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A correlational measure for an n by p matrix X and an n by g matrix Y assesses their relation
without specifying either as a fixed target. This paper discusses a number of useful measures of
correlation, with emphasis on measures which are invariant with respect to rotations or changes
in singular values of either matrix. The maximization of matrix correlation with respect to trans-
formations XL and YM is discussed where one or both transformations are constrained to be
orthogonal. Special attention is focussed on transformations which canse XL and YM to be n by
s, where s may be any number between 1 and min (p, g). An efficient algorithm is described for
maximizing the correlation between XL and YM where analytic solutions do not exist. A factor
analytic example is presented illustrating the advantages of various coefficients and of varying the
number of columns of the transformed matrices.

Introduction

Given two matrices X and Y with p and ¢ columns respectively and both having n
rows, the matrix correlation process typically requires two steps:

1. Apply transformations L and M to produce matrices XL and YM, respectively,
where both transformed matrices have s columns, and

2. Use an appropriate measure of correlation (XL, YM) to summarize the match
between the transformed matrices.

These two steps are usually connected in that the transformations will be required to
maximize the correlation. It may be that there will be some constraints on the possible
transformations.

The prototypical matrix correlation technique is undoubtably canonical correlation
analysis, which provides a symmetric assessment of the congruence of two matrices X and
Y having n rows and p and g columns, respectively (n = p, g). The two matrices are
matched by transformations L and M so as to maximize the bilinear form (XL, YM) =
tr (L’X'YM) under the orthogonality constraints L'X'XL =1 and M'Y'YM =1[. This
process may be described as either stepwise with matrices L and M being p by 1 and g by
1, or global with L and M being p by s and g by s, s = min (p, ¢). In the stepwise case
there are the additional conditions L'X’XJ = 0 and M'Y'YK = 0 where J and KX are the
transformations computed in previous steps. Canonical correlations have been defined in
many ways: by classical analysis (Hotelling, 1936), by the theory of projectors {(Rao &
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Yanai, 1979; Yanai, 1974), by singular value decompositions (Lancaster, 1969), by special
matrix operators (Escoufier, 1973, 1977), and by functional analysis (Cailliez & Pages,
1976; Dauxois & Pousse, 1976). They have also been generalized in a number of ways: to
more than two matrices (reviewed by Kettenring, 1971), to sets of random functions
(Besse, 1979), to nonlinear transformations (Dauxois & Pousse, 1976), and to matrices
containing indicator variables (Pages, Ramsay, & Tenenhaus, 1984.)

Implicit in all of this work has been the assumption that the rows and columns of X
and Y have no internal structure that is not preserved by linear transformations, and thus
that the convenient orthogonality constraints, L'X'XL = I and M'Y'YM = I, are as valid
as any other. It often arises in practice, however, that the only transformations that can be
entertained for one or both matrices are orthogonal in some prespecified sense; that is,
they satisfy the constraints L'UL = I and/or M'VM = I where U and V are symmetric
positive definite real matrices. The most familiar of such situations arises when two factor
pattern matrices derived by orthogonal factor analysis are to be compared, with the only
possible linear transformations being orthogonal rotations. In multidimensional scaling,
where a number of algorithms have been developed to use the individualized generalized
Euclidean distance model dZ, = (x; — x,) U(x; — x;), it may be desirable to compare two
solutions derived using different metric matrices U, and U,. In such a case one must
consider linear transformations which reduce the two configurations to a common metric.
When this metric is the identity metric, this implies that one transformation must be
U,-orthogonal and the other U,-orthogonal. As another example let X be subject only to
rotations and let Y be subject to any linear transformation, as would be the case when a
multidimensional scaling configuration is to be compared to a set of other measures on
the stimuli. Such problems require the constraints L'L = I and the fixing of tr (M'Y'Y M)
to a specified value.

It may also be desirable to compare two matrices in a space of dimensionality s some-
where between one and min (p, q). A best representation of each matrix in a plane is
especially useful for graphical displays of the relationship. While various functions of the
first s canonical correlations permit a summary of congruence in s dimensions when any
linear transformations are possible, it will be shown that the situation is not so simple
with arbitrary orthogonality constraints.

In addition to the constraints on L and M and the dimensionality of comparison s, a
third aspect of the matrix congruence problem is the choice of measure of correlation
between the two transformed matrices. There are many possibilities, and certain advan-
tages attach to certain choices. Within the context of canonical correlation a number of
indices have been reviewed by Cramer and Nicewander (1979) and still others will be
proposed here.

Implicit in any matrix correlation technique is a choice of metric for the row and
column spaces associated with the two matrices. In almost all published work these are
assumed to be the identity metrics, but there are often good practical reasons for applying
differential weights to rows and/or columns. For example, in comparing two factor pat-
tern matrices, where rows correspond to variables, it may be worth applying less weight
to each variable within a block of variables known in advance to be very similar to one
another. One may also wish to diminish the influence of variables known to be highly
prone to measurement error. A choice of column metric is implied in comparing two
multidimensional scaling solutions where one is primarily interested in how the first two
dimensions match but one does not wish to ignore altogether the influence of other di-
mensions. Finally, a matrix correlation may be made robust against unusual or outlying
rows or columns by appropriate choice of metrics. Thus, we assume that the metric for
the column space is represented by symmetric positive definite matrix W of order n, and
the metric for the row space by symmetric positive definite matrix N of order s.
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Two matrices may also be related by minimizing a distance measure such as
| YM — XL||?:=[tr (YM — XLY(YM — XL)] with respect to L and M. This approach is
usually referred to as Procrustes rotation. Although the emphasis in this paper is on
correlational measures of relationship, some remarks will be made on this problem where
appropriate. A fairly general treatment of Procrustes rotation in arbitrary row and
column metrics is in Rao and Yanai (1979).

In this paper the problem of how to transform two matrices to congruence will be
discussed separately from the problem of how to assess congruence after the transforma-
tions have taken place. Thus in the second section various indices of matrix correlation
are presented which form a natural family with respect to their sensitivities to the orienta-
tions and degree of ellipticity of the two matrices. In practice two matrices are compared
by choosing a measure of correlation and then transforming the matrices so as to maxi-
mize this measure. Results are presented in the next two sections on the optimization of
these measures. Section 3 discusses the case in which both L and M are subject to arbi-
trary orthogonality constraints, and Section 4 discusses the case in which only L is con-
strained to be orthogonal. A practical example involving the comparison of two factor
analysis results is given in the fifth section.

Notation and Preliminary Results A goal of this paper is to offer an exposition of
the matrix correlation problem in the context of arbitrary metrics W, N, U, and V. How-
ever, for simplicity these will all be assumed to be identity matrices when correlational
formulas and theorems are initially stated. The general results will only be stated without
proof and then only when the generalization is less than obvious. However, in order to
deal with arbitrary metrics, the following notation and lemma are essential.

The real numbers will be indicated by # and the fact that a real matrix X has n rows
and p columns will be indicated by X € £"7, where £ is the vector space of real n by p
matrices. Real symmetric matrices of order s will be denoted by S, and if also positive
definite by S,". Thus row metric W € S,/ and column metric N € S, . The subset of %7
consisting of matrices L satisfying L'UL = I will be indicated by 0% The symbol := will
be used to mean “is defined to be.”

Two matrices A and B will be said to be column-orthogonal in the metric W when
A'WB = 0 and row-orthogonal in the metric N when ANB’ = 0. The inner product (4, B)
in metrics W and N is tr (A'W BN) with the associated norm || 4 || = [tr (4’ WAN)]'/2.

The following extension of the singular value decomposition theorem (svd) is funda-
mental to a general treatment.

Lemma: Given matrices U e S, and V € S;, and an arbitrary matrix A € #%,
P = q, there exist matrices P € Of, Q € 0" and D such that

" (a) Disdiagonal withd,, >--->d, >0

(b) A = PDQ’ - T

Proof Let U and V have the decompositions

U=QuDyVy and V=0,Dy0Qy,
respectively. Their symmetric square roots are given by
UY = Q,DY?Q;, and  V=0,D}0Q;.

Let the matrix U2AV*/2 have the conventional singular value decomposition P*D*Q*'.
Then the matrices P := U~ Y?P* Q := V~'2Q* and D := D* have the required proper-
ties. O

The singular value decomposition in metrics U and V, called here the (U, V)-
orthogonal svd, corresponds to the definition of the eigenequation of a symmetric matrix
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C in metric N as CNz = Az, and the eigenvalues and eigenvectors of C are obtained by
the (N, N)-orthogonal svd C = QDQ'. An arbitrary power C™ of a positive semidefinite
matrix C in metric N is defined as C™ := QD™(Q’, where the power of a diagonal matrix
will always be taken to be the result of taking the positive diagonal elements to that
power. In particular, C'/? defined in this way satisfies the equation C*>*NC'? = C. Un-
fortunately, the power C™! corresponds to the usual definition of an inverse only in the
metric I; although C™'NC = C°% C° # I and C™'C # I in general. Wherever the power
—1 is used the metric involved will be made explicit. The set of singular values of 4 and
the diagonal matrix D will be referred to as the spectrum of A. The singular value de-
compositions of two matrices 4 and B will be denoted by A=P,D,Q, and B =
Py Dy Qf, respectively.

The matrix correlation problem requires us to find matrices L and M subject to the
necessary orthogonality constraints, and then to measure in some way the correlation
(XL, YM) between the transformed matrices. We have essentially two choices to resolve:
how shall we define the mappings L and M subject to the required orthogonality con-
straints, and what correlation function r(-, ) shall we use? It may be that these problems
are related; it is common to first choose a correlation measure and then optimize it with
respect to the mappings. However other strategies are feasible, and therefore these two
steps are treated independently in the next two sections.

Correlational Measures for Matrices

A function r(-,-) must satisfy the following necessary conditions before it can be
considered a useful measure of matrix correlation (Renyi, 1959):

Definition 1: The mapping r: #™ x #™— [0, 1] is called a correlation function in
the metric W if for all nonzero scalars x and y, and when A and B are not both zero,

Cl. r(xA, By=r(A, yB) =r(A, B)
C2. r(A, By=r(B, A)

C3. rA4,B=1 if A=yB
C4. rA,B)=0 iff AAWB=0.

)]

In practice a correlational measure may be a mapping into [—1, 1], and for such a
measure these conditions are understood to apply to its absolute value or its square.

These conditions are necessary but not sufficient to ensure a useful measure of matrix
correlation. In fact, matrices may be similar or dissimilar in a great many ways, and it is
desirable in practice to capture some aspects of matrix relationships while ignoring others.
This can take the form of specifying the converse of C3 by devising further situations
leading to unit correlations.

Inner Product Correlation r,

The most common measure of matrix correlation is based on the inner product
(A, B) := tr (A'B). Because of the Cauchy-Schwarz inequality the absolute value of the
correlation coefficient

r(4, B) i=tr (A'B)/[tr (4’A) tr (B'B)]"/>
=(4, BAIAllIBI) (2
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satisfies C1-C4. Expressed in terms of the singular value decompositions (svd’s) of 4 and
B,
ri(A, B) = tr (Q, D, P P3 Dy Q)/[tr (D) tr (D3)]'? 3)

where the powers of the diagonal matrices D, and Dy are taken in the identity metric.
When general metrics W and N are involved, (4, B) =tr (A'WBN) and the svd is
(W, N)-orthogonal. Note that this measure is invariant with respect to postmultiplication
of each matrix by a rotation matrix T only when N = I. The expression of r, in terms of
the svd’s of the two matrices helps to show that its value depends on three aspects of each
matrix:

(i) the orthonormalized matrix P which is the most basic component,
(it) the spectrum or scale component D, and
(iil) the orientation or correlational component Q.

This measure has been used explicitly or implicitly in almost all work on matrix corre-
lation. It will be shown in the following section that a variety of other measures are
equivalent to it under certain circumstances. Lingoes and Schénemann (1974) discuss r; in
the context of assessing a comparison of X and Y by Procrustes rotation. It will be shown
in the next section that this process does not in general maximize r,, however.

Orientation-Independent Inner Product Correlation

The dependency of ry on the relative orientations of 4 and B can be removed by
deleting Q, and Qg from the trace in the numerator:

ry(A4, B) s=tr (D4 P Pg Dg)/[tr (DY) tr (D5)]'/*

=(P4D4, PgDg) A1l BY)

=ry(P4D4, PgDy). 4
This index is equivalent to computing r, if either both 4 and B have orthogonal columns
or @, = Qg. It reaches unity not only when the two matrices are proportional, but also
when they can be made so by post-multiplication of either by a rotation matrix T. In the
general metric case T is replaced by NY2T, where N-orthogonal and N'/? is taken in the
identity metric.
Spectra-Independent Inner Product Correlations

The size of the inner product correlation r, will depend on whether the two sets of
singular values or spectra, D, and Dy, are similar or not. Two further indices can be
derived from r, and r, by replacing the spectra by identity matrices:

r3(A, B) :=s""' tr (Q, Py Py Qp)
=s"'(P4Q%, PyQh)
=r(P,4Q%4, PsQ}) )
and
ra(A, B) =571 tr (P, Pp)
=s"YP,, Pp)
=r(P4, Pp). (6)
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Coefficient r, can also be expressed as
ra(4, B) = s~ ' tr [A'4)” /¥ A'B(B'B)” "], @)
since (4'4) "2 =(Q4D, P, P,D, Q) "* =0,D1' Q4

Escoufier’s RV Coefficient
Escoufier (1973, 1977; Robert & Escoufier, 1976) has proposed
RV := tr (B'AA'B)/{tr [(4'4)*] tr [(B'B)*]}'/?
=r(P,D} Py, PyD} Pp) (8

This coefficient is closely related to r, in that all traces in RV are taken with respect to the
squares of the matrices involved in the corresponding traces in r,. Thus, this index is also
orientation-independent and provides a technique for assessing correlation in the same
sense as r,. However, RV has the advantage of being expressible in terms of the original
matrices rather than their singular value decompositions.

Yanai’s GCD Measure

Yanai (1974) has proposed the trace of the product of two orthogonal projectors
derived from A4 and B as a global measure of relationship. Converted to a correlation
coefficient, it is

GCD =5"" tr (A(A'A)"*A'B(B'B)"'B)
= r(P4 P, Py Py). ©)

This measure is also the average of the squared canonical correlations between 4 and B,
and thus it is not surprising to discover that it is orientation-spectra-independent. In the
general metric case for both RV and GCD we can have different column metrics, N, and
N,, for A and B, respectively.

Thus we have in r,~r, a natural and complete system of coefficients completing the
two-by-two table corresponding to orientation and spectrum independence. In each case
the coefficient can be expressed in terms of the singular value decomposition, and in the
case of r, and r, there associated coefficients, RV and GCD, respectively, which are ex-
pressible in terms of the original matrices. In the special case of s = 1, these coefficients
are related as follows:

ri=ry=ry=r,, ri=RV=GCD.

Many other families of correlation measures are possible which give varying sensiti-
vities to the orientations and spectra of the two matrices. Since muitiplication of a matrix
by a scalar affects only its spectrum, one could in principal use any positive power of the
singular values in r, or r, to provide a continuum of sensitivity to spectrum. Alternatively,
if X = PDQ/, then we may use X* = PDH(Q' as an argument in r,, where H is a diagonal
matrix containing positive weights to be applied to the singular values.

It should be noted that the components P, and Q, of the singular value decompo-
sition of A are defined only to within mutual sign changes in any column even when the
singular values are distinct. Thus, in computing coefficients r, and r, it will be necessary
to ensure that corresponding columns of P, and Pj are sign-compatible. This can be
achieved by reversing the sign in any column of P, when the inner product of that
column with its mate in Pp is negative.
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Some Orthogonal Transformations of X and Y

The complement to the problem of choosing a correlation index is the problem of
mapping £ and %™ into the comparison space £™ in which the index is to be applied,
so that the correlation measure can be applied to XL and Y M. We assume here that only
linear transformations or orthogonal transformations are to be entertained, and in partic-
ular that the two matrices are comparable with respect to their column origins. This
would automatically be the case for factor pattern matrices, but analyses involving multi-
dimensional scaling configurations or arbitrary variables may require preliminary column
centering,

In order to avoid trivial mappings, it is necessary to specify both normalization con-
ditions and orthogonality conditions. If these are not determined a priori, then the choice
is a matter of convenience. In general we shall wish to impose:

Dl. LUL=I
D2 MVM=I,
and possibly
D3. LUJ=0, JeOf,
D4 MVK=0  KeO%

where t < min (rank (X), rank (Y)) — s, and U and V are metric matrices. Constraints D1
and D2 are internal orthogonality constraints while D3 and D4 are constraints with
respect to previously computed or observed matrices J and K and thus are external.
Matrices J and K can always be expressed in orthogonal form if they are not already
thus. That they should have the same number of columns is not necessary in general, but
will hold in most practical situations and is assumed for simplicity.

In order to keep the exposition as simple as possible the theorems in this section will
be proved only for constraints D! and D2, and assuming that W and N are identity
matrices. However, in some situations where the extension to D1-D4 is not obvious, the
more general results will also be stated. Associated with the external constraints are the
projectors

H;:=1-JJ'Uana Hy == I — KK'V, (10)
which satisfy H; L =L, H;J =0,H, M = M, and HyK =0.

Clipping Transformations

One simple class of transformations are those which map X and Y into subsets of
their columns. These are valuable when X and Y are already defined with respect to
rotation, perhaps by previous transformation to principal axis or by optimizing some
analytic rotation criterion. It may be then that we simply wish to compare X and Y in
terms of certain columns while ignoring differences on others. The matrix C, € #” defined
as differences on others. The matrix C, € #7° defined as the first s columns of the identity
matrix will be called a clipping matrix, and is /-orthogonal. The number of rows of C, will
be obvious from context.

Maximizing the Inner Product

There are a variety of reasons why one might wish to transform so as to maximize
the inner product (XL, YM) := tr (L'X’'WY MN). Under some circumstances this is equiv-
alent to maximizing the correlation r,, and in any case the transformations maximizing



410 PSYCHOMETRIKA

the inner product can provide useful starting values for iterative procedures for maximiz-
ing a number of correlational measures.

The following lemma permits a simple extension of the results for constraints D! and
D2 to those for D1-D4.

Lemma 1: The maximal value of (XL, Y M) under constraints D1-D4 is equal to the
maximal value of (XH,; L, YHg M) under constraints D1-D2.

Proof: Let I* and M* be the optimal values for (XH; L, YH; M) under D1-D2. I*

and M* can be decomposed into the sums ¥ = L¥ + L% and M* = M} + M% where L%
and M%¥ are in the subspace spanned by J and K, respectively, and L¥ and M¥ are in the
respective orthogonal complements of these subspaces. Substitution of these sums into
(XH, I*, YHy M*) shows that (XH,; I*, YH, M*) = (XL¥, YM¥). Now suppose that there
is a pair of transformations I and M° satisfying D1-D4 such that (XI°, YM®) >
(XL¥, YM¥). Then H, I’ = I° and Hy M° = M° imply that (XI°, YM®) = (XH, I°, YH,
M® > (XH, I*, YHM*). But this contradicts the hypothesis made about I* and M*
“and thus the lemma follows. O

The following very important lemma states a resuit first proved by von Neumann
(1937).

Lemma 2: For A, B € #™ with singular values o; > --- > o, and ;> --- = f;, re-
spectively, tr (A'B) < Y «; ;. -

Proof: The argument proceeds by (i) proving Abel’s Identity, (ii) proving the result
for 4 and B symmetric, and (iii} extending the result to general matrices. Since the Lemma
states the Cauchy-Schwarz inequality when s = 1, it will be assumed that s > 1.

(i) The following identity may be verified at once for s = 2:

s—1 s
Z_b I: a; ,H)Z b]+aszlbj. (11)
j=

When s > 2,

s—1 i i-1
= a,(Zb_,*Zb)-i-albl—az-f-a Zb
i i

i=1

i
it

5 (a£8) T (o t5) rats

i=1 i

i=1
b [(a,- 4 Y b,] +a,3b,.

i=1 j=1

i

(ii) Now let 4 and B be symmetric, of order s, and with eigenvalues A, > --- > 4,
g > = u, Ay and pg possibly negative. Then 4 = PAP, Pe OF, and tr AB=
PAP'B=tr AP'BP =) A;b;, where by is the ith diagonal element of PBP'. The majori-
zation Y ¥ by < Y% p;, k < s, results from the inequality

tr L'Bngu.-, LL=1
1
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(Rao, 1973, p. 63). Thus, by Abel’s Identity (i) and the fact that B and PBP’ have the same
eigenvalues

s s—1 i s s
tr A,B= Zj‘ibil= Z l:('ll—)'l"'l)zbjj]-'-lszbjjs Zﬂ‘i/’ti'
=1 j=1 i=1 i=1

i=1

(iii) For A, B € #™, n 2 5, with singular values as stated in the lemma, the corre-
sponding symmetric matrices of order n + s,

0 4 0 B
* = * =
A [A 0] and B [B 0],

are symmetric, of order n + s, and have nonzero eigenvalues t+a;, +§;,i=1,...,s. The
inequality then follows from the fact that _
tr AB=%tr A*B* <} [0 + (—a)l—B)] =) o ;. O

Lemma 2 gives a upper bound for (A, B) which is much tighter than | A || | B given
by the Cauchy-Schwarz inequality when s > 1, and which is attainable under orthonor-
mal transformations. It has many important consequences. The first proof was by von
Neumann (1937) with later proofs by Richter (1958) for symmetric matrices, Mirsky
(1959), and Theobald (1975). Fan (1951) and Kristof (1970) extended the result to more
than two matrices, with the latter applying the result to a number of multivariate data
analytic problems. ten Berge (1983) extended Kristof’s results and presented a number of
applications. This proof, which appears in print for the first time, seems to the authors to
be much shorter and simpler than previous arguments and is due to Styan (1976).

The following theorem subsumes a number of well known results:

Theorem 1. The following values of L and M maximize (XL, YM) and satisfy con-
straints D1 and D2:

L=PC, and M=0C,, (12)

where P and @ are defined by the singular value decomposition
X'Y = PDQ' (13)
Proof: From Lemma 2 we have
max {tr LX'YM} = max {tr [C.IYX'YC,M°C,]}
L M Lo,M0

< tr (C,DC)),

where I, M® € 0,,,. It remains to note that this bound is attained for L and M chosen as
indicated. O

Corollary: When M is fixed, L = PQ'.

In the more general case, L = PC,QY and M = QC,Qy where P and Q are defined
by the (U, V)-orthogonal svd of U 'H, X’WYH V! and the decomposition of N and
the inverses of U and V are taken in the identity metric. The simpler theorem proven
above has been discussed by many authors including Green (1952), Cliff (1966), and
Schdnemann (1966). ten Berge (1983) has extended Theorem 1 to more than two matrices
and given a number of applications.
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Maximizing the Inner Product Correlation r,

It is natural to search for those transformations which maximize the measure of
correlation to be used. The problem for coefficient r, in its complete generality does not
have a closed-form solution. However, r; is maximized by maximizing (XL, YM) in the
special cases specified in the following theorem:

Theorem 2. If one of the following conditions hold then r, is maximized by maximiz-
ing (XL, YM):

(a) constraints D1-D4 applyand U = X'WY and V = YWY,
(b) constraints D1 and D2 apply and s = 1,
(¢ p=q=sand N=U=V =1L

Proof: Norms || XL || and | YM | are invariant with respect to L and M under the
metric defined in case (a) or in case (c). In case (b) the constraints D1 and D2 impose only
a scale constraint on L and M. The correlation r, is invariant under changes of scale and
hence the appropriate L and M can be computed using the metrics X’'WX and YWY
and then rescaling. O

Case (c) has been discussed by many authors, especially in the context of Procrustes
matching. This literature is reviewed in ten Berge (1977).

The general problem requires the use of numerical optimization. The Appendix de-
tails an algorithm for the optimization of r, or the minimization of || XL — YM | which
exploits Theorem 1 and has proved satisfactory in applications.

Maximizing Orientation-Independent Correlations

In the case of p = q = s and U = V = [ coefficients r,, r,, RV, and GCD are attrac-
tive because they are invariant with respect to rotations. In other situations, however,
their behavior with respect to various transformations is more complex. The following
theorem states that among the class of optimal transformations is a pair resulting from
clipping after some permutation of the columns of the principal axis oriented matrices.

Maximizing Spectra-Independent Correlation r,

Coefficient r; can be readily optimized in the case p = g = s by noting that the singu-
lar values of XL and YM will be the same as those of X and Y, respectively. Since r, does
not depend on the singular values, maximizing it reduces to maximizing (Py Q% L, Py Qy
M) and therefore Theorem 1 applies.

Some Orthogonal-Linear Transformations

Some situations impose orthogonality conditions on only one of the transformations,
which will be assumed to be X. In this case any linear transformation M may be applied
to Y. For example, X may be the consequence of a p-dimensional Euclidean multidimen-
sional scaling analysis while ¥ may contain a set of ¢ measurements on the stimuli ob-
tained in some other way and without any prior conditions on the correlations among
them.

Some overall scale constraint must be imposed on M in order to achieve identifiabil-
ity. The following is used here:

D5. tr (MYWYMN)=|YM|?=s.

The inner product (XL, Y M) is maximized as specified in the following theorem.
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Theorem 3. If constraints D1 and D5 hold and Y'Y is nonsingular, then the maxi-
mum of (XL, YM) is given by

Mo (YY) 'Y'XL,
and
L=1] if p=s or L=QC, if p>s,
where @ is given by the svd
X'Y(Y'Y) 'YX = QDQ. (15)

Proof: For any L, M as defined can easily be shown to be a maximizing value of M
which yields a finite maximum. Thus (XL, YM) < (XL, Y(Y'Y)"'Y’L) and it remains to
apply Lemma 2 to show that (XL, Y(Y'Y)"'Y'L) < tr (D) and that this bound is attained
when L is as defined. d

Corollary: When g = s = 1, L is proportional to X'Y and M = 1.

The extension of Theorem 3 to the general case is along the same lines as the exten-
sion of Theorem 1.

The general problem of maximizing correlation r, in the orthogonal-linear case must
also be dealt with numerically. The algorithm described in the Appendix can also deal
with this situation.

An Example: Evans’ Factor Patterns

Evans (1971) in his extensive discussion of matrix comparison procedures provides a
number of factor pattern matrices resulting from the extraction of six factors from obser-
vation on 18 variables. One set of observations was taken from Canadian sixth grade
children, and this factor matrix is to be compared from data on Filipino children at the
same level. The two matrices are displayed in inside-out format (Ramsay, 1980; Wainer &
Thissen, 1981) in Table 1. Evans’ paper can be consulted for the original numbers.

Comparing Correlational Measures for s = 6

The first analysis involves calculating all of the coefficients discussed in the section on
orthogonal-orthogonal correlation for a six-dimensional comparison. In this case
p = q = s and the optima of all measures can be obtained without recourse to numerical
methods. Table 2 displays these correlations. The maximal r, value (.80) and Escoufier’s
RV (82} give similar results and indicate a high degree of agreement between the two
matrices. Coefficient r, (61), however, which is equivalent to r, when the two matrices
have been rotated to principal axis orientation, is somewhat lower suggesting that this
orientation does not make the matrices as comparable. Similarly, removing the effect of
the singular values by computing coefficient r; (.71) also lowers the correlation. Coef-
ficient r, (.36) compares the matrices in principal axis orientation and with spectrum
removed and is thus much lower, as is coefficient GCD (.58) This suggests that there is
strong agreement in the directions corresponding to dominant singular values since the
spectra play an important role, but that agreement associated with subdominant singular
values is poor giving rise to low correlations when the matrices are in effect put in prin-
cipal axis form.

Comparing Values of r| for Different Values of s

The next step is to consider the correlation between the two matrices for each possi-
ble dimension of comparison. Figure 1 displays the maximized conventional inner prod-
uct correlation r; along with the correlation resulting from maximizing (XL, YM) for
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Two Varimax-Rotated Factor Patterns from Evans (1971)

Displayed in Inside-Out Format

Factor
Loading | 1

Canadian

3 4 5 6 1 2

Filipino

z 4 5 6

1.00
.97
.93
.90
.87
.83
.80
77
.73
.70
.67
.63
.60
.57
.53
50
A7
.43
.40
.37
.33
.30
.27
.23
.20
.17
.13
.10
.07
.03
.00

R —————
| S B0 ) S X~ "B T

-.07
-.10
-.13
-.17
-.20
-.23
-.27
-.30
-.33
-.37
-.40

FE

XJ

i

jo)

[N

G
A

HPC
Q

BJ FA A
TOEK REGB I
RNF D D
MLP NM

NHE

M O PR N Z O

o

KGB

The value of a factor loading for a variable is given by the row
in which the letter corresponding to that variable is located.
Dashes indicate more symbols than can fit in a particular position.
The correspondence between letters and variables is as follows:

A Verbal meaning G Identical pictures

B Vocabulary H Maze tracing

C Word endings I Finding A's

D Word beginnings J Arithmetic

E Spatial relations K Subtraction, multiplication
F Card relations L Division

M
N
0
P
Q
R

Letter series
Word grouping
Number series
Raven's matrices
Picture-number

Object-number
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Table 2. Correlational Medsures for Factor Patterns in Table 1
Assessed for the Optimal r Transformations and s = 6

Correlation r, RV 1, r, r, GCD

Original Estimate |.80 .82 .61 .71 .36 .58
Jacknifed Estimate |.67 .79 .45 .70 -.10 .48

each possible comparison dimension s. Here one notices that the correlation is very high
in up to three dimensions and then begins to fall off fairly rapidly, indicating again that
the two factor solutions are very similar in their dominant modes of variation but have
significant differences in their minor modes of variation. Note, too, that the maximizing of
the inner product falls well short of providing the maximum inner product correlation.
Figure 2 displays the factor solutions matched in two dimensions by maximizing r,.

10
C
ko]
©
g 09}
@]
O
X
=
g ————MAX CORRELATION
\
= MAX INNER PRODUCT \
o8-
i ] | ] L ]
1 2 3 4 5 6
Dimension of Comparison
FiGURE 1

The points joined by a solid line indicate the size of the inner product correlation r, when maximized in each
possible dimensionality for the Evans data. The points joined by a dashed line indicate the values of r,
obtained by maximizing the inner product.
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75—
50—
25—
-0
~ 25—
= 504 1 1 | |
- 25 -0 25 50 75 100

FIGURE 2
A comparison of the factor loadings for the Canadian {C) and Filipino (F) data after rotation to maximize the
inner product correlation ry in two dimensions. The first letter in each point label identifies the variable as
specified in Table 1. Decimal points have been suppressed in the axis labels.

Jacknifing to Assess Stability

The stability of these coefficients is naturally an important question. The techniques
of jacknifing and bootstrapping suggest themselves in this context. If one had access to
the original data, these procedures could be applied in the usual way. However, one may
also jacknife by eliminating each pair of corresponding rows in turn. The results cannot
be interpreted in a statistical sense, since the results in one row certainly would be differ-
ent if any other row (variable) were eliminated from the original design. However, this
process should nonetheless be able to give valuable clues about the extent to which corre-
lations depend on the values in a particular row and some overall indication of the rela-
tive stability of the measures. Moreover the jacknifed estimates of the correlational mea-
sures will to some extent correct for the natural bias in these measures resulting from their
optimization. The pseudovalues for measure r are given by r,=nry —(n — yr_;, i =1,
..., n, where r, is the measure for all rows present and r_, is the measure for the ith row
removed. Table 3 displays the pseudo-values for each measure for the full six-dimensional
comparison in inside-out format. From this it is clear that the rows corresponding to the
tests “maze tracing” and “finding A’s” exert a strong influence on measures r,, r, and
GCD. The fact that their pseudo-values are low for these measures indicates removing
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Table 3. Pseudo-values for Correlational Measures
Pseudo- 14 RV r, ry T, GCD
value
3.0
2.9
2.8 A
2.7
2.6 A
2.5
2.4
2.3
2.2
2.1
2.0
1.9
1.8
1.7 B
1.6
1.5 B
1.4 J
1.3 J
1.2 Q
1. _EA _ _ _RE _ __ _ _ _____
1.0 E PO - KDF -
.9 FAB FB CAG J QER
.8 JRKL DLRNC P BL KDFA
.7 QOPCDN QGM R J R C
.6 MG KI NE OPM GB
.5 H I N M
.4 DFG G OLJ
.3 I QC P
.2 H L Ip N
.1 N
=0 o _I1__o___ ____ _
-.1 H DQCE
-.2 H F I
-.3 0
-.4 K L H
"nS
-.6
-.7
-.8
-.9 M
-1.0
-1.1 H
-1.2
-1.3
-1.4
-1.5 K
-1.6
-1.7 0
-1.8
-1.9
-2.0
-2.1
-2.2
-2.3
-2.4 M

-2.5
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Table 4. Row Weights (x100) for Robust Analyses of ry
Variable A B CDEF G H I § K L M N O P Q R
Original Data 98 95 89 90 98 97 88 76 79 84 87 84 84 84 89 84 90 95

Canadian A 00 93 89 90 98 98 88 79 79 98 86 94 82 84 92 86 96 96
Loadings x 10

these rows increases the measures sharply and thus that these rows tend to depress the
overall correlation. Similarly, the test “verbal meaning” has a strong but opposite impact
on measures r, and r,; that is, removing this row decreases the correlation indicating that
the overall correlation is strongly dependent on this test. Table 3 also permits a visual
inspection of the variability in the pseudo-values for each measure and it is clear that both
r, and RV are highly stable while r, and r, are very unstable. The average pseudo-values
give the jacknifed estimate of the correlation and are given in Table 2. Jacknifing in this
way obviously shrinks all correlations substantially.

Using Metric W to Achieve Robustness

One of the considerations that may lead one to use something other than the identity
matrix for W is the desire to weight rows less heavily which are associated with markedly
poor congruences. In order to illustrate how this can be done, a robust analysis of the
correlation r, between these matrices in six dimensions was used along the lines suggested
by Ramsay & Novick (1980). It proceeded as follows:

1. Compute L and M optimizing r,, E = XL — YM, and assess r,.
2. For each column of E compute

n—2
s;=m—=4"" Y ehy
i=3

where ¢,; is the ith order statistic in column j. This gives a trimmed estimate of
variance for each column of E.

3. Compute d? = Y, e}/s? and w;; = exp (—.02d]), i = 1, ..., n. This defines the diag-
onal metric matrix W.

4, Assess r; in the metric W. Check to see if it differs substantially from the pre-
viously assessed value. If so, recompute E and return to step 3.

This algorithm will converge quickly to a metric which will apply weights of nearly
unity to rows of XL and YM which have a reasonable congruence as defined by the
standardized distance measure d;, and will apply reduced weight to rows having substan-
tially poorer congruences. The constant .02 controls the rate at which rows are de-
weighted for large distances. In general, an appropriate value for this constant is
1/(2x%01), Where x%,, is the 0.001 critical value of chi squared with p degrees of freedom
(Ramsay, 1980).

The algorithm converged in 3 iterations using a criterion of a change of .0001 in r,
from one iteration to the next, and produced a final value of 0.81. The final weights
associated with each row are given in Table 3. The somewhat lower weights associated
with the variables H and I are one more indication that these variables are tending to
reduce the value of r,. Also in Table 3 are the weights associated with the robust analysis
after multiplying the variable A4 loadings for the Canadian factors by 10. Again the algo-
rithm converged in three iterations and moved from an initial correlation of .50 to a final
value of .80.
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Conclusions

The problem of correlating two matrices presents many aspects. One must decide
what invariances the correlation is to have, with invariances with respect to rotation,
spectrum change, and linear transformation all being possibly desirable. In general a par-
ticular kind of invariance can be achieved in one of two ways. The first is the use of a
correlational measure which is intrinsically invariant in the desired way. For example, if
rotational invariance is required, then one might choose RV, r,, or r,. The second pro-
cedure is to optimize a correlation over the class of transformations with respect to which
invariance is desired. The optimized correlation is then automatically invariant, ignoring
possible local optimum problems. Thus, the problem of optimizing r, with respect to
rotations and linear transformations has been considered. This second approach has the
advantage that optimizing transformations themselves may be of considerable interest,
but is obviously more expensive in general. It appears that coefficient RV should be better
known as a generally useful way of comparing two matrices defined to within either
rotations (when it is automatically invariant) or to within linear transformations (when it
can be optimized simply).

An aspect of matrix correlation that also deserves more attention in the authors’
opinion is the possibility of comparing the matrices in a subspace of dimension s. Two-
dimensional comparisons have obvious value from a graphical perspective. As the exam-
ple illustrated, it may also be desirable to try out a range of subspaces to determine a
dimensionality for the comparison which is close to that for s = 1 while being substan-
tially less than s = min (p, q). The incorporation of the external orthogonality constraints
D3 and D4 into the theorems on optima makes it possible to carry out a series of com-
parisons for a fixed value of s, such as 2, which are mutually orthogonal.

Finally, the results in this paper have depended heavily on the singular value de-
composition. This essential tool has a number of generalizations which can be used to
widen the scope of the results in this paper. For example, its counterpart for continuous-
time stochastic processes is known as the Karhunen-Loeve decomposition, while versions
also exist for the more general class of compact continuous linear mappings from one
Hilbert space into another.

Appendix

The problem of optimization of a function with respect to orthogonal matrices arises
very often in multivariate data analysis and frequently cannot be solved analytically. Nu-
merical methods have been developed for many special cases, especially in the psycho-
metric and factor analytic literature. The algorithm described here is in the spirit of most
of these approaches in that the function is optimized in each possible plane in turn,

When the orthogonal matrix L is p by s, p > s, these rotations fall into three subsets.
The first contains rotations within the space spanned by L, which can be taken to be
within planes defined by two different columns of L. The second contains rotations in
planes defined by a column of L and one in its orthogonal complement [* defined by the
relation L:I* ¢ Of®. The third contains rotations in planes entirely within the space
spanned by I*. Since these latter do not affect the function being optimized, only the first
two sets are of importance. The first set is defined by the class of transformations LH,
H € OF, and optimization with respect to such rotations reduces to optimization with
respect to H. Fortunately, it is often possible to find the optimal H in a single step; this is
the case for ry and for the Procrustes problem, for example. For such problems, planar
rotations are required only for planes involved in the second set; that is, for rotations of
vectors with images in the column spaces of both L and I*. It is worthwhile, therefore, to
consider the sets separately.
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An algorithm which has worked well in practice proceeds as follows for a function
F(L, M), L subject to constraint DI and M subiject to either D2 or DS:

0. Compute an appropriate pair of initial values I! and M@,
1. Modify L on iteration v as follows:
1.1. Optimize F with respect to rotations of the first kind.
1.2. For each pair (i, j), 1<i<s, 1<j<p-s, let I!*Y be defined as
cos § LY + sin @ L¥® and carry out a single optimization step regarding F as
a function of 6. This might employ Newton’s method from an initial value of
# = 0 with a possible reduction in step size in order to ensure an improve-
mentin F.
2. Modify M as was done for L if M is subject to D2 or as appropriate if D5 applies.
3. Test for convergence. If successful, exit; otherwise return to 1.

This algorithm is expressed in Figures 3 and 4 using the PROC MATRIX language
of the Statistical Analysis Systems (SAS). Since the syntax of this matrix-oriented
language is more or less self-explanatory, this procedure can be used as a pattern for
developing algorithms in other languages as well as being directly executable in SAS. For
further details on PROC MATRIX the manual should be consulted (SAS Institute, 1982).

The procedure is written as a SAS MACRO so that the essential parameters can be
passed to the procedure through a call to the macro. It should be noted, however, that the
single quote in the program below is not processed properly by version 82.4 or previous
versions of SAS, and must be replaced by % STR (%) prior to execution. The DQUOTE
option is also required.
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