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A correlational measure for an n by p matrix X and an n by q matrix Y assesses their relation 
without specifying either as a fixed target. This paper discusses a number of useful measures of 
correlation, with emphasis on measures which are invariant with respect to rotations or changes 
in singular values of either matrix. The maximization of matrix correlation with respect to trans- 
formations XL and YM is discussed where one or both transformations are constrained to be 
orthogonal. Special attention is focussed on transformations which cause XL and YM to be n by 
s, where s may be any number between 1 and min (p, q). An efficient algorithm is described for 
maximizing the correlation between XL and YM where analytic solutions do not exist. A factor 
analytic example is presented illustrating the advantages of various coefficients and of varying the 
number of columns of the transformed matrices. 

Introduction 

Given  two matrices X and  Y with p and  q co lumns  respectively and both  having n 
rows, the matrix correlat ion process typically requires two steps: 

1. Apply t ransformat ions  L and  M to produce matrices X L  and  Y M ,  respectively, 
where both t ransformed matrices have s columns,  and  

2. Use an appropria te  measure of correlat ion r(XL,  Y M )  to summarize the match 
between the t ransformed matrices. 

These two steps are usually connected in that  the t ransformat ions  will be required to 
maximize the correlation. It  may  be that  there will be some constra ints  on the possible 
t ransformations.  

The prototypical  matr ix  correlat ion technique is u n d o u b t a b l y  canonical  correlat ion 
analysis, which provides a symmetric  assessment of the congruence  of two matrices X and  
Y having n rows and  p and  q columns,  respectively (n _> p, q). The two matrices are 
matched by t ransformat ions  L and  M so as to maximize the bi l inear  form (XL ,  Y M )  ~= 
tr ( L ' X ' Y M )  under  the or thogonal i ty  const ra ints  L ' X ' X L  = I and  M ' Y ' Y M  = I. This 
process may be described as either stepwise with matrices L and  M being p by 1 and  q by 
1, or  global with L and  M being p by s and  q by s, s = mi n  (19, q). In  the stepwise case 
there are the addi t ional  condi t ions  L ' X ' X J  = 0 and  M ' Y ' Y K  = 0 where J and  K are the 
t ransformat ions  computed  in previous steps. Canonica l  correlat ions have been defined in 
many  ways: by classical analysis (Hotelling, 1936), by the theory of projectors (Rao & 

This research was supported by grant APA 0320 from the Natural Sciences and Engineering Research 
Council of Canada. The authors wish to acknowledge valuable discussion of this problem with Jan de Leeuw, 
University of Leiden. Reprint requests should be sent to the first author at Department of Psychology, 1205 Dr. 
Penfield Ave., Montreal, Quebec, Canada H3A 1B1. 

0033-3123/84/0900-5036500.75/0 403 
© 1984 The Psychometric Society 



404 PSYCHOMETRIKA 

Yanai, 1979; Yanai, 1974), by singular value decompositions (Lancaster, 1969), by special 
matrix operators (Escoufier, 1973, 1977), and by functional analysis (Cailliez & Pages, 
1976; Dauxois & Pousse, 1976). They have also been generalized in a number of ways: to 
more than two matrices (reviewed by Kettenring, 1971), to sets of random functions 
(Besse, 1979), to nonlinear transformations (Dauxois & Pousse, 1976), and to matrices 
containing indicator variables (Pages, Ramsay, & Tenenhaus, 1984.) 

Implicit in all of this work has been the assumption that the rows and columns of X 
and Y have no internal structure that is not preserved by linear transformations, and thus 
that the convenient orthogonality constraints, L ' X ' X L  = I and M ' Y ' Y M  = I ,  are as valid 
as any other. It often arises in practice, however, that the only transformations that can be 
entertained for one or both matrices are orthogonal in some prespecified sense; that is, 
they satisfy the constraints L ' U L  = I and/or M ' V M  = I where U and V are symmetric 
positive definite real matrices. The most familiar of such situations arises when two factor 
pattern matrices derived by orthogonal factor analysis are to be compared, with the only 
possible linear transformations being orthogonal rotations. In multidimensional scaling, 
where a number of algorithms have been developed to use the individualized generalized 
Euclidean distance model d2r = (xi  - x f f U r ( x i  - x j ) ,  it may be desirable to compare two 
solutions derived using different metric matrices UI and U2. In such a case one must 
consider linear transformations which reduce the two configurations to a common metric. 
When this metric is the identity metric, this implies that one transformation must be 
Ul-orthogonal and the other U2-orthogonal. As another example let X be subject only to 
rotations and let Y be subject to any linear transformation, as would be the case when a 
multidimensional scaling configuration is to be compared to a set of other measures on 
the stimuli. Such problems require the constraints L ' L  = I and the fixing of tr ( M ' Y ' Y M )  

to a specified value. 
It may also be desirable to compare two matrices in a space of dimensionality s some- 

where between one and min (p, q). A best representation of each matrix in a plane is 
especially useful for graphical displays of the relationship. While various functions of the 
first s canonical correlations permit a summary of congruence in s dimensions when any 
linear transformations are possible, it will be shown that the situation is not so simple 
with arbitrary orthogonality constraints. 

In addition to the constraints on L and M and the dimensionality of comparison s, a 
third aspect of the matrix congruence problem is the choice of measure of correlation 
between the two transformed matrices. There are many possibilities, and certain advan- 
tages attach to certain choices. Within the context of canonical correlation a number of 
indices have been reviewed by Cramer and Nicewander (1979) and still others will be 
proposed here. 

Implicit in any matrix correlation technique is a choice of metric for the row and 
column spaces associated with the two matrices. In almost all published work these are 
assumed to be the identity metrics, but there are often good practical reasons for applying 
differential weights to rows and/or columns. For  example, in comparing two factor pat- 
tern matrices, where rows correspond to variables, it may be worth applying less weight 
to each variable within a block of variables known in advance to be very similar to one 
another. One may also wish to diminish the influence of variables known to be highly 
prone to measurement error. A choice of column metric is implied in comparing two 
multidimensional scaling solutions where one is primarily interested in how the first two 
dimensions match but one does not wish to ignore altogether the influence of other di- 
mensions. Finally, a matrix correlation may be made robust against unusual or outlying 
rows or columns by appropriate choice of metrics. Thus, we assume that the metric for 
the column space is represented by symmetric positive definite matrix W of order n, and 
the metric for the row space by symmetric positive definite matrix N of order s. 
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Two matrices may also be related by minimizing a distance measure such as 
II Y M  -- XLII z ..= [-tr ( Y M  - X L ) ' ( Y M  - XL)] with respect to L and M. This approach is 
usually referred to as Procrustes rotation. Although the emphasis in this paper is on 
correlational measures of relationship, some remarks will be made on this problem where 
appropriate. A fairly general treatment of Procrustes rotation in arbitrary row and 
column metrics is in Rao and Yanai (1979). 

In this paper the problem of how to transform two matrices to congruence will be 
discussed separately from the problem of how to assess congruence after the transforma- 
tions have taken place. Thus in the second section various indices of matrix correlation 
are presented which form a natural family with respect to their sensitivities to the orienta- 
tions and degree of ellipticity of the two matrices. In practice two matrices are compared 
by choosing a measure of correlation and then transforming the matrices so as to maxi- 
mize this measure. Results are presented in the next two sections on the optimization of 
these measures. Section 3 discusses the case in which both L and M are subject to arbi- 
trary orthogonality constraints, and Section 4 discusses the case in which only L is con- 
strained to be orthogonal. A practical example involving the comparison of two factor 
analysis results is given in the fifth section. 

Notation and Preliminary Results A goal of this paper is to offer an exposition of 
the matrix correlation problem in the context of arbitrary metrics W, N, U, and V. How- 
ever, for simplicity these will all be assumed to be identity matrices when correlational 
formulas and theorems are initially stated. The general results will only be stated without 
proof and then only when the generalization is less than obvious. However, in order to 
deal with arbitrary metrics, the following notation and lemma are essential. 

The real numbers will be indicated by ~ and the fact that a real matrix X has n rows 
and p columns will be indicated by X ~ ~"P, where ~"P is the vector space of real n by p 
matrices. Real symmetric matrices of order s will be denoted by S~ and if also positive 
definite by S +. Thus row metric W ~ S + and column metric N ~ S + . The subset of ~ps 
consisting of matrices L satisfying L'UL = I will be indicated by O§ s. The symbol ,= will 
be used to mean "is defined to be." 

Two matrices A and B will be said to be column-orthogonal in the metric W when 
A ' W B  = 0 and row-orthogonal in the metric N when ANB'  = 0. The inner product (A, B) 
in metrics W and N is tr (A 'WBN)  with the associated norm [I AII -'= [tr (A 'WAN)]  1/2. 

The following extension of the singular value decomposition theorem (svd) is funda- 
mental to a general treatment. 

Lemma: Given matrices U ~ S + and V e S~,  and an arbitrary matrix A ~ :~Pq, 
p.__> q, there exist matrices P ~ O§ q , Q ~ O~, q and D such that 

(a) D is diagonal with dll  -> " "  > dqq >_ 0 
(b) A = PDQ' 
Proof Let U and V have the decompositions 

U = Qv Dv V~ and V = Qv Dv Q'v, 

respectively. Their symmetric square roots are given by 

U1/2 1/2 , = Qu Du Qv and V = Qv D1/ZQ'v. 

Let the matrix U1/2AV 1/2 have the conventional singular value decomposition P*D*Q*'. 
Then the matrices P ..= U-1/2p, ,  Q ..= v - I / 2 Q , ,  and D ..= D* have the required proper- 
ties. []  

The singular value decomposition in metrics U and V, called here the (U, V)- 
orthogonai svd, corresponds to the definition of the eigenequation of a symmetric matrix 
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C in metric N as CNz = 2z, and the eigenvalues and eigenvectors of C are obtained by 
the (N, N)-orthogonal svd C = QDQ'. An arbitrary power C" of a positive semidefinite 
matrix C in metric N is defined as C m ,= QD"Q', where the power of a diagonal matrix 
will always be taken to be the result of taking the positive diagonal elements to that 
power. In particular, C I/z defined in this way satisfies the equation C~/2NC 1/2 = C. Un- 
fortunately, the power C-1 corresponds to the usual definition of an inverse only in the 
metric I ;  although C-~NC = C °, C O # I and C - t C  # I in general. Wherever the power 

- 1 is used the metric involved will be made explicit. The set of singular values of A and 
the diagonal matrix D will be referred to as the spectrum of A. The singular value de- 
compositions of two matrices A and B will be denoted by A = P a D A Q )  and B = 
P8 DB Q~, respectively. 

The matrix correlation problem requires us to find matrices L and M subject to the 
necessary orthogonality constraints, and then to measure in some way the correlation 
r(XL, YM)  between the transformed matrices. We have essentially two choices to resolve: 
how shall we define the mappings L and M subject to the required orthogonality con- 
straints, and what correlation function r(. ,  .) shall we use? It may be that these problems 
are related; it is common to first choose a correlation measure and then optimize it with 
respect to the mappings. However  other strategies are feasible, and therefore these two 
steps are treated independently in the next two sections. 

Correlational Measures for Matrices 

A function r ( - , . )  must satisfy the following necessary conditions before it can be 
considered a useful measure of matrix correlation (Renyi, 1959): 

Definition 1: The mapping r: ~"~ x ~"~---~ [0, 1] is called a correlation function in 
the metric W if for all nonzero scalars x and y, and when A and B are not both zero, 

C1. r(xA, B) = r(A, yB) = r(A, B) 

C2. r(A, B) = r(B, A) 

C3. r ( A , B ) =  1 if A = y B  

C4. r(A, B) = O iff A ' W B  = O. 

(1) 

In practice a correlational measure may be a mapping into [ - 1 ,  1], and for such a 
measure these conditions are understood to apply to its absolute value or its square. 

These conditions are necessary but not sufficient to ensure a useful measure of matrix 
correlation. In fact, matrices may be similar or dissimilar in a great many ways, and it is 
desirable in practice to capture some aspects of matrix relationships while ignoring others. 
This can take the form of specifying the converse of C3 by devising further situations 
leading to unit correlations. 

Inner Product Correlation rl 

The most  common measure of matrix correlation is based on the inner product 
(A, B) .'= tr (A'B). Because of the Cauchy-Schwarz inequality the absolute value of the 
correlation coefficient 

rl(A, B) .'= tr (A'a)/[ tr  (A'A) tr (B'B)] 1/2 

= (A, B)/(ll a II II B II) (2) 
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satisfies C1-C4. Expressed in terms of the singular value decompositions (svd's) of A and 
B, 

r~(A, B) = tr (QA DA P~ PB DB Q~)/[tr (D]) tr (D~)] t/2 (3) 

where the powers of the diagonal matrices DA and DB are taken in the identity metric. 
When general metrics W and N are involved, (A, B)= tr (A'WBN) and the svd is 
(W, N)-orthogonal. Note that this measure is invariant with respect to postmultiplication 
of each matrix by a rotation matrix T only when N = I. The expression of rt in terms of 
the svd's of the two matrices helps to show that its value depends on three aspects of each 
matrix: 

(i) the orthonormalized matrix P which is the most basic component, 
(ii) the spectrum or scale component D, and 

(iii) the orientation or correlational component Q. 

This measure has been used explicitly or implicitly in almost all work on matrix corre- 
lation. It will be shown in the following section that a variety of other measures are 
equivalent to it under certain circumstances. Lingoes and Sch6nemann (1974) discuss rl in 
the context of assessing a comparison of X and Y by Procrustes rotation. It will be shown 
in the next section that this process does not in general maximize rt, however. 

Orientation-Independent Inner Product Correlation 

The dependency of r I on the relative orientations of A and B can be removed by 
deleting QA and Qs from the trace in the numerator: 

r2(A, B) := tr (D a P'A PBDa)/[tr (D 2) tr (D2)] 1/2 

= ( P a D  t ,  PsDB)/(I[ AI] II B t[) 

= r l ( P  A D a , PaDs) .  (4) 

This index is equivalent to computing r~ if either both A and B have orthogonal columns 
or Qa = QB. It reaches unity not only when the two matrices are proportional, but also 
when they can be made so by post-multiplication of either by a rotation matrix T. In the 
general metric case T is replaced by N1/2T, where N-orthogonal and N 1/2 is taken in the 
identity metric. 

Spectra-Independent Inner Product Correlations 

The size of the inner product correlation rl will depend on whether the two sets of 
singular values or spectra, DA and Dn, are similar or not. Two further indices can be 
derived from rl and r E by replacing the spectra by identity matrices: 

ra(A, B) ,= s- 1 tr (QA P~ Pa Q~) 

= S -  l ( P  A Q~, P~ Q~) 

and 

= ri(Pa Q'A, PB Q'8) (5) 

r4(A, B) ,= s-  1 tr (P~ PB) 

= S-  I (pA,  PB) 

= rl(PA, PB). (6) 
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Coefficient r a can also be expressed as 

r3(A, B) = s- 1 tr [A'A)- 1/2(A'B)(B'B)- 1/21 

since (A'A)- t/2 = (Qa Da P'A P A D A Q'A)- 1/2 = QA D a 1Qla 

(7) 

Escoufier's R V Coefficient 

Escoufier (1973, 1977; Robert  & Escoufier, 1976) has proposed 

RV := tr (B'AA'B)/{tr [(A'A) 2] tr [(B'B)2]} 1/2 

rl(PaO 2 P'A, 2 , = Pn Do PB) (8) 

This coefficient is closely related to r2 in that all traces in RV are taken with respect to the 
squares of the matrices involved in the corresponding traces in r2. Thus, this index is also 
orientation-independent and provides a technique for assessing correlation in the same 
sense as r 2 . However, RV has the advantage of being expressible in terms of the original 
matrices rather than their singular value decompositions. 

Yanai's GCD Measure 

Yanai (1974) has proposed the trace of the product of two orthogonal projectors 
derived from A and B as a global measure of relationship. Converted to a correlation 
coefficient, it is 

G C D  *'= s -  1 tr (A(A'A)- 1A'B(B'B)- 1B') 

= rl(Pa P'a, Pa P'a). (9) 

This measure is also the average of the squared canonical correlations between A and B, 
and thus it is not surprising to discover that it is orientation-spectra-independent. In the 
general metric case for both RV and G C D  we can have different column metrics, N1 and 
N2, for A and B, respectively. 

Thus we have in rx-r  4 a natural and complete system of coefficients completing the 
two-by-two table corresponding to orientation and spectrum independence. In each case 
the coefficient can be expressed in terms of the singular value decomposition, and in the 
case of r 2 and r ,  there associated coefficients, RV and GCD,  respectively, which are ex- 
pressible in terms of the original matrices. In the special case of s = 1, these coefficients 
are related as follows: 

r 1 = r 2 = r 3 = r4, r 2 = RV = GCD.  

Many other families of correlation measures are possible which give varying sensiti- 
vities to the orientations and spectra of the two matrices. Since multiplication of a matrix 
by a scalar affects only its spectrum, one could in principal use any positive power of  the 
singular values in r I or r 2 to provide a continuum of sensitivity to spectrum. Alternatively, 
if X = PDQ', then we may use X* = PDHQ' as an argument in r l, where H is a diagonal 
matrix containing positive weights to be applied to the singular values. 

It should be noted that the components  PA and QA of the singular value decompo- 
sition of A are defined only to within mutual sign changes in any column even when the 
singular values are distinct, Thus, in computing coefficients r 2 and r 4 it will be necessary 
to ensure that corresponding columns of PA and PB are sign-compatible. This can be 
achieved by reversing the sign in any column of PA when the inner product of that 
column with its mate in Pn is negative. 
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Some Orthogonal Transformations o f  X and Y 

The complement to the problem of choosing a correlation index is the problem of 
mapping ~t "p and g¢"a into the comparison space ~,s  in which the index is to be applied, 
so that the correlation measure can be applied to X L  and Y M .  We assume here that only 
linear transformations or orthogonal transformations are to be entertained, and in partic- 
ular that the two matrices are comparable with respect to their column origins. This 
would automatically be the case for factor pattern matrices, but analyses involving multi- 
dimensional scaling configurations or arbitrary variables may require preliminary column 
centering. 

In order to avoid trivial mappings, it is necessary to specify both normalization con- 
ditions and orthogonality conditions. If these are not determined a priori, then the choice 
is a matter of convenience. In general we shall wish to impose: 

and possibly 

D1. L ' U L  = I, 

D2. M ' V M  = I, 

D3. L ' U J  = O, J • O~ t, 

D4. M ' V K  = O. K • 0~. 

where t < rain (rank (X), rank (Y)) - s, and U and V are metric matrices. Constraints D1 
and D2 are internal orthogonality constraints while D3 and D4 are constraints with 
respect to previously computed or observed matrices J and K and thus are external. 
Matrices J and K can always be expressed in orthogonal form if they are not already 
thus. That  they should have the same number of columns is not necessary in general, but 
will hold in most practical situations and is assumed for simplicity. 

In order to keep the exposition as simple as possible the theorems in this section will 
be proved only for constraints D1 and D2, and assuming that W and N are identity 
matrices. However, in some situations where the extension to D1-D4 is not obvious, the 
more general results will also be stated. Associated with the external constraints are the 
projectors 

H j  ,= I - J J 'U  and H r ,= I - K K ' V ,  (10) 

which satisfy H s L = L, H s J = O, H r M = M, and H x K = O. 

Clipping Transjbrmations 

One simple class of transformations are those which map X and Y into subsets of 
their columns. These are valuable when X and Y are already defined with respect to 
rotation, perhaps by previous transformation to principal axis or by optimizing some 
analytic rotation criterion. It may be then that we simply wish to compare X and Y in 
terms of certain columns while ignoring differences on others. The matrix Cs • ~PS defined 
as differences on others. The matrix C~ • ~ps defined as the first s columns of the identity 
matrix will be called a clipping matrix, and is l-orthogonal.  The number of rows of C~ will 
be obvious from context. 

Maximizing the Inner Product 

There are a variety of reasons why one might wish to transform so as to maximize 
the inner product (XL,  Y M )  ..= tr ( L ' X ' W Y M N ) .  Under some circumstances this is equiv- 
alent to maximizing the correlation rl, and in any case the transformations maximizing 
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the inner product can provide useful starting values for iterative procedures for maximiz- 
ing a number  of correlational measures. 

The following lemma permits a simple extension of the results for constraints D1 and 
D2 to those for D I - D 4 .  

Lemma 1: The maximal value of (XL, YM) under constraints D 1 - D 4  is equal to the 
maximal value of (XH s L, YH r M) under constraints D1-D2.  

Proof: Let L* and M* be the optimal values for (XHjL ,  Y H K M  ) under D1-D2.  L* 
and M* can be decomposed into the sums L* = L* + L* and M* = M* + ME* where L~' 
and M* are in the subspace spanned by J and K, respectively, and L* and M* are in the 
respective orthogonal complements of these subspaces. Substitution of these sums into 
(XHj  L*, YH x M*) shows that (XHj  L*, YH s M*) = (XL*, YM*). Now suppose that there 
is a pair of transformations L ° and M ° satisfying D 1 - D 4  such that (XL °, Y M  °) > 
(XL*, YM*). Then H s L ° = L ° and HK M ° = M ° imply that (XL °, Y M  °) = (XH s L °, YHK 
M °) > (XHj  L*, YH x M*). But this contradicts the hypothesis made about  L* and M* 

a n d  thus the lemma follows. [ ]  

The following very important  lemma states a result first proved by von Neumann  
(1937). 

Lemma 2: For A, B e ~ ,s  with singular values ei -> " "  -> e~ and fli _> . . .  _> fls, re- 
spectively, tr (A'B) _< ~ cq fl~. 

Proof: The ar~'~ment proceeds by (i) proving Abel's Identity, (ii) proving the result 
for A and B symmetric, and (iii) extending the result to general matrices. Since the Lemma 
states the Cauchy-Schwarz inequality when s = 1, it will be assumed that s > 1. 

(i) The following identity may be verified at once for s = 2: 

~ a i b i =  (ai--ai+l) bj + a , ~ b j .  (11) 
i = 1  i = 1  j = l  j = l  

s - I  

aibi + albl + a~bs 
1-,2 

~=2 ~=1 b i -  ~=1 bj + a ' b l - a s ~  +as bj 
ai x j  j j = l  j = l  i 

= bj - bj + as b i 
i = 1  j = l  

i = 1  \ j = l  / i j = l  

= ( a i -  bj + a~ bj. 
i=1 j = l  

When s > 2, 

~__~ ai bi = 
1 

(ii) Now let A and B be symmetric, of order s, and with eigenvalues 21 > -. • >_ 2s, 
#I > ' " >  #s, 2s and ~L, possibly negative. Then A = PAP', P e O~ s, and tr A'B = tr 
PAP'B = tr AP'BP = ~ 2~ b, ,  where b ,  is the ith diagonal element of PBP'. The majori- 
zation ~k bu -< ~k #,, k < s, results from the inequality 

k 
tr L'BL <_ ~ Pi, EL = I 

1 
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(Rao, 1973, p. 63). Thus, by Abel's Identity (i) and the fact that B and PBP' have the same 
eigenvalues 

tr A'B = 2ib, = 2 ('~i - -  "~i+ bjj + 2~ bjj < 2~lai. 
i=1 i=1 j = l  i=1  

(iii) For A, B ~ ~"~, n >  s, with singular values as stated in the lemma, the corre- 
sponding symmetric matrices of order n + s, 

A*~=[  0 0 ' ]  and B*,=[OB BO' ] ,  

are symmetric, of order n + s, and have nonzero eigenvalues + ,q, +/~i, i = 1, . . . ,  s. The 
inequality then follows from the fact that 

tr A'B = ½ tr A'B* < ½ Y' [~i/~ + ( -~ iX-]~)]  = ~ ~i~i. [ ]  

Lemma 2 gives a upper bound for (A, B) which is much tighter than II A II Jl B Jl given 
by the Cauchy-Schwarz inequality when s > 1, and which is attainable under orthonor- 
mal transformations. It has many important consequences. The first proof was by von 
Neumann (1937) with later proofs by Richter (1958) for symmetric matrices, Mirsky 
(1959), and Theobald (1975). Fan (1951) and Kristof (1970) extended the result to more 
than two matrices, with the latter applying the result to a number of multivariate data 
analytic problems, ten Berge (1983) extended Kristof's results and presented a number of 
applications. This proof, which appears in print for the first time, seems to the authors to 
be much shorter and simpler than previous arguments and is due to Styan (1976). 

The following theorem subsumes a number of well known results: 

Theorem 1. The following values of L and M maximize (XL, YM) and satisfy con- 
straints D1 and D2: 

L = PCs and M = QC~, (12) 

where P and Q are defined by the singular value decomposition 

X'Y  = I'OQ' (13) 

Proof: From Lemma 2 we have 

max {tr £X' YM} = max {tr [C;L°'X ' YC'qM°CJ} 
L, M LO,M o 

< tr (C' s DCs), 

where L °, M ° e Opp. It remains to note that this bound is attained for L and M chosen as 
indicated. [] 

Corollary: When M is fixed, L = PQ'. 

In the more general case, L = PCs Q'N and M = QC s Q'u where P and Q are defined 
by the (U, V)-orthogonal svd of U-1H' s X 'WYH r V-  ~ and the decomposition of N and 
the inverses of U and V are taken in the identity metric. The simpler theorem proven 
above has been discussed by many authors including Green (1952), Cliff (1966), and 
Schfnemann (1966). ten Berge (1983) has extended Theorem 1 to more than two matrices 
and given a number of applications. 
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Maximizing the Inner Product Correlation r 1 

It is natural to search for those transformations which maximize the measure of 
correlation to be used. The problem for coefficient r~ in its complete generality does not 
have a closed-form solution. However, r~ is maximized by maximizing (XL, YM) in the 
special cases specified in the following theorem: 

Theorem 2. If one of the following conditions hold then r 1 is maximized by maximiz- 
ing (XL, YM): 

(a) constraints D1-D4 apply and U = X ' W Y  and V = Y'WY,  
(b) constraints D1 and D2 apply and s -- 1, 
(c) p = q = s a n d N = U =  V = I .  

Proof: Norms [t XL l[ and [[ YM [[ are invariant with respect to L and M under the 
metric defined in case (a) or in case (c). In case (b) the constraints D1 and D2 impose only 
a scale constraint on L and M. The correlation rl is invariant under changes of scale and 
hence the appropriate L and M can be computed using the metrics X ' W X  and Y ' W Y  
and then rescaling. []  

Case (c) has been discussed by many authors, especially in the context of Procrustes 
matching. This literature is reviewed in ten Berge (1977). 

The general problem requires the use of numerical optimization. The Appendix de- 
tails an algorithm for the optimization of r~ or the minimization of [[ XL - YM I[ which 
exploits Theorem 1 and has proved satisfactory in applications. 

Maximizing Orientation-Independent Correlations 

In the case of p = q = s and U = V = I coefficients r2, r4, RV, and GCD are attrac- 
tive because they are invariant with respect to rotations. In other situations, however, 
their behavior with respect to various transformations is more complex. The following 
theorem states that among the class of optimal transformations is a pair resulting from 
clipping after some permutation of the columns of the principal axis oriented matrices. 

Maximizing Spectra-Independent Correlation r 3 

Coefficient r 3 can be readily optimized in the case p = q = s by noting that the singu- 
lar values of XL and YM will be the same as those of X and Y, respectively. Since r 3 does 
not depend on the singular values, maximizing it reduces to maximizing (Px Q'x L, Pr Q'r 
M) and therefore Theorem 1 applies. 

Some Orthogonal-Linear Transformations 

Some situations impose orthogonality conditions on only one of the transformations, 
which will be assumed to be X. In this case any linear transformation M may be applied 
to Y. For  example, X may be the consequence of a p-dimensional Euclidean multidimen- 
sional scaling analysis while Y may contain a set of q measurements on the stimuli ob- 
tained in some other way and without any prior conditions on the correlations among 
them. 

Some overall scale constraint must be imposed on M in order to achieve identifiabil- 
ity. The following is used here: 

D5. tr (M'Y 'WYMN) = [I YM 1]2 = S. 

The inner product (XL, YM) is maximized as specified in the following theorem. 
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Theorem 3. If constraints D1 and D5 hold and Y'Y is nonsingular, then the maxi- 
mum of (XL, YM) is given by 

and 

L = I  

where Q is given by the svd 

M oc (Y' Y)-  i Y'XL, 

if p = s  or L=QC~ if 

X' Y(Y 'Y) -  l Y 'X = QDQ'. 

p > s ,  

(15) 

Proof: For any L, M as defined can easily be shown to be a maximizing value of M 
which yields a finite maximum. Thus (XL, YM) < (XL, Y(Y'Y)-~Y'L)  and it remains to 
apply Lemma 2 to show that (XL, Y(Y 'Y) -  1 Y'L) < tr (D) and that this bound is attained 
when L is as defined. []  

Corollary: When q = s --- 1, L is proportional  to X ' Y  and M = 1. 

The extension of Theorem 3 to the general case is along the same lines as the exten- 
sion of Theorem 1. 

The general problem of maximizing correlation r: in the orthogonal-linear case must 
also be dealt with numerically. The algorithm described in the Appendix can also deal 
with this situation. 

An Example: Evans' Factor Patterns 

Evans (1971) in his extensive discussion of matrix comparison procedures provides a 
number of factor pattern matrices resulting from the extraction of six factors from obser- 
vation on 18 variables. One set of observations was taken from Canadian sixth grade 
children, and this factor matrix is to be compared from data on Filipino children at the 
same level. The two matrices are displayed in inside-out format (Ramsay, 1980; Wainer & 
Thissen, 1981) in Table 1. Evans'  paper can be consulted for the original numbers. 

Comparing Correlational Measures for s = 6 

The first analysis involves calculating all of the coefficients discussed in the section on 
orthogonal-orthogonal correlation for a six-dimensional comparison. In this case 
p -- q = s and the opt ima of all measures can be obtained without recourse to numerical 
methods. Table 2 displays these correlations. The maximal r I value (.80) and Escoufier's 
RV (.82) give similar results and indicate a high degree of agreement between the two 
matrices. Coefficient r E (.61), however, which is equivalent to r:  when the two matrices 
have been rotated to principal axis orientation, is somewhat lower suggesting that this 
orientation does not make the matrices as comparable.  Similarly, removing the effect of 
the singular values by computing coefficient r a (.71) also lowers the correlation. Coef- 
ficient r 4 (.36) compares the matrices in principal axis orientation and with spectrum 
removed and is thus much lower, as is coefficient G C D  (.58) This suggests that there is 
strong agreement in the directions corresponding to dominant singular values since the 
spectra play an important role, but that agreement associated with subdominant singular 
values is poor giving rise to low correlations when the matrices are in effect put in prin- 
cipal axis form. 

Comparing Values of r i for Different Values of s 

The next step is to consider the correlation between the two matrices for each possi- 
ble dimension of comparison. Figure 1 displays the maximized conventional inner prod- 
uct correlation r I along with the correlation resulting from maximizing (XL, YM) for 
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Table I. Two Varimax-Rotated Factor Patterns from Evans (1971) 
Displayed in Inside-Out Format 

Factor 
Loading 

1.00 
.97 
.93 
.90 
.87 
.83 
.80 
.77 
.73 
.70 
.67 
.63 
.60 
57 
53 
50 
47 
43 
4O 
37 
33 
3O 
27 
23 
20 
17 

.13 

.I0 

.07 

.03 

.00 
-70T - 

- .07 
- .10  
- . 13  
- . 17  
- . 20  
- . 23  
- . 27  
- . 3 0  
- . 3 3  
- . 3 7  
- . 4 0  

Canadian 

i 2 3 4 5 6 

B FE D M 

A 

H 
CJ 
OD 

FE 
L 
P 
KM 
R 

"Cr 
G 

PH 

KJ 
RQ 

1 2 

Filipino 

2 4 5 

E 

B G K 
F 

A L 

M 
N 
J 0 

C 

L 
J 

I G 
BG A 
0 
RADM BJ 
Q 

I J 
O PG 

P 
HPC J 
q NHE C 

N 
FA A E 

IOEK REGB I K 

P M 
J 
P 
NO 
H 
R 
KC 
AD 

N RNF D 
MLP NM 

K _Q .... 

C 

H 

DC 
q 

D 
.... OLF OG 
B AGDM 
K --B-- 

I 

H 

---~- q 

J 

H C 
H N P 

R 

Q 

D Q DN 
IOM R 
RD I F E  I 
P 

EK C KGB 
L A EOJ 
AB HG CF 
RGNF LF A 

JKE ~ B  AL 

DPH 
B M J 

OP 
I 

M 

The value of a factor loading for a variable is given by the row 
in which the letter corresponding to that variable is located. 
Dashes indicate more symbols than can fit in a particular position. 
The correspondence between letters and variables is as follows: 

A Verbal meaning 
B Vocabulary 
C Word endings 
D Word beginnlngs 
E Spatial relations 
F Card rel~tions 

G Identical pictures M Letter series 
H Maze tracing N Word grouping 
I Finding A's 0 Number series 
J Arithmetic P Raven's matrices 
K Subtraction, multiplication Q Picture-number 

L Division R Object-number 
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2.  C o r r e l a t i o n a l  M e a s u r e s  f o r  F a c t o r  P a t t e r n s  i n  T a b l e  1 
A s s e s s e d  f o r  t h e  O p t i m a l  r T r a n s f o r m a t i o n s  and s = 6 

Correlation r i RV r 2 r 3 r 4 GCD 

O r i g i n a l  E s t i m a t e  .80  .82 .61  .71  .36  .58  
J a c k n i f e d  E s t i m a t e  .67  .79  .45  .70  - . 1 0  .48  

each possible comparison dimension s, Here one notices that the correlation is very high 
in up to three dimensions and then begins to fall off fairly rapidly, indicating again that 
the two factor solutions are very similar in their dominant modes of variation but have 
significant differences in their minor modes of variation. Note, too, that the maximizing of 
the inner product falls well short of providing the maximum inner product correlation. 
Figure 2 displays the factor solutions matched in two dimensions by maximizing r 1. 

C 
° ~  

t~ 

0 
o 
X 

° ~  

1.0 

0.9 

0.8 

- -  M A X  C O R R E L A T I O N  \ 

"\ 
. . . .  M A X  INNER P R O D U C T  

I i I .... I ................... I ! 
1 2 3 4 5 6 

Dimension of Comparison 
FIGURE 1 

The points joined by a solid line indicate the size of the inner product correlation r I when maximized in each 
possible dimensionality for the Evans data. The points joined by a dashed line indicate the values of r l 

obtained by maximizing the inner product. 
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7 5 -  

5 0 -  

2 5 -  

- 0  

- 2 5 -  

- 50- . .  1 I I I I 
- 2 5  - 0 2 5  5 0  7 5  1 0 0  

FIGURE 2 
A comparison of the factor loadings for the Canadian  (C) and Filipino (F) data  after rotation to maximize the 

inner product correlation r I in two dimensions. The first letter in each point label identifies the variable as 
specified in Table 1. Decimal points have been suppressed in the axis labels. 

Jacknifing to Assess Stability 

The stability of  these coefficients is naturally an impor tan t  question. The techniques 
of jacknifing and boots t rapping suggest themselves in this context. If  one had access to 
the original data, these procedures could be applied in the usual way, However,  one may  
also jacknife by eliminating each pair  of  corresponding rows in turn. The results cannot  
be interpreted in a statistical sense, since the results in one row certainly would be differ- 
ent if any other  row (variable) were eliminated from the original design. However,  this 
process should nonetheless be able to give valuable clues about  the extent to which corre- 
lations depend on the values in a particular row and some overall indication of  the rela- 
tive stability of  the measures. Moreover  the jacknifed estimates of  the correlat ional  mea-  
sures will to  some extent correct  for the natural  bias in these measures resulting from their 
optimization. The pseudovalues for measure r are given by r~ = nr o -- (n - 1)r_~, i = 1, 
. . . ,  n, where r o is the measure for all rows present and r - i  is the measure for the ith row 
removed. Table 3 displays the pseudo-values for each measure for the full six-dimensional 
compar ison in inside-out format. F r o m  this it is clear that  the rows corresponding to the 
tests "maze  t racing" and "finding A 's"  exert a s t rong influence on measures r 1, r 3, and 
GCD.  The fact that  their pseudo-values are low for these measures indicates removing 
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P s e u d O :  .... 
v a l u e  

3 . 0  
2 . 9  
2 . 8  
2 . 7  
Z.6  
2 .S  
2 . 4  
2 . 3  
2 . 2  
2 . 1  
2 . 0  
1 . 9  
1 . 8  
1 . 7  
1 .6  
1 .5  
1 . 4  
1 . 3  
1 .2  
1 .1  
1,0 
.9 
.8 
.7 
.6 
.S 
.4 
.3 
.Z 
.I 
.0 

Table 3.  Pseudo-values for Correlational 

r 1 R¥ r 2 r 3 r 4 

A 

B 

J 
J 

EA 
E 
FAB 
JRKL 
QOPCDN 
MG 

I 
H 

PO 
FB 
DLRNC 
QGM 
KI 
H 

P 
R 
NE 
I 
DFG 
qc 
L 

M e a s u r e s  

GCD 

A 

Q 
RE 

-KD-P 
CAG 
BL 
J 
OPM 
N 

6 

IP 
N 

QER 
KDFA 
C 
GB 
M 
OLJ 
P 
N 

-.i 
-°2 
-°3 
-,4 
-.S 
-.6 
-°7 
-°8 
-°9 

-I.0 
-i.i 
-l.Z 
-1.3 
-1.4 
-l.S 
-1.6 
-1.7 
-1.8 
-I.9 
-2.0 
-2.1 
-2.2 
-2.3 
-2.4 
-Z.5 

H 
0 
K 

M 

H DQCE 
F 

K 

0 

M 

I 

H 
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Table 4. Row Weights (xl00) for Robust Analyses of r]. 

Variable A B C D E F G H I J K L M N O P 

Original Data 98 95 89 90 98 97 88 76 79 84 87 84 84 84 89 84 

Canadian A 00 93 89 90 98 98 88 79 79 98 86 94 82 84 92 86 
Loadings x 10 

Q R 

90 95 

96 96 

these rows increases the measures sharply and thus that these rows tend to depress the 
overall correlation. Similarly, the test "verbal meaning" has a strong but opposite impact 
on measures r 2 and r4; that is, removing this row decreases the correlation indicating that 
the overall correlation is strongly dependent on this test. Table 3 also permits a visual 
inspection of the variability in the pseudo-values for each measure and it is clear that both 
r x and RV are highly stable while r 2 and r 4 are very unstable. The average pseudo-values 
give the jacknifed estimate of the correlation and are given in Table 2. Jacknifing in this 
way obviously shrinks all correlations substantially. 

Using Metric W to Achieve Robustness 

One of the considerations that may lead one to use something other than the identity 
matrix for W is the desire to weight rows less heavily which are associated with markedly 
poor congruences. In order to illustrate how this can be done, a robust analysis of the 
correlation r 1 between these matrices in six dimensions was used along the lines suggested 
by Ramsay & Novick (1980). It proceeded as follows: 

1. Compute L and M optimizing r 1, E = X L  - Y M ,  and assess rl. 
2. For  each column of E compute 

n - - 2  

2 = ( n  4)-z ~ 2 S j  - -  e ( i ) j ,  
- -  i = 3  

where e , ,  is the ith order statistic in column j. This gives a trimmed estimate of 
variance for each column of E. 

3. Computed/2 = ~ i  2 z e~j/sj and w, = exp (-.02d~), i = 1, . . . ,  n. This defines the diag- 
onal metric matrix W. 

4. Assess rl in the metric W. Check to see if it differs substantially from the pre- 
viously assessed value. If so, recompute E and return to step 3. 

This algorithm will converge quickly to a metric which will apply weights of nearly 
unity to rows of X L  and Y M  which have a reasonable congruence as defined by the 
standardized distance measure di, and will apply reduced weight to rows having substan- 
tially poorer congruences. The constant .02 controls the rate at which rows are de- 
weighted for large distances. In general, an appropriate value for this constant is 
1/(2X.2oo0, where z Lool is the 0.001 critical value of chi squared with p degrees of freedom 
(Ramsay, 1980). 

The algorithm converged in 3 iterations using a criterion of a change of .0001 in rl 
from one iteration to the next, and produced a final value of 0.81. The final weights 
associated with each row are given in Table 3. The somewhat lower weights associated 
with the variables H and I are one more indication that these variables are tending to 
reduce the value of r 1. Also in Table 3 are the weights associated with the robust analysis 
after multiplying the variable A loadings for the Canadian factors by 10. Again the algo- 
rithm converged in three iterations and moved from an initial correlation of .50 to a final 
value of .80. 
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Conclusions 

The problem of correlating two matrices presents many aspects. One must decide 
what invariances the correlation is to have, with invariances with respect to rotation, 
spectrum change, and linear transformation all being possibly desirable. In general a par- 
ticular kind of invariance can be achieved in one of two ways. The first is the use of a 
correlational measure which is intrinsically invariant in the desired way. For example, if 
rotational invariance is required, then one might choose RV, r 2 , or r4. The second pro- 
cedure is to optimize a correlation over the class of transformations with respect to which 
invariance is desired. The optimized correlation is then automatically invariant, ignoring 
possible local optimum problems. Thus, the problem of optimizing rl with respect to 
rotations and linear transformations has been considered. This second approach has the 
advantage that optimizing transformations themselves may be of considerable interest, 
but is obviously more expensive in general. It appears that coefficient RV should be better 
known as a generally useful way of comparing two matrices defined to within either 
rotations (when it is automatically invariant) or to within linear transformations (when it 
can be optimized simply). 

An aspect of matrix correlation that also deserves more attention in the authors" 
opinion is the possibility of comparing the matrices in a subspace of dimension s. Two- 
dimensional comparisons have obvious value from a graphical perspective. As the exam- 
ple illustrated, it may also be desirable to try out a range of subspaces to determine a 
dimensionality for the comparison which is close to that for s = 1 while being substan- 
tially less than s = min (p, q). The incorporation of the external orthogonality constraints 
D3 and D4 into the theorems on optima makes it possible to carry out a series of com- 
parisons for a fixed value of s, such as 2, which are mutually orthogonal. 

Finally, the results in this paper have depended heavily on the singular value de- 
composition. This essential tool has a number of generalizations which can be used to 
widen the scope of the results in this paper. For example, its counterpart for continuous- 
time stochastic processes is known as the Karhunen-Loeve decomposition, while versions 
also exist for the more general class of compact continuous linear mappings from one 
Hilbert space into another. 

Appendix 

The problem of optimization of a function with respect to orthogonal matrices arises 
very often in multivariate data analysis and frequently cannot be solved analytically. Nu- 
merical methods have been developed for many special cases, especially in the psycho- 
metric and factor analytic literature. The algorithm described here is in the spirit of most 
of these approaches in that the function is optimized in each possible plane in turn. 

When the orthogonal matrix L is p by s, p > s, these rotations fall into three subsets. 
The first contains rotations within the space spanned by L, which can be taken to be 
within planes defined by two different columns of L. The second contains rotations in 
planes defined by a column of L and one in its orthogonal complement L* defined by the 
relation L:L* ~ O~ p. The third contains rotations in planes entirely within the space 
spanned by L*. Since these latter do not affect the function being optimized, only the first 
two sets are of importance. The first set is defined by the class of transformations LH, 
H e O~ s, and optimization with respect to such rotations reduces to optimization with 
respect to H. Fortunately, it is often possible to find the optimal H in a single step; this is 
the case for rl and for the Procrustes problem, for example. For such problems, planar 
rotations are required only for planes involved in the second set; that is, for rotations of 
vectors with images in the column spaces of both L and L*. It is worthwhile, therefore, to 
consider the sets separately. 
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An algorithm which has worked well in practice proceeds as follows for a function 
F(L, M), L subject to constraint DI and M subject to either D2 or D5: 

0. Compute an appropriate pair of initial values/20) and M t°). 
1. Modify L on iteration v as follows: 

1.1. Optimize F with respect to rotations of the first kind. 
1.2. For each pair (i, j), l < i < s ,  l _ < j < p - s ,  let /3 v+t) be defined as 

cos 0 LI ~) + sin 0 L *tv) and carry out a single optimization step regarding F as 
a function of 0. This might employ Newton's method from an initial value of 
0 = 0 with a possible reduction in step size in order to ensure an improve- 
ment in F. 

2. Modify M as was done for L if M is subject to D2 or as appropriate if D5 applies. 
3. Test for convergence. If successful, exit; otherwise return to 1. 

This algorithm is expressed in Figures 3 and 4 using the PROC MATRIX language 
of the Statistical Analysis Systems (SAS). Since the syntax of this matrix-oriented 
language is more or less self-explanatory, this procedure can be used as a pattern for 
developing algorithms in other languages as well as being directly executable in SAS. For 
further details on PROC MATRIX the manual should be consulted (SAS Institute, 1982). 

The procedure is written as a SAS MACRO so that the essential parameters can be 
passed to the procedure through a call to the macro. It should be noted, however, that the 
single quote in the program below is not processed properly by version 82.4 or previous 
versions of SAS, and must be replaced by % STR (%') prior to execution. The DQUOTE 
option is also required. 
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V
A
L
U
E
S
;
 

P
=
N
C
O
L
|
X
)
;
 

O
=
N
C
O
L
(
Y
)
~
 

I
F
 
P
>
Q
 
T
H
E
N
 
M
I
N
P
Q
=
O
;
 

E
L
S
E
 
M
I
N
P
Q
~
P
;
 

T
O
L
=
I
E
-
4
~
 

P
IO

V
E

R
4

=
.T

S
5

3
9

8
~

 
B
L
A
N
K
=
"
 
"
~
 

X
T

Y
ff
iX

'*
Y

; 
X
T
X
=
X
'
*
X
;
 

Y
T

Y
fY

'*
Y

; 

* 
IN

IT
IA

L
IZ

E
 

L
 A

N
D
 M

; 

T
R
A
N
F
L
A
~
=
&
T
F
;
 

C
R
I
T
F
L
A
G
=
&
C
F
;
 

I
F
 
T
R
A
N
F
L
A
G
=
O
 
T
H
E
N
 
D
O
;
 

I
N
I
T
I
A
L
I
Z
A
T
I
O
N
 
F
O
H
 
O
R
T
H
O
G
O
N
A
L
-
O
R
T
H
O
~
O
N
A
L
 
C
A
S
E
;
 

S
V
D
 
~
 
D
 
V
 
X
T
Y
;
 

R
N
K
=
Q
+
I
-
R
A
N
K
(
D
|
|
 

L
=
U
(
,
R
N
K
)
;
 

M
=
V
(
,
R
N
K
|
;
 

S
I
N
G
V
A
L
S
=
D
(
R
N
K
,
)
~
;
 

E
N
D
;
 

E
L
S
E
 
D
O
;
 

*
 
I
N
I
T
I
A
L
I
Z
A
T
I
O
N
 
F
O
R
 
O
R
T
H
O
G
O
N
A
L
-
L
I
N
E
A
R
 
C
A
S
E
;
 

Y
T

¥
1
N

V
=
IN

V
|Y

T
Y

);
 

A
f
X
T
Y
*
Y
T
Y
I
N
V
*
X
T
Y
'
;
 

L
=
E
I
G
V
E
C
(
A
)
~
 

B
E
T
A
=
Y
T
Y
I
N
V
*
X
T
Y
'
;
 

M
=
B
E
T
A
*
L
I
 

E
N
D
;
 

t 
L

O
O

P 
T

H
R

O
U

G
H

 
P

O
S

S
IB

L
E

 
D

IM
E

N
S

IO
N

A
L

IT
IE

S
 

O
F

 
C

O
M

PA
R

IS
O

N
~ 

S
M

A
X

=
tS

X
; 

SM
IN

ff
i&

SM
; 

IF
 

SM
A

X
>

M
IN

PQ
 

T
H

E
N

 
SM

A
X

fM
IN

PQ
~ 

IF
 

S
H

IN
>

M
IN

P
Q

 
T

H
E

N
 

SM
IN

ff
iM

IN
PQ

~ 
D
O
 
S
f
f
i
S
M
A
X
 T
O
 
S
H
I
N
 
B
Y
 
-
I
;
 

K
=
I
:
S
;
 

•
 

C
O
M
P
U
T
E
 
I
N
I
T
I
A
L
 
V
A
L
U
E
 
O
F
 
C
R
I
T
E
R
I
O
N
;
 

X
T
R
A
N
S
F
M
f
f
i
L
{
,
K
)
;
 

B
I
I
=
T
R
A
C
E
|
X
T
R
A
N
S
F
M
'
*
X
T
X
*
X
T
R
A
H
S
F
M
)
;
 

Y
T
P
,
 A
N
S
F
M
=
M
(
,
K
)
;
 

B
2
2
=
T
R
A
C
E
(
Y
T
R
A
N
S
F
M
*
•
Y
T
Y
*
Y
T
R
A
N
S
F
M
)
}
 

B
I
2
=
T
R
A
C
E
(
X
T
R
A
N
S
E
M
*
t
X
T
Y
*
Y
T
R
A
N
S
F
M
)
;
 

I
F
 
C
R
I
T
F
L
A
G
=
0
 
T
H
E
N
 
C
R
I
T
=
B
I
2
{
/
S
Q
R
T
(
B
]
I
*
B
2
2
)
;
 

E
L

SE
 

D
O

; 
C

R
IT

=
S

O
R

T
{B

Il
+

B
2

2
-2

1
B

|2
}~

 
T

O
L

fC
R

IT
*

IE
-4

; 
E

N
D

; 

t 
~

;T
P

I~
T

 
IN

IT
IA

L
 

R
E

S
U

L
T

S
; 

N
O

T
E

 
PA

C
E

 
D

IM
E

N
S

IO
N

A
L

IT
¥

 
O

F
 

C
O

M
PA

R
IS

O
N

 
IS

 
N

O
W

; 
P

R
IN

T
 

S 
R
O

W
N
A
M

E
=B

LA
N
K
 

C
O

LN
K
M

E
=B

I.A
N

K
; 

N
O

T
E
 I

N
IT

IA
L

 T
R
A
N
S
FO

R
M

A
TI
O

N
S
~ 

P
R

IN
T
 X

TR
A
N

S
FM

 R
O

W
N
A
M

E
=X

C
O

LL
A
B
S
 

F
O

R
M

A
T
=
8
.3

: 
P

R
IN

T
 Y

T
R

A
N

S
F
M

 R
O

W
N
A
M

E
=X

C
O

LL
A
B
S
 

F
O

R
M

A
T
=
8
.3

; 
M

A
IN

IT
E

R
=

0
; 

N
P

H
A

S
E

I=
];

 
N

P
R

A
S

E
2
=
2
; 

H
A

T
R

IX
=
M

A
IN

IT
E

R
I~

M
A

IN
IT

F
R

I~
C

R
IT

; 
H

IS
R

L
A

B
=
B

L
A

N
K

; 
I
F
 

C
R

IT
F

L
A

G
fO

 
T

H
E

N
 

N
O

T
E

 
IN

IT
IA

L
 

C
O

R
R

E
L

A
T

IO
N

 
C

O
E

F
F

IC
IE

N
T

; 
E
L
S
E
 
N
O
T
E
 
I
N
I
T
I
A
L
 
D
I
S
T
A
N
C
E
;
 

P
R
I
N
T
 
C
R
I
T
 
R
O
W
N
A
M
E
=
B
L
A
N
K
 
C
O
L
N
A
M
E
=
B
L
A
N
K
 
F
O
R
M
A
T
=
f
0
.
3
;
 

M
A
I
N
 
I
T
E
R
A
T
I
O
N
 
L
O
O
P
~
 

C
R
I
T
O
L
D
=
C
R
I
T
-
|
;
 

I
F
 
S
<
P
 
~
 
[
S
(
Q
 
&
 
T
R
A
N
F
L
A
G
=
0
)
 
T
H
E
N
 

D
O
 
M
A
I
N
I
T
E
R
 
=
 
I
 
T
O
 
I
O
 
W
H
I
L
E
{
A
B
S
|
C
R
I
T
-
C
R
I
T
O
L
D
)
>
T
O
L
)
;
 

C
R
I
T
O
L
D
=
C
R
I
T
;
 

t
 
O
P
T
I
M
I
Z
A
T
I
O
N
 
W
I
T
}
!
 
R
E
S
P
E
C
T
 
T
O
 
L
~
 

P
V

=
P

; 
B

=
B

?
~

; 
IV

=
L

; 
L

A
B

V
=

"L
";

 X
IT

=
(X

T
Y

*M
(,

K
))

';
 Y

IT
=

X
T

X
; 

L
I
N
K
 
R
O
T
A
T
E
:
 

L
=
T
V
;
 

C
R
I
T
=
C
R
I
T
V
I
 

B
II

=
R

V
; 

* 
O

P
T
IM

IZ
A

T
IO

N
 W

IT
H

 R
E
S
P
E
C

T
 T

O
 M

: 

I
F
 
T
R
A
N
F
L
A
G
f
f
i
0
 
T
H
E
N
 
D
O
;
 

t
 
O
R
T
H
O
G
O
N
A
L
-
O
R
T
H
O
G
O
N
A
L
 
C
A
S
E
;
 

P
V

=
O

; 
B

=
B

II
; 

T
V

=
M

: 
r,
 A

H
V

=
"H

";
 

X
IT

=
L

(,
K

)'
*X

T
Y

; 
Y

IT
=

Y
T

Y
; 

L
IN

K
 R

O
T
A

T
E

; 
M

fT
V

~ 
C

R
IT

~
C

R
IT

V
I 

B
2

?=
H

V
; 

E
N

D
~ 

E
L
S
E
 
D
O
;
 

t
 
O
R
T
H
O
G
O
N
A
L
-
L
I
N
E
A
R
 
C
A
S
E
;
 

M
=
B

E
T
A

*L
~
 

M
C

fM
(,
K

)~
 

B
I2

=
T

R
A

C
E

[L
(,

K
)'
'X

T
Y

'M
C

)I
 

B
2
2
=
T

R
A

C
E

(M
C

'*
y
T

y
*M

C
) I
 

IF
 C

R
IT

F
L
A

G
~
0
 T

H
E

N
 C

R
IT

=
B

I2
#

/S
Q

R
T

(B
II

'B
2

2
)~

 
E
L
S
E
 
C
R
I
T
=
S
Q
R
T
(
B
I
I
+
R
2
2
-
2
#
B
I
2
)
I
 

E
N

D
; 

E
N
D
;
 

*
 
E
N
D
 
O
F
 
M
A
I
N
 
I
T
E
R
A
T
I
O
N
 
L
O
O
P
;
 

F
IG

U
R

E
 3

 

SA
S 

P
R

O
C

 M
A

T
R

IX
 C

od
e 

fo
r 

th
e 

A
lg

or
ith

m
. 

P
 

>
 

>
 

.<
 

-
q
 

z
 

>
 

Z
 "
d
 

>
 

Z
 b
J
 



*
 
P
R
I
N
T
 
F
I
N
A
L
 
R
E
S
U
L
T
S
;
 

I
F
 
M
A
I
N
I
T
E
R
>
0
 
T
H
E
N
 
D
O
;
 

I
F
 
A
B
S
(
C
R
I
T
-
C
R
I
T
O
L
D
)
<
T
O
L
 
T
H
E
N
 
N
O
T
E
 
C
O
N
V
E
R
G
E
N
C
E
 
A
C
H
I
E
V
E
D
;
 

E
L
S
E
 
N
O
T
E
 
M
A
X
.
 
N
O
.
 
I
T
E
R
A
T
I
O
N
S
 
T
A
K
E
N
;
 

I
F
 
C
R
I
T
F
L
A
G
=
0
 
T
H
E
N
 
N
O
T
E
 
F
I
N
A
L
 
C
O
R
R
E
L
A
T
I
O
N
 
C
O
E
F
F
I
C
I
E
N
T
;
 

E
L
S
E
 
N
O
T
E
 
F
I
N
A
L
 
D
I
S
T
A
N
C
E
;
 

P
R
I
N
T
 
C
R
I
T
 
R
O
W
N
A
M
E
=
B
L
A
N
K
 
C
O
L
N
A
M
E
=
B
L
A
N
K
 
F
O
R
M
A
T
=
f
0
.
3
;
 

N
O
T
E
 
S
K
I
P
=
3
 
H
I
S
T
O
R
Y
 
O
F
 
I
T
E
R
A
T
I
O
N
S
;
 

I
F
 
C
R
I
T
F
L
A
G
=
0
 
T
H
E
N
 
H
I
S
C
L
A
R
=
"
I
T
E
R
"
 
"
P
H
A
S
E
"
 
"
R
"
;
 

E
L
S
E
 
H
I
S
C
L
A
B
=
*
I
T
E
R
 m
 
"
P
H
A
S
E
"
 
"
D
I
S
T
A
N
C
E
"
;
 

P
R
I
N
T
 
M
A
T
R
I
X
 
R
O
W
N
A
M
E
=
H
I
S
R
L
A
B
 
C
O
L
N
A
M
E
=
H
I
S
C
L
A
S
;
 

E
N
D
;
 

N
O
T
E
 
S
K
I
P
=
5
 
F
I
N
A
L
 
T
R
A
N
S
F
O
R
M
A
T
I
O
N
S
~
 

X
T
R
A
N
S
F
M
=
L
(
,
K
)
;
 

Y
T
R
A
N
S
F
M
=
M
(
,
K
)
;
 

t
 

S
W
I
T
C
H
 
S
I
G
N
S
 
I
F
 
S
U
M
 
O
F
 
C
O
E
F
F
I
C
I
E
N
T
S
 
I
S
 
N
E
G
A
T
I
V
E
 
I
N
 
A
 
C
O
L
U
M
N
 
O
F
 
L
;
 

D
O

 
I=

l 
T
O

 E
; 

I
F
 
X
T
R
A
N
S
F
M
(
+
,
I
)
<
0
 
T
H
E
N
 
D
O
;
 

X
T
P
~
N
S
F
M
(
,
I
)
=
-
X
T
R
A
N
S
F
M
(
,
I
)
;
 

Y
T
R
A
N
S
F
M
(
,
I
)
f
-
Y
T
R
A
N
S
F
M
 (
,
I
)
I
 

E
N
D
;
 

E
N
D
;
 

P
R
I
N
T
 
X
T
R
A
N
S
F
M
 
R
O
W
N
A
M
E
=
X
C
O
L
L
A
B
S
 
F
O
R
M
A
T
=
8
.
3
;
 

P
R
I
N
T
 
Y
T
R
A
N
S
F
M
 
R
O
W
N
A
M
E
=
Y
C
O
L
L
A
B
S
 
F
O
R
M
A
T
=
8
.
3
;
 

X
I
M
A
G
E
=
X
*
X
T
R
A
N
S
F
M
;
 

Y
I
M
A
G
E
=
Y
*
Y
T
R
A
N
S
F
M
;
 

N
O
T
E
 
S
K
I
P
=
5
 
T
R
A
N
S
F
O
R
M
E
D
 
M
A
T
R
I
C
E
S
;
 

P
R
I
N
T
 
X
I
M
A
G
E
 
R
O
W
N
A
M
E
=
&
X
R
O
W
 
F
O
R
M
A
T
=
8
.
3
;
 

P
R
I
N
T
 
Y
I
M
A
G
E
 
R
O
W
N
A
M
E
=
&
Y
R
O
W
 
F
O
R
M
A
T
=
8
.
3
;
 

E
N
D
;
 

S
T
O
P
;
 

*
 
O
P
T
I
M
I
Z
E
 
C
R
I
T
V
 
B
Y
 
R
O
T
A
T
I
N
G
 
I
N
T
O
 
S
U
B
S
P
A
C
E
 
F
O
E
 
E
A
C
H
 
P
A
I
R
 
O
F
 

D
IM

E
N

S
IO

N
S

 
{P

H
A

SE
 

L
) 

A
N

D
 T

H
EN

 
R

O
T

A
T

IN
G

 W
IT

H
IN

 
SU

E
SP

~C
E

 
(P

H
A

SE
 

2
);

 

R
O
T
A
T
E
:
 

L
IN

K
 
C
O
M
P
U
T
2
;
 

*
 
R
O
T
A
T
I
N
G
 
T
V
 
I
N
T
O
 
S
U
B
S
P
A
C
E
;
 

R
E
T
U
R
N
;
 

P
H
A
S
E
I
:
 
D
O
 
I2
ff
iS
+l
 T
O
 
P
V
;
 

D
O
 
I
|
=
l
 
T
O
 
S
;
 

%
M
E
N
D
 
M
A
T
C
O
R
;
 

C
R
I
T
0
=
C
R
I
T
V
*
C
R
I
T
V
;
 

I
F
 
C
R
I
T
F
L
A
G
=
0
 
T
H
E
N
 
C
R
I
T
0
=
-
C
R
I
T
0
;
 

U
=
T
V
(
,
I
I
)
~
 

V
=
T
V
(
,
1
2
)
;
 

L
I
N
K
 
D
E
R
I
V
;
 

T
R
Y
=
T
V
{
,
K
)
;
 

A
N
G
L
E
f
-
D
I
F
#
/
D
2
F
;
 

A
N
G
L
E
=
M
I
N
(
A
N
G
L
E
)
~
P
I
O
V
E
R
4
)
;
 

A
N
O
I
,
E
=
M
A
X
(
A
N
G
L
E
I
}
-
P
I
O
V
E
R
4
)
;
 

T
E
S
T
:
 
L
I
N
K
 
C
O
M
P
U
T
I
;
 

I
F
 
A
N
G
L
E
c
l
E
-
3
 

T
H
E
N
 
G
O
T
O
 
N
E
X
T
;
 

I
F
 
CR
IT
TR
Yc
CR
IT
O 

T
H
E
N
 
G
O
T
O
 
N
E
X
T
;
 

A
N
G
L
E
=
A
N
G
L
E
|
/
2
;
 

G
O
T
O
 
T
E
S
T
;
 

N
E
X
T
:
 
S
V
=
B
T
R
Y
;
 

B
I
2
=
B
I
2
T
R
Y
;
 

I
F
 
C
R
I
T
F
L
A
G
=
0
 
T
H
E
N
 
CR
IT
V=
SO
RT
(-
CR
IT
TR
Y)
; 

E
L
S
E
 
C
R
I
T
V
=
S
Q
E
T
{
C
R
I
T
T
R
Y
)
;
 

T
V
(
,
I
1
)
f
C
S
|
U
+
S
N
#
V
;
 

T
V
(
,
1
2
)
=
C
S
#
V
-
S
N
#
U
;
 

T
V
C
f
T
V
(
,
K
)
;
 

E
N

D
; 

E
N
D
~
 

MA
TR
IX
ff
iM
AT
RI
X/
/(
MA
IN
IT
ER
II
NP
HA
SE
I[
IC
RI
TV
};
 
HI
SR
LA
B=
HI
SR
LA
B/
/L
AB
V;
 

F
IG

U
R

E
 4

 

C
on

ti
nu

at
io

n 
of

 t
he

 S
A

S
 P

R
O

C
 M

A
T

R
IX

 C
od

e 

*
 
R
O
T
A
T
I
N
G
 
W
I
T
H
I
N
 
S
U
B
S
P
A
C
E
;
 

P
H
A
S
E
2
:
 
I
F
 
S
>
I
 
T
H
E
N
 
D
O
~
 
T
E
M
P
=
X
I
T
*
T
V
C
;
 

S
V
D
 
U
 
D
 
V
 
T
E
M
P
;
 

R
N
K
=
S
+
I
-
R
A
N
K
(
D
)
;
 

T
V
(
,
K
)
=
T
V
C
*
V
(
,
R
N
K
)
*
U
(
,
R
N
K
)
*
;
 

L
I
N
K
 
C
O
M
P
U
T
2
;
 

E
N
D
~
 

MA
TR
IX
=M
AT
RI
X/
/(
MA
IN
IT
ER
II
NP
HA
SE
2I
NC
RI
TV
);
 

H
I
S
R
L
A
n
=
H
I
S
R
L
A
R
/
/
L
A
H
V
;
 

R
E
T
U
R
N
;
 

C
O
M
P
U
T
I
:
 
S
N
=
S
I
N
(
A
N
G
L
E
)
;
 

C
S
=
S
Q
R
T
(
I
-
S
N
*
S
N
)
;
 

T
R
Y
(
,
I
I
)
=
C
S
J
U
+
S
N
|
V
;
 

BT
RY
=T
RA
CE
(T
RY
**
YI
T*
TR
Y)
; 

BI
2T
RY
=T
RA
CE
(X
IT
*T
RY
);
 

IF
 
C
R
I
T
F
L
A
G
=
0
 

TH
EN

 
CE
IT
TR
Y=
-(
(B
~2
TR
Y)
##
2)
J/
(H
TR
Y*
B)
; 

E
L
S
E
 
C
R
I
T
T
R
Y
-
H
+
B
T
R
Y
-
2
J
B
I
2
T
R
Y
;
 

R
E

T
U

R
N

; 

C
O
M
P
U
T
2
:
 
T
V
C
=
T
V
(
,
K
)
;
 

B
V
=
T
R
A
C
E
(
T
V
C
'
*
Y
I
T
*
T
V
C
)
;
 

B
I
2
=
T
R
A
C
E
(
X
I
T
*
T
V
C
)
;
 

IF
 
C
R
I
T
F
L
A
G
=
0
 
T
H
E
N
 
CR
IT
Vf
HI
2#
/S
OR
T(
BV
*B
);
 

E
L

SE
 
C
R
I
T
V
=
S
Q
R
T
(
B
V
+
B
-
2
|
H
1
2
)
;
 

R
E

T
U

R
N

; 

D
E
R
I
V
:
 
T
I
=
U
*
*
Y
I
T
*
U
;
 

T
2
f
f
i
V
*
*
Y
I
T
*
V
,
 

T
3
=
U
'
*
Y
I
T
*
V
;
 

T
4
=
X
I
T
(
I
I
,
)
*
V
;
 

T
5
f
f
i
-
X
I
T
(
I
I
,
)
*
U
;
 

D
I
R
I
2
=
 
(
X
I
T
(
I
I
,
)
*
V
)
#
/
8
1
2
;
 

D
I
B
I
I
=
T
)
|
/
B
V
;
 

D
2
B
I
2
=
-
{
X
I
T
{
I
I
,
)
*
U
)
|
/
E
I
2
~
 

D
2
B
I
I
=
(
T
2
-
T
|
)
|
/
B
V
;
 

I
F
 
C
R
I
T
F
L
A
G
=
0
 
T
H
E
N
 
D
O
;
 

DI
F=
2*
CR
IT
O*
(T
4#
/S
I2
-T
3#
/B
V)
; 

D2
F=
DI
F|
#2
#/
CR
IT
O+
2*
CR
IT
O*
(T
$|
/B
I2
-(
T2
-T
I]
|/
BV
-(
T4
|/
RI
2)
I#
2 

+
(
T
3
#
/
B
V
)
|
|
2
)
;
 

E
N
D
;
 

E
L
S
E
 
D
O
;
 

D
I
F
=
2
#
(
T
3
-
T
4
)
;
 

D
2
F
=
2
|
(
T
2
-
T
I
-
T
S
]
;
 

E
N
D
~
 

b
~
 

-
g
 

>
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