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ABSTRACT 

We propose a hierarchy of models for averaging sensory 

profile data. The models follow from formulating the data 
from each assessor in terms of association matrices and con- 
sidering different strategies for weighted averaging of these 
matrices. It turns out that two forms of weighting contained 
within the hierarchy are very close to Generalised Procrustes 

Analysis (GPA) and Individual Differences Scaling 
(IXDSCAL) . The advantage of the current approach is 

that the methods are not iterative. The methods are illu- 
strated using data based on perception ofyoghurts. 

Keywords: Generalised Procrustes Analysis; Individual 

Differences Scaling; STA TIS; Association Matrices; 
Sensory Analysis. 

INTRODUCTION 

In sensory profiling (free choice profiling or conven- 
tional profiling) suppose that m assessors score n samples. 
The results can be displayed in matrices X1, X2,... X, 
where rows refer to samples and columns refer to attri- 
butes. Throughout this paper all data matrices are 
assumed to be column centred which adjusts for scoring 
at different levels of the scale by different assessors. 
Therefore, all configurations are translated to be 
centred about a common origin. 

Generalised Procrustes Analysis (GPA) (Gower, 1975; 
Dijksterhuis & Cower, 1991; Arnold & Williams, 1986) 
is aimed at matching the configurations to a group 
average configuration by an iterative process in the 
course of which optimal rotations and isotropic scaling 
factors are computed. STATIS (Lavit, 1988), which is 
well known among French statisticians and data analysts, 
provides an alternative to GPA. The computation of 
isotropic scaling factors and the group average con- 
figuration is straightforward (not iterative) and the 
results are, to some extent, compatible with those given 
by GPA, as we shall see on the basis of a data set. The 
computations in STATIS are simplified because this 
method is based upon association matrices (see next sec- 
tion) instead of the configurations themselves. 

INDSCAL (Carroll & Chang, 1970; Krzanowski, 
1990 pp.1833193) may be considered as a more general 
model than GPA and STATIS in the sense that it 
allows the assessors to weight differentially the several 
dimensions of a common ‘psychological space’. The 
determination of this common space and the dimension 
weights are computed by means of an iterative algo- 
rithm, but convergence is not always guaranteed. 

On the basis of association matrices, we discuss a hier- 
archy of methods that includes STATIS as a particular 
case. These methods range from a simple method that 
may be easily computed to a more general method that 
is proposed as an alternative to INDSCAL with the 
advantage that it has no problem of convergence 
because it is not iterative. In the spirit of Common Prin- 
cipal Components theory (Flury, 1988) which describes 
a hierarchy of models based upon covariance matrices 
associated to data tables, we suggest a hierarchy of 
models using association matrices instead of covariance 
matrices. However, the approach we adopt is rather 
exploratory in the sense that no distributional assump- 
tions are made, whereas Common Principal Components 
is based on assumptions of normality and maximum 
likelihood estimation. The hierarchy of models postu- 
lates three possible relationships between the association 
matrices. These relationships have direct interpretation 
in terms of the behaviour of the sensory panellists. 
Therefore, this interpretation may be at the forefront of 
the practitioner’s mind in judging which model is 
appropriate. On the other hand, the choice of a parti- 
cular model among those suggested may be made 
according to the general principle of parsimony which 
states that, if a model with few parameters fits the data 
satisfactorily, then it should be preferred to models that 
require more parameters. 

It is worth noting that a family of models embodied 
in a hierarchically organised procedure called PINDIS 
had been suggested by Lingoes and Borg (1978). In this 
approach the individual differences (between panellists 
in our context) are assessed using increasingly complex 
transformations. Like GPA, calculations in PINDIS are 
based on the configurations rather than either scalar 
product or distance matrices. This has the advantage to 
lead to results interpretationally more direct, but the 
calculations being complex could have the consequence 
that the properties (stability, significance testing,...) of 
the computed solution are difficult to study. 
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ASSOCIATION MATRICES 

For a data matrix, X, (n x p), assumed to be column 
centred, the association matrix with which we are con- 
cerned is defined by W = XX’ (n x n). The diagonal 
elements of this matrix are the squared distances of the 
samples from the origin and the off-diagonal elements 
are scalar products between samples which are quan- 
tities proportional to the cosine between samples and, 
therefore, characterise similarities between them. Thus, 
the association matrix describes how samples relate to 
each other, that is, the configuration of the samples. 

A very useful property of the association matrix is 
that, given two configurations X and Y with association 
matrices denoted respectively by Wx and WY, it can be 
proven (Glaqon, 1981) that Wx and WY are equal if 
and only if, X and Y can be matched by means of a 
rigid rotation. As a consequence of this property it 
appears that in dealing with association matrices, the 
calculations are tremendously simplified because it is 
not necessary to explicitly determine beforehand the 
rotations which match the configurations. 

Another property is that given a matrix, W (n x n), 

that is symmetric and positive semi-definite (i.e. for each 
vector (n x 1 ), x: x’ Wx > 0)) it is possible to derive a con- 
figuration X that has W as its association matrix: W = 
XX’. The determination of such matrix, X, is given by: 

X=QR; 

where Q is the orthogonal matrix the columns of which 
are the normalised eigenvectors of W and A is the diag- 
onal matrix whose diagonal elements are the square 
roots of the eigenvalues of W. 

An association index between two configurations 
X and Y is defined as follows (Robert & Escoufier, 
1976): 

1(X, Y) = trace(W,Wy) 

A normalised version of this index is given by the so- 
called RV-coefficient: 

RV(X,Y) = 
trace( W, W,) 

-\/trace(W,W,) dtrace(WyWy) 

RV (X, Y) ranges between 0 and 1. It is equal to 0 if, 
and only if, configurations X and Y are embedded in 
orthogonal subspaces (complete disagreement between 
configurations). RV (X, Y) is equal to 1, if and only if, 
X and Y can be matched by means of a rotation and 
multiplication by a scalar. 

For any two assessors i and j, the RV coefficient 
between configurations Xi and Xj provides a measure of 
similarity that shows to what extent these assessors have 

the same view of the sample configuration. Conse- 
quently, the table of RV coefficients between assessors 
can be subjected to Multidimensional Scaling, and the 
outcome will be a graphical display of m points. Each 
point will represent one assessor and the distance 
between any two points will represent the extent to 
which the corresponding assessors have different views of 
the configuration of the products (Lavit, 1988). 

We now consider how to obtain the best group aver- 
age configuration based on these properties and using 
increasingly complex assumptions about the differences 
between the assessors. 

LEVELONE:EQUALITYOF 
ASSOCIATION MATRICES 

The simplest assumption is that assessors all perceive the 
inter-relationships between the samples similarly. This is 
equivalent to assuming that any two of the original 
sample by sensory attribute configurations Xi and Xj 
can be matched by a rigid rotation. In terms of associa- 
tion matrices, this is equivalent to assuming that all the 
association matrices are equal (apart from random 
errors). 

This would be appropriate when assessors have used 
free choice profiling, or where a fixed choice profile has 
been used, but assessors are likely to confuse some 
descriptors or interpret them differently. Note that, at 
this level, assessors are not assumed to vary in their 
range of scoring, since individual scaling factors are not 
given. 

Denote by WI, Wp,..., W,, the association matrices 
corresponding respectively to configurations Xl,... X,. 
To compute a common matrix W we search for the 
matrix that is as close as possible to WI, Wz,..., W, in 
that sense that it minimises the criterion: 

etraCc((W; - W)‘(Wi - W)) 
i=l 

= 2 /I Wi - W II* 
i=l 

where llA-Bll* d enote the sum of elementwise squared 
differences between matrices A and B. This criterion 
leads to the solution: 

w=;gw,. 
I=1 

This matrix, being positive semi-definite, may be 
written as follows: W = CC’. C may be considered as a 
group average configuration. A graphical display for 
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products may be obtained by performing Principal 
Component Analysis (PCA) on C and Principal Com- 
ponents may be interpreted by considering their correla- 
tions with columns of data tables Xi, XT,... X, as is 
customary with GPA. 

LEVELTWO: 
PROPORTIONALITYOF 
ASSOCIATION MATRICES 

The second level of comparison between configurations 
proposes that the associations matrices are proportional. 
That is, for two association matrices Wi and Wj(ij = 1, 
2,..., m) there exist positive scalars a i and (Y j such that 
a:iWi = ajWj. 

In terms of the original configurations, this level 
implies that any two configurations may be matched by 
means of a rotation and multiplication by a scalar. Con- 
sequently, this level may be used with free choice profil- 
ing and conventional profiling as an alternative to GPA. 
In addition to possible rotations between configurations, 
it allows for an isotropic factor for each configuration, 
adjusting, therefore, for differences in range of scaling 
for different assessors. 

In order to compute the isotropic scaling factors we 
maximise the criterion: 

F = 9 p a;ajtrace(WiWj) 
i=t j=l 

under the constraint 

2 C$traCe(W;Wi) = 2 traCe(WiWi) 
i=l i=l 

The rationale behind this strategy is that we search 
for isotropic scaling factors that maximise the agreement 
between assessors. The constraint is chosen in the spirit 
of GPA which uses the same constraint with Xi instead 
of Wi and, as in GPA, other constraints may be con- 
sidered but these are likely to lead to more awkward 
computation (Gower, 1975). 

Let R be the matrix of RV coefficients between con- 
figurations (Robert and Escoufier, 1976): 

Rij = 
trace(Wi Wj) 

dtrace(Wi Wi) ~tK3ce(Wj Wj) 

Let ,#= (/3r, &...,&)’ be the first normalised eigen- 
vector of the matrix R. As all the elements of R are 
positive, the components of vector /3 are positive accord- 
ing to Perron’s theorem (see for instance Horn and 
Johnson, 1990). We can prove that the isotropic factor 

scalars Lyi that maximise the criterion F subject to the 
constraint considered above are given by: 

4% 
Qi = 

JtraCe(W;W;) 

where T = Cy=, trace(W;Wi). 

These scalars include pre-scaling factors given by 

ffi=\/t& 
and coefficients, pi, that range between 

0 and 1. A coefficient, /3i, close to zero indicates that the 
corresponding assessor, i, is not in good agreement with 
the others. Thus, greater weight is given to assessors in 
general agreement with the others and less to an assessor 
who has a different view of the configuration. A similar 
interpretation for isotropic scaling factors was given by 
Collins (1992) in the framework of GPA. 

Once the scaling factors are determined, a common 
association matrix for the configuration may be obtained 
by simply averaging the scaled association matrices: 

W =t~Ck!iWi. 
1=I 

As above, a group average configuration, C, may be 
obtained by writing W in the form: W = CC’. Such an 
expression is possible because W is positive semi-definite. 
Depicting product maps is achieved by performing PCA 
on matrix C. 

As a matter of fact, this level leads to STATIS which 
had been widely performed on several kinds of data 
(Lavit, 1988) and particularly on sensory analysis data 
(Schlich, 1993). 

LEVEL 3:COMMON 
UNDERLYING DIMENSIONS, 
DIFFERENTIALLY WEIGHTED 

Level 2 allows for an isotropic scaling for each assessor. 
This may be restrictive in situations where assessors 
have little or no training. Level 3 enables us to take into 
account differences in range of scoring for several 
dimensions and not merely an overall isotropic scaling. 
Suppose that Si is the space in which the products can 
be represented by points in such a way that inter-point 
distances match as closely as possible the inter-products 
distances as perceived by the ith assessor. The rationale 
behind level 3 is that the m spaces Sr, ST,... S, have a 
common set of dimensions, but these dimensions may be 
differentially important for specific assessors. In other 
words, there exists a common space, S, with a set of 
orthogonal dimensions generated by vectors ql, q2,... q,,, 
and the space for each assessor can be obtained from S by 
weighting each of these dimensions by an appropriate 
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amount. One may recognise here the basic premise of the 

INDSCAL model (Carroll & Chang, 1970; Krzanowski, 

1990 pp.183-193). 

A formulation of this model in terms of the associa- 

tions matrices is as follows: 

Wi = QAiQ’; 

Q being the matrix whose columns are vectors ql, 

qs,... q, (common underlying dimensions) and Ai being 

a diagonal matrix whose diagonal elements are denoted 

X.1(‘), X2@),... Xnci). The element X j(‘) is the weight 

assigned by the ith assessor to the jth (common) axis; 

this reflects the relative salience attached by that asses- 

sor to this particular dimension. 

An equivalent form for this level is: 

Wi = ~ x,!i’qj qj ‘; 
j=l 

this form suggests that once the common vectors ql, 

q2,... qn are determined, the weights Xi(‘), X2ci),... Xnci) 

for the ith assessor may be computed in such a way that 

the following quantity is minimised: 

11 Wi - ex(‘)qj Cl5 11. 

j=l 

This leads to a linear regression problem, the solution 

of which is obvious because vectors qj are orthogonal: 

A!‘) = 
tIYMX(Wiqjq~) 

J 
(qj19j 1’ 

In order to determine vectors ql, q2 ,...,q,, we suggest 

a step by step procedure. Firstly, we determine a vector 

qt of unit length that has the greatest association with 

matrices Wi, Ws,... W, as measured by: 

A 2 trace(W;qrqi). 
1=1 

Equivalently vector ql may be determined as the 

minimiser of the quantity: 

g II wi - Xf)qlq: II’, 

it may be shown that vector ql is given by the first nor- 

malised eigenvector of i CL1 Wi. In a second step, the 

vector q2 may be determined as a vector with norm 1, 

orthogonal to ql and such that the quantity i CL1 

trace (Wiq*qh) is maximised. In a similar manner, we 

may derive vectors q3,..., q,,. These vectors are the eigen- 

vectors associated respectively to eigenvalues of matrix 

$ xb, trace Wi arranged in a decreasing order. 

This solution seems intuitively appealing because 

common dimensions are provided by the average asso- 

ciation matrix as in level 1, but each assessor is accom- 

modated further by fitting weights (or saliences) to each 

dimension. 

EXAMPLE 

Dijksterhuis and Punter (1990) describe an experiment 

conducted on yoghurts using the free choice profiling 

method of assessment. Seven assessors (labelled A, B,..., 

G) with little or no training profiled eight different 

yoghurts (labelled 1, 2,..., 8). These data were analysed 

using GPA and related methods by Dijksterhuis and 

TABLE 1. Results of Fitting Levels l-3: Lack of Fit Showing Deviation of Each Assessor Association Matrix from the Model; 

Isotropic from Level 2 and Assessor Saliences from Level 3. 

Assessor A B C D E F G Total 

Lack of fit level 1 0.129 0.113 0.077 0.149 0.140 0.200 0.190 0.998 

Lack of fit level 2 0.129 0.103 0.072 0.152 0.125 0.193 0.167 70.941 

Lack of fit level 3 0.105 0.058 0.064 0.140 0.075 0.130 0.118 0.690 

Isotropic scaling factor for level 2 1.023 1.028 1.184 0.954 0.947 0.900 0.962 

Assessor saliences from level 3 A B C D E F G Total 

Dim 1 0.417 0.610 0.479 0.477 0.660 0.240 0.221 3.104 

Dim 2 0.342 0.054 0.143 0.284 0.116 0.365 0.220 1.524 

Dim 3 0.028 0.102 0.177 0.084 0.037 0.109 0.236 0.773 

Dim 4 0.049 0.092 0.074 0.041 0.035 0.149 0.109 0.548 

Dim 5 0.079 0.07 1 0.026 0.054 0.081 0.101 0.057 70.469 

Dim 6 0.068 0.060 0.059 0.045 0.062 0.016 0.050 0.362 
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FIG. 1. (A) First two principal components of a PCA of the 
group average derived from level one, showing the eight 
yoghurts.(B) First two principal components of a PCA of the 
group average derived from level two, showing the eight 
yoghurts. (C) Common dimensions cl1 and 92 and private 
spaces for assessor C and assessor F. 

Gower (1991)) and we refer to this publication in order 
to compare our results with those of GPA. The positions 
of the samples relative to the first two principal com- 
ponents of the group average configurations are given in 
Figure lA_C. These are all very similar to each other 
and to the solution given by Dijksterhuis and Punter 
(1990) and Dijksterhuis and Gower (1991) 

The detailed results of fitting levels l-3 are given in 
Table 1. Examining the lack of fit statistics for each 
assessor indicates only a very marginal improvement in 
going from level 1 to level 2. 

rnb 
.A 

.D 

.G 

.C E 
. 

.B 

FIG. 2. Subject space showing assessor saliences for dimension 
one and dimension two. 

However, the lack of fit indices for assessors B, E, F 
and G are sharply reduced by moving to level 3 and the 
assessors saliences plotted in Figure 2 indicate that these 
assessors are the most extreme, with B and E weighting 
heavily on dimension 1 and no other (see Table 1). 
Assessors F and G weight least heavily on dimension 1 
and reasonably heavily on dimension 2. These dimen- 
sions may be interpreted by considering their correla- 
tions with columns of data tables Xt, X2,... X,. Figure 
1C depicts the differences in perception between these 
two groups of assessors as it shows the samples plotted 
along the first two dimensions of the ‘private’ spaces of 
assessors F and E. 

Thus, although a formal significance testing frame- 
work is not available, the lack of fit statistics lead us 
to conclude that there is evidence that assessors were 
differentially weighting the underlying dimensions. This 
information can enable a number of further analyses to 
proceed. The common space obtained by equal saliences 
can be used to relate the sensory to physical and chemi- 
cal measurements. The existence of differential weighting 
may stimulate the instigation of further trials to estab- 
lish whether the subgroupings are evident in a wider 
population of sensory assessors. Alternatively, further 
training of quality assurance panels in the use of par- 
ticular scales may be required. 

CONCLUSION 

The hierarchy of levels proposed here gives a superior 
analysis to the use of GPA because it gives the choice of 
simpler and more sophisticated models and does not 
require an iterative solution. The models are expressed 
in terms of the association matrices as follows (ranging 
from the more complex model to the simplest one):model 
3:Wi=QAiQ( common dimensions but each asses- 
sor is accommodated further by fitting saliences to each 
dimension); model 2: Wi = X i Q Q’ (common dimen- 
sions but each assessor is accommodated further by fit- 
ting an isotropic scaling); model I: Wi = QQ (common 
dimensions for all assessors). 

Further research to compare more precisely the 
results of the suggested strategy with those of CPA, 
INDSCAL and PINDIS and to provide a soundly 
based significance testing framework is indicated. 
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