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Three-way principal component analysis applied
to food analysis: an example
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Abstract

The purpose of the study is to show how the interpretation of a complex multivariate data array can significantly be improved
by the application ofN-way principal component analysis (PCA). Two food related three-way data sets were studied; a sensory
and a chromatographic data array. The Parafac and the Tucker3 models were applied and results were compared. BothN-way
models presented here allow visualization of the data structure and give detailed information about the data set, notably
allowing to understand relationships between objects and variables. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The main purpose of exploratory data analysis
is to learn about interrelationships between objects
and variables. As data sets are becoming larger and
more complex, visualization is needed to achieve this
aim. A very well known method for visualisation
of the data patterns is principal component analysis
(PCA). The aim of this study is to show that ap-
plying the N-way approach (an extension of PCA
to higher orders) can significantly improve visual-
isation and interpretation of complex multivariate
data compared to other data analysis methods pre-
viously applied to the same datasets[1,2]. Tucker3
and PARAFAC models are two of the most popular
N-way methods. There are many applications of them
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in the literature, but mainly for spectroscopic data,
e.g. [3–5]. Some non-spectroscopic applications can
be found[6–9], which show thatN-way tools can be
very useful and often can give more information about
the data than standard multivariate methods such as
two-way PCA. Here, we describe an application of
N-way analysis and visualization to data from food
chemistry.

The Maillard reaction is one of the most studied
reactions in food chemistry. It is a reaction between
a reducing sugar and an amino compound, usually
an amino acid, resulting in a wide variety of re-
action products. These contribute to the smell and
color of the food when it is prepared. A full facto-
rial experimental design with 11 amino acids (AA)
and 6 sugars (S) was carried out. For each combi-
nation of an amino acid and a sugar, gas chromato-
graphic (GC) and sensory (smell) data were obtained.
This way, the data sets are organized in natural
three-way order, namely AA× S× GC or AA × S×
smells.
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2. Theory

2.1. Notation

Two-way data arrays (i.e. matrices) are denoted
with bold capital letters,X. To distinguish notation
of matrices from three or more way data arrays, the
latter are indicated by an underlined boldX. The
elements of a three-way data arrayX are denoted
by xijk, where indices can change in the following
ranges:i = 1, . . . , I , j = 1, . . . , J , k = 1, . . . , K .
The number of factors in each mode is denoted asM,
N andL, respectively.

2.2. N-way models

2.2.1. Tucker3 model
The Tucker3 method decomposes the 3-way data

arraysX (seeFig. 1) into three orthonormal loading
matrices, denoted asA (I ×L), B (J ×M), C (K×N )
and the core matrixZ (L × M × N ), which describes
the interactions amongA, B andC.

Fig. 1. Tucker3 model—graphical explanation.

Fig. 2. PARAFAC model—graphical explanation.

The largest squared elements of the core matrixZ

indicate the most important factors that describeX.
The number of factors in each mode is not necessarily
the same, i.e.L �= M �= N . Because of rotational
freedom of the model, the core matrix is needed for
their interpretation[10].

The determination complexity ofN-way models, i.e.
the number of factors in each mode, is a very important
part of the data analysis. Several tools can be used for
this purpose, for instance, core consistency analysis
[11] (only for PARAFAC model), half split analysis
[12], cross validation[13] or percentage of explained
data variance. In our study, core consistency analysis
and percentage of explained data variance have been
used to identify the right number of factors in each
mode. The results are usually presented in the form of
loading plots.

2.2.2. PARAFAC model
PARAFAC is a decomposition method, which can

be considered as a constrained version of Tucker3
model, i.e. the number of factors in all modes is equal
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and the diagonal elements of the core matrix are equal
to 1. The decomposition of e.g. three-way data is made
into triads or tri-linear components (multi-linear if
N > 3), but instead of one score vector and one load-
ing vector as in bilinear PCA, each component con-
sists of one score vector and two loading vectors. In
multi-way analysis the distinction between score and
loading vectors is often not made and one also uses
the term loadings for all modes. A PARAFAC model
of a three-way array is then given by three loading
matrices (A, B andC) with elementsaif , bjf andckf

(Fig. 2).
Generally, the PARAFAC model is easier to inter-

pret and many authors prefer to apply PARAFAC when
it is possible (i.e. the complexity in all dimensions is
equal). In this work the core consistency tool was used
to obtain the optimal complexity of the PARAFAC
model.

3. Data

3.1. Data description

The Maillard reaction was carried out at fixed
pH 3, with all possible combinations of one amino
acid (AA: alanine, asparagine, arginine, cysteine,
glutamine, glutamate, glycine, lysine, methionine,
proline and threonine) and one sugar (S: fructose,
glucose, lactose maltose, rhamnose and xylose).

The samples were then analyzed with high speed
gas chromatography using a narrow bore column and
FID detector. Besides, samples were evaluated sen-
sorically by a small panel of 3–5 trained panellists.
Samples were scored individually for nine sensory
descriptors (SM: sulfur, meaty, caramel, burnt, nutty,
popcorn, jammy, potato, aldehyde) on a scale from
0 to 4. The average was taken into consideration
for further analysis. This yields two three-way data
matrices with dimensionality 11AA× 6S× 159GC
(chromatographic data matrix) and 11AA×6S×9SM
(sensory data matrix). No pre-processing method was
used before the data analysis.

3.2. Software

All programs used were written in Matlab 5.0 (the
MathWorks) computing environment. TheN-way tool-
boxes used are freely accessible on the Internet[14].

4. Results and discussion

In the subsequent discussion, the factors of the
different modes will be noted as follows. Amino
acid mode (A):A1, A2, . . . , AL, sugar mode (B):
B1, B2, . . . , BM, peak or sensory mode and (C):
C1, C2, . . . , CN.

4.1. Chromatographic data set

4.1.1. Tucker3 model
Generally, the optimal complexity of the Tucker3

model is the one that requires the smallest number
of factors, but still describes relatively high fraction
of data variance. All possible models, with differ-
ent number of factors in each mode (L, M, N =
1, . . . , 5), have been evaluated. In order to visu-
alize how many percent of explained variance is
gained by adding factors, the explained variance
was plotted versus increasing value of the prod-
uct (L × M × N ) (Fig. 3). To distinguish differ-
ent models with the same productL × M × N

(e.g. for models with complexities (1,2,2), (2,1,2),
(2,2,1)), the models are ordered so that the model
with the smallestL is shown first, followed by the
model with the smallestM and finally that with the
smallestN.

The optimal complexity of the Tucker3 model was
considered to be (1,2,2), i.e. 1 factor in the first mode
(AA), 2 factors in the second mode (sugars) and 2 in
the third mode (peaks). This model explains 78.3%
of data variance. Two groups of AA can be observed
on the plot ofA1 loadings. Alanine, methionine and
threonine have highA1-values while the remaining
AA have lowA1-value (Fig. 4).

In the loading plotB1 versusB2 the distribution of
sugars is presented. Almost no variability can be ob-
served alongB1. Along theB2 axis, fructose, glucose,
lactose and maltose form one cluster, whereas, rham-
nose and xylose are separated from them, rhamnose
to a higher degree than xylose (Fig. 5).

Fig. 6 shows the loadings plot ofC1 versusC2.
Like for sugars, most variability is observed along the
second axis,C2. Most peaks are grouped in a large,
elongated cluster. However, a few peaks (e.g. numbers
55, 142, 143, 56) are revealed and can be interpreted
by looking at the interactions with the other modes,
as will be explained below.
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Fig. 3. Chromatographic data set: variance explained (%) for different Tucker3 models. Several complexities are identified and indicated
by arrows.

Fig. 4. Tucker3 model for chromatographic data matrix: plot ofA1 loadings for ‘amino acids’ mode.
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Fig. 5. Tucker3 model for chromatographic data matrix: loading plot (B1 vs. B2) for ‘sugars’ mode.

Fig. 6. Tucker3 model for chromatographic data matrix, loading plots for ‘peak intensities’ mode.C1 vs. C2.
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Table 1
Core matrix with dimensionality (1,2,2)

C1 C2

B1 B2 B1 B2

A1 151 0 0 22

Bold letters indicate important core elements.

The core matrix gives information about inter-
actions among the three modes. The core matrix
(Table 1) has the same dimensionality as the com-
plexity of the model, i.e. (1,2,2).

The dominant core elements (bold) are: (1,1,1) and
(1,2,2), where the numbers indicate factors participat-
ing in the interactions.

The first important core element (1,1,1) indicates
interaction among factorsA1, B1 andC1. The axisC1
describes peak intensities of reaction products. Thus,
peaks with highest loadings alongC1, i.e. 140, 64, 108,
141, 118, 143, 12 are usually the most intense ones in
all samples. This fact is most evident when methionine
(high A1 value) is present in the Maillard reaction.

The core element (1,2,2) expresses the interactions
among factorsA1, B2 andC2. Axis A1 differentiates
to the highest degree methionine, threonine and ala-
nine from the rest of the amino acids. Fructose, glu-
cose, lactose and maltose have low negativeB2 values,
while rhamnose has very high positiveB2 value. Peaks
142 and 55 are the most extreme peaks with very high
positiveC2 loadings, whereas peaks 56 and 143 have
the lowestC2 loadings. Therefore, it can be concluded
that a high intensity of peaks 142 and 55 is observed
for the reaction products of methionine, threonine or
alanine with rhamnose. Two alternative conclusions
could be drawn for peaks 56 and 143. Peaks 56 and
143 have high intensities for the reaction of fructose,
glucose, maltose and lactose with all AA or alterna-
tively that peak 56 has a low intensity when rhamnose
is present in reaction. Those facts are the most evident
for methionine, which posses the highestA2 loading.

4.1.2. PARAFAC model
Fig. 7a,bshows the core consistency plots for two

and three components extracted. It can clearly be seen
that the optimal complexity is obtained for a two com-
ponents model explaining 78.6% of data variance.

The loadings plotA1 versusA2 (Fig. 8) reveal
four groups of amino acids. The first one (group I)

contains cysteine, proline and glutamate with lowA1
loadings. Asparagine, arginine, glutamine, glycine
and lysine form the second group (group II). Group III
contains alanine and threonine with highA1 loadings
and low A2 loadings. AlongA2, methionine (group
IV) is the amino acid with the highest loading, while
arginine, glycine, glutamate, lysine and asparagine
have the lowestA2 loadings. The loading plotB1
versusB2 (Fig. 8b) shows separation of xylose and
rhamnose from the rest of sugars mainly alongB2
axis in similar way as inFig. 5. The peaks are pre-
sented on the loading plotC1 versusC2 (Fig. 8c).
The extreme points are distributed in similar way as
for the Tucker3 model and similar conclusions can
be made. AxisC1 reflects peak intensity as in the
Tucker3 model. Peaks 140, 64 and 108 have generally
high intensity in all samples, the highest intensities
are observed when methionine and rhamnose partic-
ipated in the Maillard reaction. This corresponds to
the position of methionine (highA1 loadings) and
rhamnose (highB1 loadings) in loading plotsA1 ver-
susA2 (Fig. 8a) and B1 versusB2 (Fig. 8b). Along
C2 axis, peaks 142 and 55 have the highest positive
values, while peaks 56, 51 and 143 posses the lowest
loadings.

Both models (i.e. the Tucker3 and Parafac models)
reveal similar pattern in all modes. For AA mode, the
methionine, alanine and threonine are separated from
cysteine, proline and glutamate. For the sugar mode,
rhamnose and xylose are differentiated from the rest of
sugars, rhamnose to higher degree than xylose. Peaks
are situated in one cluster in both models, some peaks
position are interchanged, e.g. 142 and 55, 109 and
23 or 64 and 140, when comparing loading plotC1
versusC2 from Tucker3 and Parafac models. However,
the conclusions obtained from interpretation of these
models are not in conflict.

4.2. Sensory data matrix

4.2.1. Tucker3 model
The number of factors in each mode was chosen in

the same way as for the chromatographic data set, the
plot of explained variance versus productL × M × N

is presented inFig. 9. The 4 factors in the first mode
(amino acids), 1 factor in the second mode (sugars)
and 4 factors in the third mode (smells) were chosen as
the best complexity for the Tucker3 model. It explains
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Fig. 7. Core consistency plot (/ : zero/non-zero core elements) for the chromatographic data matrix with (a) 2 factors extracted; (b) 3
factors extracted. If the right number of factors is extracted, the superdiagonal core elements () should be close to 1 and off-superdiagonal
elements ( ) should be close to 0.



140 V. Pravdova et al. / Analytica Chimica Acta 462 (2002) 133–148

77.7% of data variance. The rather high number of
factors in the third mode containing sensory data (sm-
ells) is caused by relatively low correlation between
the studied variables, which were indeed selected to
describe different directions of the sensory space.

Fig. 8. PARAFAC model for chromatographic data matrix. Loading plots for (a) ‘amino acids’ mode; (b) ‘sugars’ mode and (c) ‘GC
peaks’ mode.

The interpretation is based on loading plots of all
three modes combined with the information in core
matrix. The loading plots for the amino acid mode
(A1 versusA2, andA3 versusA4) are presented in the
Fig. 10a,b.
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Fig. 8. (Continued ).

Fig. 9. Sensory data set: variance explained (%) for different Tucker3 models. Several complexities are identified and indicated by arrows.
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Fig. 10. Tucker3 model for sensory data matrix: (a) loading plotA1–A2; (b) loading plotA3–A4.

Sugars are depicted in plot ofB1 loadings inFig. 11
and smells can be seen in loading plotsC1 versusC2
andC3 versusC4 (Fig. 12a,b, respectively).

The core matrix is presented inTable 2. Bold
numbers distinguish the important core elements
that express interaction among the factors. The

marked core elements can be denoted as follows:
(1,1,1), (2,1,2), (3,1,3) and (4,1,4) where the num-
bers indicate factors. The values of those core el-
ements are approximately the same so that the
interactions between factors have also the same
importance.
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Fig. 11. Tucker3 model for sensory data matrix. Plot ofB1 loadings.

Table 2
Core matrix with dimensionality (4,1,4)

B1

C1 C2 C3 C4

A1 10 0 0 0
A2 0 8.9 0 0
A3 0 0 −7.2 0
A4 0 0 0 4.8

Bold letters indicate important core elements.

Core element (1,1,1) describes the interaction
among factorsA1, B1 andC1. Axis A1 differentiates
to the highest degree cysteine and methionine from
alanine. All sugars have more or less similar value
alongB1, only small differentiation alongB1 axis is
observed. Lactose and fructose can be distinguished
from glucose and maltose, rhamnose and xylose are
situated between them accordingB1 value. Along the
C1 axis sweet smells (jammy, caramel) are discrimi-
nated from savoury (popcorn, potato, sulfur) and nutty
smells. The value of the core element is positive; it
leads to the conclusion that alanine in reaction with
lactose or fructose give jammy and caramel smells.

Interaction amongA2, B1 andC2 is expressed by
core element (2,1,2). Methionine is very different
on the A2 axis compared to the rest of the amino

acids. Axis B1 is already described. TheC2 axis
differentiates to a high degree the potato smell from
the remaining ones. Taking into account the posi-
tive value of the core element for this interaction, it
can be concluded that all sugars (positive loadings)
contribute to the potato smell in combination with
methionine, and this fact is most marked for fructose
and lactose that posses the highest loadings onB1.

Core element (3,1,3) indicatesA3, B1 andC3 in-
teraction. Cysteine (with negativeA3 value) is differ-
ent from the rest of the AA along axisA3. Sulfur and
meaty smells have a higher positive value than the rest
of the smells along theC3 axis. The core element has
a negative value, so that cysteine in combination with
fructose and lactose cause the sulfur and meaty smells.

The interaction amongA4, B1 andC4 is described
by core element (4,1,4). The value of this core ele-
ment is positive. Proline has a unique value on theA4
axis. TheC4 axis reflects the differences between nutty
and jammy smells. Reaction of proline with fructose
or/and lactose leads to products with a nutty smell.

4.2.2. PARAFAC model
To determine the optimal complexity of the

PARAFAC model for the sensory data matrix the
core consistency plots were drawn for models when
2 (Fig. 13a) and 3 factors (Fig. 13b) were extracted.
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Fig. 12. Tucker3 model for sensory data matrix: (a) Loading plotC1–C2; (b) loading plotC3–C4.

The plots clearly show that the best PARAFAC
model can be constructed by extracting 2 factors. This
model explains 60% of data variance. The loadings
plots (A1 versusA2, B1 versusB2 andC1 versusC2)
are presented inFig. 14a,b and c, respectively.

In the loading plotA1 versusA2 (seeFig. 14a) a
similar pattern is observed compared to the Tucker3
model. Alanine has the highest value alongA1 axis and

methionine is highly differentiated from the rest of the
AA along theA2 axis. The sugars can be viewed in the
loading plotB1 versusB2. The values ofB1 andB2
loadings are relatively small compared to the loadings
of A1, A2. This observation suggests the conclusion
that AA have a dominant effect on the smell of the
reaction products. AlongB1 axis fructose and lactose
have the highest value. Xylose, rhamnose and lactose
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Fig. 13. Core consistency plot (/ : zero/non-zero core elements) for the sensory data matrix with (a) 2 factors extracted; (b) 3 factors
extracted. If the right number of factors is extracted, the superdiagonal core elements () should be close to 1 and off-superdiagonal
elements ( ) should be close to 0.

have the highest values alongB2 axis. The loading
plot C1 versusC2 shows that the ‘sweet’ smells have
a highC1 value and that they are distributed along this
axis in the same way as in the Tucker3 model. TheC2

axis differentiates the potato smell from the rest of the
smells to a high degree. Similar conclusions as in the
case of the Tucker3 model can be extracted from the
loading plots. The reaction products of all sugars and
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alanine have a caramel or jammy smell, which it is not
so for cysteine and methionine. This is most evident
for fructose and lactose. The reaction of methionine
with all sugars, but mostly with xylose and rhamnose,
leads to a potato smell.

Fig. 14. PARAFAC model for the sensory data matrix. Loading plots for (a) ‘amino acids’ mode; (b) ‘sugars’ mode and (c) ‘smell’ mode.

Both data matrices should contain similar informa-
tion but gas chromatography is expected to give a
more detailed description of reaction products than
sensory analysis (as many of the detected substances
do not contribute to the odor of the samples). There-
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Fig. 14. (Continued ).

fore, the model of the sensory data matrix should be
less complex than the model for the chromatographic
data matrix. The obtained results however give a dif-
ferent picture. The complexity of the Tucker3 model
of the sensory data is higher than that for chromato-
graphic data and the loading plots contain different
patterns. For the sensory data set, for the mode as-
sociated with nine smells, 4 factors are interpretable.
Therefore, it is not straightforward to relate peaks with
smells based on the presented models. Moreover, no
pre-processing has been applied to the data set so that
a few large peaks, which are not necessarily related to
odorous compounds, can dominate in GC data set. It
is possible that small peaks (or even substances which
are not detected by GC) have more impact on smell
than large peaks such as 142. Therefore, the informa-
tion carried by the chromatograms is difficult to relate
to the sensory information. Pre-processing inN-way
data analysis is much less evident than in 2-way PCA
and was therefore not included in this research. The
effect of pre-processing on the Tucker3 model will be
investigated in further research. The PARAFAC and
the Tucker3 model gave the same information for the
chromatographic data set. For the sensory data matrix
the Tucker3 model allows more freedom in choosing
the number of factors in each mode. Four factors ex-

tracted in the first and third mode were interpretable
and obviously related. However, the PARAFAC con-
firmed the conclusions obtained by interpretation of
the first core elements of Tucker3 model.

5. Conclusion

The presented results show thatN-way methods are
useful for the study of these types of data.N-way
models offer detailed information about the data set
and allow visualization of the data structure.

In this case, the Tucker3 model seems to be a more
suitable tool for exploratory data analysis than the
PARAFAC model. Indeed, it allows to choose a dif-
ferent number of factors in each mode which is more
appropriate for the type of data, where one mode (here
the amino acids) has a more dominant effect than the
other mode (i.e. sugars).

For the Tucker3 model, the interpretation is based
on significant core elements that express interactions
among modes. Sometimes more than one conclusion
can be obtained by interpreting certain core element.
In that case it is necessary to check the conclusions
by considering the original data.
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The interpretation of PARAFAC model is performed
in ways similar to the better known two-way PCA that
many scientists are already familiar with, which is an
advantage of this method.
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