations. In the consecutive steps of
ALS algorithm, the clean subset is constructed to de-

Ž Ž ..crease an objective function see Eq. 4 , so that os-
cillations are avoided and convergence of the algo-
rithm is achieved.

( ) [ ]2.4.1. MultiÕariate trimming MVT 11
The MVT procedure can be used for ‘clean’ sub-

set selection when the input data matrix contains at
least two times more objects than variables. The

Ž 2 .squared Mahalanobis distance MD is calculated
according to the following equation:

T2 y1MD s t y t S t y t 2Ž .Ž . Ž .i i i

where t denotes the i-th object, t denotes the vectori

containing means of data matrix columns and S is the
covariance matrix.

Ž .A fixed percentage of objects here 49% with the
highest MD2 are removed and the remaining ones are
used to calculate a mean and covariance matrix. MD2

is calculated again for all objects using the new esti-
mates of the mean and covariance matrix. Again, the
49% of objects with highest MD2 are removed and
the process is repeated until convergence of succes-
sive estimates of covariance matrix and mean. The
subset of objects for which covariance and mean are
stable is considered to be a clean subset of data.

( ) [ ]2.4.2. Minimum coÕariance determinant MCD 12
Ž .MCD aims at selecting a subset of h out of m

objects, with the smallest determinant, i.e. the small-
est volume in the p-dimensional space.

hs mqpq1 r2 3Ž . Ž .
The MCD algorithm can be summarized as fol-

lows:

1. Randomly select 500 subsets of data containing
pq1 objects

2. For each subset:
Ž .a Calculate its mean and covariance, t and
S.
Ž .b Calculate Mahalanobis distances for all
objects using the estimates of data mean and
covariance matrix calculated in step 2a.
Ž .c Sort MD and take h objects with the
smallest MD to calculate the next estimate of
mean and covariance matrix.
Ž .d Repeat steps b and c twice.

3. Take the 10 best solutions, i.e. the 10 subsets of
h objects with the smallest determinants, and for
each of them, repeat steps b and c until two
subsequent determinants are equal.
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4. Report the best solution, i.e. the subset with the
smallest determinant.

The procedure starts with many very small data
Ž .subsets containing only pq1 objects to increase

the probability that these subsets do not contain out-
liers. Two iterations only are performed for all 500

Ž .subsets steps 2b and 2c to speed up the MCD pro-
cedure and, as demonstrated by Rousseeuw and Van

w xDriessen 12 , small number of iterations is sufficient
to find good candidates of clean subsets. Only for the
10 best subsets are the calculations repeated till con-
vergence of the algorithm.

2.5. Algorithm for robust Tucker3 model

To find possible multiple outliers in the first mode
of the X, the following algorithm is proposed:

Ž .0 Initialize loadings B and C.
Ž . Ž I=JK .Ž .1 Calculate X CmB and determine clean

Ž .subset using MVT or MCD .
Ž . w ) x Ž Ž I )=J K .Ž . .2 A ,v,d ssvd X CmB , L .
Ž . w ) x Ž Ž J=I ) K .Ž ) . .3 B ,v,d ssvd X CmA , M .
Ž . w ) x Ž ŽK=I ) J .Ž ) ) . .4 C ,v,d ssvd X B mA , N .
Ž . )T ) Ž ) ) .5 ZsA X C mB .
Ž .6 Predict loadings A for all objects.
Ž . Ž I=JK . Ž I=JK . Ž L=M N .Ž7 Reconstruct X :X sAZ C
.TmB .

Ž .8 Calculate the sum of squared residuals for I
objects in the first mode as the differences between
the original data and the reconstructed one.

T2Ž I=JK . Ž I=JK .ˆresidualsssum X yXŽ .ž /ž /
Ž .9 Sort residuals along the first mode.
Ž .10 Find h objects with the smallest residuals.

They constitute the clean subset.
Ž .11 Go to step 2 until the relative change in fit is

small.
A) , X) , etc. are the matrices A, X, etc. limited to

the clean subset of objects, and the notation X Ž I )=J K .

means that the unfolded data set contains objects re-
duced to the clean subset I ). h is the number of ob-
jects in the clean subset.

In each iteration of the ALS subroutine, the load-
ings A) , B) and C) are calculated for the clean
subset of objects only. In step 6, the loadings A are
predicted for all objects and the set X Ž I=JK . is recon-

structed with the predefined number of factors.
Residuals between the initial X Ž I=JK . and the recon-

ˆ Ž I=JK .structed X are calculated and sorted, and 51%
of objects with the smallest residuals is selected to
form the clean subset for the next ALS iteration. The
objective function, F, to be minimized, is the sum of
squared residuals for the h clean objects from the first
mode.

2
))))) )))))ˆFs X yX 4Ž .Ž .Ý Ý

There is no guarantee that the selected clean subset
is optimal, but convergence of the ALS approach is
secured.

In this algorithm, the outliers are identified in the
first mode only, but as all modes are treated symmet-
rically, one can look for outliers in any mode. This
can be done simply by inputting the X matrix with
dimension of interest in the first mode.

2.5.1. Outlier identification
Once the robust Tucker3 model is constructed, the

standardized residuals from that model are calculated
for all objects of the first mode according to the fol-

w xlowing equation 10 .

rs s resi i

2(3=1.48 median res ymedian resŽ Ž . .Ž .i i

5Ž .

where

2
ˆres s X yX 6Ž .Ý( ž /i i j i jj

Ž .for is1 . . . , I and js1 . . . , JK. In Eq. 5 , the
residuals are divided by the robust version
o f s t a n d a r d d e v i a t i o n . U s i n g 1 . 4 8

2
median res ymedian res , the residuals forŽ .( Ž .ž /i i

51% of objects, which fit the model best, are calcu-
lated. This corresponds to the robust standard devia-
tion of the data residuals. Objects with standardized
residuals higher than three times the robust standard
deviation are considered as outlying and are removed
from the data set. This is equivalent with using the

Ž .ratio presented in Eq. 5 and cut-off equals one. The
final Tucker3 model is constructed as the least
squares model for the data after outlier elimination.
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3. Data

3.1. Simulated data set

A systematic Monte Carlo study was performed to
evaluate performance of the algorithm. A data set of

Ž .dimensionality 50= 10= 10 was simulated with
Žtwo factors in all modes. Two Tucker3 models X1

.and X2 were constructed to explain 60% and 90%
of data variance. The initial data sets were then con-

Ž .taminated with different types T1–T4 and different
Ž .percentages 20% and 40% of outliers.

Ž .The different types of outliers T1–T4 can be
characterized as follows:

T1 Data set constructed according to the same
model as the initial data, but with a
certain percentage of randomly permuted
variables.

T2 Data set with the same dimensionality and
the same level of noise, but constructed
according to a different tri-linear model.

T3 Data set with the same level of noise but
with a higher dimensionality than the
initial data set.

T4 Data set with the same level of noise but
with a lower dimensionality than the
initial data set.

The simulation of tri-linear data structure was per-
formed as follows: first, orthogonal loading matrices
A, B and C with predefined dimensions were ran-
domly initialized. For the selected structure and core
matrix Z, the X matrix was constructed as X I=JKs

L=M NŽ .TAZ CmB . Then, the Tucker3 model was
built, and new X was reconstructed with chosen
number of factors in each mode and used as initial
data set with tri-linear structure. At the end, white
Gaussian noise was added to X. In this way models,
which differ in percentage of explained variance, data
complexity and structure of core matrix, can be con-
structed.

The two following types of calculations were per-
Ž .formed for two data models X1 and X2 , each with

Ž .four types of outliers T1–T2 and two percentages
Ž .20% and 40% :

1. One contaminated data set was constructed and
the Tucker3 and robust Tucker3 models were

built 100 times with random initialization of
loadings B, C.

2. The construction of Tucker3 and robust Tucker3
models was repeated 100 times for the prede-
fined type and percentage of outliers, but this
time outliers were simulated randomly accord-
ing to the chosen type in each run.

The performance of the algorithms is presented in
the form of a percentage of unexplained variance for
the constructed final models. In the case of robust
Tucker3 approach, the final model is considered to be
the Tucker3 model after outlier removal. The MVT
procedure was applied in the Monte Carlo study to
speed up calculations.

3.2. Real data set

Ž .An electroencephalographic EEG data set was
used. The principle of electroencephalography is to
give a representation of the electrical activity of the

w xbrain 13 . This activity is measured using metal
electrodes placed on the scalp. The data was ac-
quired during the testing phase of a new antidepres-
sant drug. The effect of the drug was followed in time

Ž .over a 2-day period 12 measurements . The EEGs
were measured on 28 leads located on the patient’s
scalp. Each of the EEG was decomposed using the
fast Fourier transform into seven energy bands com-

w xmonly used in neurosciences 14 . Only the numeri-
cal values corresponding to the average energy of
specific frequency bands are taken into account. This
leads, for each patient, to a 3-way array with dimen-

Ž .sions 28=7=12 . The study was performed on 12
patients. Only the results corresponding to two pa-
tients are shown here. Patient a6 shows a very typi-
cal behaviour, while patient a9 has aberrant results
for electrode a12.

4. Results and discussion

4.1. Monte Carlo study

Let us consider the data set X1 contaminated with
Ž .20% outliers of type 1 T2 . The Tucker3 model for

this data set is presented in Fig. 3. As one can notice
there are 10 objects far away from the remaining
ones, and the Tucker3 model is highly influenced by
them.
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Ž . Ž .Fig. 3. Tucker3 model for data set X1 90% of explained variance with 20% of outliers type T1 .

Fig. 4. Residuals from the robust Tucker3 model, data set X1, 20% contamination, type T1.
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Fig. 5. Final Tucker3 model after elimination of identified outliers.

For the same data set, the robust Tucker3 model
was constructed and the object residuals from that
model are presented in Fig. 4. The first 10 outlying

objects are correctly identified as the outlying ones.
After their removal, the final Tucker3 model is con-
structed and its results are presented in Fig. 5.

Ž . Ž .Fig. 6. Monte Carlo study for the data set X1, type of outliers, T2, and 20% contamination constructed by a robust Tucker3, b Tucker3
Ž . Ž .model with random initialization and c robust Tucker3, d Tucker3 model with each time randomly generated outliers.
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Ž .Fig. 7. Final results for Monte Carlo study for contamination 20% data sets X1 and X2, type of outliers T1–T2 .
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Ž .Fig. 8. Final results for Monte Carlo study for contamination 40% data sets X1 and X2, type of outliers T1–T2 .
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For each studied data set, the Tucker3 and robust
Tucker3 algorithms were run 100 times with random
initialization of loadings. The results for the dis-
cussed data set, expressed as the percentage of the
explained variance, are presented in bar form in Fig.
6a.

The observed results show that the robust Tucker3
algorithm always converges to the proper solution,
and that the outlying objects do not influence the fi-
nal Tucker3 model.

Ž .Analogous results for the non-robust Tucker3
model are presented in Fig. 6b. They indicate that the

Ž . Ž . Ž .Fig. 9. Comparison of two algorithms for finding a clean subset. a Multivariate trimming MVT . b Multivariate covariance determinant
Ž .MCD .
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Ž . Ž .Fig. 10. A, B and C loading matrices and convergence times for patient a6: a Tucker3 model. b Robust Tucker3 model.
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Tucker3 algorithm is highly influenced by outliers
and, depending on the initialization of the loadings,
the algorithm converges to different solutions.

In the next step of our study, both algorithms, i.e.
Tucker3 and robust Tucker3, were run 100 times,
each time once for a different data set contaminated

Ž . Ž .Fig. 11. A, B and C loading matrices and convergence times for patient a9 : a Tucker3 model. b Robust Tucker3 model.
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randomly with 20% of outliers constructed according
Ž .to the chosen model type T2 . The results are pre-

sented in Fig. 6c and d. The robust Tucker3 algo-
rithm always leads to the proper model not influ-
enced by outlying objects, whereas the Tucker3
models are highly influenced by them.

The calculations described above were performed
for the data sets contaminated with different percent-
ages of outliers of different types. The final results,
presented in Fig. 7, reveal that the proposed robust
version of the Tucker3 model works properly for data
sets containing no more than 20% of outlying sam-
ples. The robust models constructed for data sets X1
and X2 with 20% of outliers, i.e. data sets with a dif-
ferent percentage of explained variance, are not in-
fluenced by outliers.

The final results for data sets X1 and X2 with 40%
of outliers are presented in Fig. 8. The robust model

Žperformed properly only for two types of outliers T2
.and T4 . The results for the types T1 and T3 were

strongly influenced by the procedure for the selec-
tion of the clean subset. Here, MVT results are pre-
sented; those with MCD are somewhat better.

Analogous calculations were performed for the
data sets with clustering tendency. The results of the

Monte Carlo study for these data sets lead to the same
conclusions.

While working with the highly contaminated data
Ž .sets 40% , it was noticed that there is an essential

difference depending on the methods used to select a
Žclean subset. In Fig. 9, the results for X1 40% of

.outliers T1; simulation type 2 achieved with MVT
and MCD are presented for illustrative purposes.

The observed differences in MVT and MCD per-
Ž .formance for highly contaminated data 40% are as-

sociated with different breakdown points of those
methods. MCD with breakdown point 50% performs
better, but due to the relatively long computation time
required, it was not used in the Monte Carlo study.

4.2. Real data set

The classical and robust Tucker3 algorithms were
applied on the real data set. The results obtained for

Ž .patient a6 the one without outlying object show
Ž .Fig. 10a–b that the classical and the robust Tucker3
models are equivalent on this normal patient.

Moreover, convergence is as fast in both cases.
The results obtained for patient a9 with the classical

Ž .Tucker3 model Fig. 11a already spots object a12 as

Ž . Ž . Ž .Fig. 12. Residuals obtained for the reconstruction of the objects on the 1st mode 12 electrodes : a patient a6, Tucker3 model; b patient
Ž . Ž .a6, robust Tucker3 model; c patient a9, Tucker3 model; d patient a9, robust Tucker3 model.
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Žan outlier on the A loading plot corresponding to the
.electrodes dimension . This is even more obvious

Žwhen using the robust version of the algorithm Fig.
.11b as scale is different.

In the case of the robust Tucker3, the loadings on
B and C are not influenced anymore by electrode a12
as the corresponding slice of the matrix is not used
in the model construction. For patient a6, the residu-

Ž .als obtained for the 1st mode electrodes dimension
Ž .with the classical method Fig. 12a and the robust

Ž .method Fig. 12b show the same pattern. The situa-
tion is very different for patient a9. For the classical

ŽTucker3 model, the residuals for electrode a12 Fig.
.12c are not higher than the residuals of other points

corresponding to good electrodes. The outlying elec-
trode is therefore not found by the model residuals.
For the robust Tucker3 model the residuals for elec-

Ž .trode a12 Fig. 12d are extremely high and the out-
lier can be found and eliminated. In the robust
Tucker3 approach, the loadings on A, B, and C are
really robust. The reconstruction is good for all of the
points except electrode a12.

5. Conclusion

The performed study shows that the robust ver-
sion of the Tucker3 model always converges to a
good solution when the data are contaminated by 20%
outliers. For 40% contamination, the algorithm con-
verges to a good solution only for two types of out-

Ž .liers T2 and T4 . It can be concluded that MCD is
better algorithm for finding the clean subset than

MVT. The robust Tucker3 algorithm gives good re-
sults also for the real data set.
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