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Abstract

With the current popularity of second-order (or hyphenated) instruments, there now exists a number of chemometric
techniques for the so-called second-order calibration problem, i.e. that of quantifying an analyte of interest in the presence of one
(or more) unknown interferent(s). Second-order instruments produce data of varying complexity, one particular phenomenon
sometimes encountered being that of rank overlap (or rank deficiency), where the overall rank of the data is not equal to the sum
of the ranks of the contributing species. The purpose of the present work is to evaluate the performance of two second-order
calibration methods, a least squares-based and an eigenvalue-based solution, in terms of their quantitative ability and stability,
as applied to flow injection analysis (FIA) data which exhibits rank overlap. In the presence of high collinearity in the data, the
least squares methods is found to give a more stable solution. Two-mode component analysis (TMCA) is used to investigate the
reasons for this difference in terms of the chemical properties of the species analysed. The success of second-order calibration
of this data is found to depend strongly on the collinearity between the acidic and basic time profiles and the reproducibility
of the pH gradient in the FIA channel, both of which are shown to be related to the pKa values of the species. © 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The development of second-order (or hyphenated)
instruments [1] such as LC-UV, GC-MS and MS-MS
has brought several advantages to the analytical
chemist in terms of quantification and identification
of compounds within a mixture system. The data
generated by these instruments have necessitated the
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development of an area of chemometric calibration
techniques called second-order methods [2]. Al-
though these methods have similar general aims, i.e.
the quantification of a known analyte in the presence
of unknown interferents, there are also significant
differences between the algorithms reported in the
literature. For example, in terms of the type of data
to which they have been applied, some methods have
been used to solve problems of rank-one (also known
as ‘complexity-one’ or ‘bilinear’) data and others
used to solve higher-than-rank-one (also known as
‘mixed-complexity’ or ‘non-bilinear’) data. In terms
of their algebraic formulation, some methods use a

0003-2670/00/$ – see front matter © 2000 Elsevier Science B.V. All rights reserved.
PII: S0003-2670(00)01061-8



22 M.M. Reis et al. / Analytica Chimica Acta 422 (2000) 21–36

least squares (LS) approach and others are eigenvalue
(EV) based. Among the least squares-based methods
are residual bilinearisation (RBL) [3], PARAFAC
[4] and restricted Tucker3 models [5], whilst among
the eigenvalue-based methods are rank annihilation
factor analysis (RAFA) [6], the generalised rank an-
nihilation method (GRAM) [7] and non-bilinear rank
annihilation (NBRA) [8,9].

Second-order instruments produce data of varying
complexity depending upon the nature of the analyt-
ical techniques being combined [10]. One particular
phenomenon sometimes found is that of rank over-
lap (or rank deficiency), where the overall rank of the
measured data is not equal to the sum of the ranks
of the individual species contributions to the data, i.e.
XXX = AAA + BBB but rank(XXX) < rank(AAA) + rank(BBB). Ex-
amples of data where this can occur are flow injection
analysis in the presence of a pH gradient [11]; flow in-
jection analysis where a kinetic decomposition takes
place [12]; the use of an optical-fibre based chemi-
cal sensor for determination of halogenated molecules
based on the Fujiwara reaction [13].

The purpose of the present work is to evaluate the
performance of two second-order calibration methods,
a least squares-based and an eigenvalue-based solu-
tion, in terms of their quantitative ability and stabil-
ity, as applied to a data set having rank overlap. The
problem of rank overlap was chosen because this kind
of data is sometimes encountered in practice and rep-
resents non-ideal behaviour in measured data which
is not easily eliminated. Sometimes rank overlap is
intrinsic to the instrumentation being used, e.g. us-
ing similar solutes during a flow injection analysis
leads to similar dispersion properties, and therefore,
closure due to the solutes having equal total elution
profiles. Alternatively (or additionally), rank overlap
can be found simply where components have similar
or equal spectral profiles, e.g. using a chemical sen-
sor to follow different kinetic pathways with the same
end-product can lead to rank overlap as the spectrum of
the end-product is the same for the different pathways.
In the presence of low experimental reproducibility
and/or a low signal-to-noise ratio, high collinearity
between component profiles can be a source of rank
overlap.

The methods chosen for the comparison are a least
squares-based method, RBL, and an eigenvalue-based
method, NBRA. These can be considered generally

applicable methods as no prior information about the
data is used during the calibration. A comparison on
simulation data has been carried out previously by
Wang et al. [14] who found that whilst the two meth-
ods could be considered as mathematically equivalent,
they have different noise propagation properties. The
data used here are real laboratory measurements of the
flow injection analysis (FIA) of hydroxybenzaldehyde
isomers [11], which in the presence of a pH gradient
are dissociated into basic and acidic forms.

It should be noted here that better results for
this data set can be obtained by least squares-based
methods which take advantage of constraints
(non-negativity, unimodality) on the estimated pro-
files, prior information about the analyte (spectra and
time profiles found by curve resolution in a prior
analysis) and techniques which allow the reduction of
the collinearity influence over the performance of the
method [15,16]. These methods do, however, require
knowledge about the chemical system which may
often not be available.

2. Experimental

The FIA system used in this investigation has been
described previously in the literature [11] and is shown
schematically in Fig. 1. Polypropylene tubes (0.70 cm
internal diameter) were used throughout. The carrier
stream was a Britton–Robinson buffer with a pH of
4.5 and the reagent stream a Britton–Robinson buffer
with pH 11.4.

The sample was injected by an ABU 80 autoburette
(0.375 ml min−1) between the carrier and the reagent
stream as shown in Fig. 1. As the sample volume is
small (77ml) compared to the carrier stream and the
reagent (770ml), a smooth pH gradient is created over
the sample plug due to dispersion of the carrier (low
pH) and the reagent (high pH) stream.

Fig. 1. Schematic for the flow injection analysis system.C =
carrier stream (Britton–Robinson buffer, pH= 4.5); S = sample
(77ml); and R = reagent (770ml, Britton–Robinson buffer, pH=
11.4).
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Fig. 2. Example of flow injection analysis data (2-HBA standard).

The sample is led into an 8ml flow cell and then
measured using a HP 8452A photodiode array spec-
trophotometer. The sample is measured for 88 s at 1 s
intervals, 20 s after injection, and from 254 to 450 nm
at 2 nm intervals. The second-order data obtained from
each sample is, thus, of size 89× 99, an example (the
response of the pure solute 2-HBA, see below) being
shown in Fig. 2.

The duration of detection and the pH gradient is suf-
ficient to ensure that the analyte is present in both its
acidic and basic form during detection. Ethanol–water
solutions were used in preparing the carrier, reagent,
and standards so that the final solutions were 1:9
ethanol–water (v/v). The Britton–Robinson buffer
contained citric acid, potassium dihydrogenphospate,
boric acid, and tri-(hydroxymethyl)amino-methane
(TRIS) according to Perrin and Demsey [17]. TRIS
was used instead of 5,5-diethylbarbituric acid to pre-
vent absorption of the buffer in the ultraviolet region.
The buffer concentration was 1.788 mM and the pH
of the reagent solution was adjusted using sodium
hydroxide.

The test solutes 2-hydroxybenzadehyde (2-HBA),
3-hydroxybenzadehyde (3-HBA) and 4-hydroxybenz-
adehyde (4-HBA) show different absorption spectra
depending on whether they are in their acidic or basic

form. Fig. 3 illustrates this for the example of 2-HBA.
Theoretically there is no separation of the constituents
of the sample since FIA is not a chromatographic sys-
tem but a transportation system. The shape of the con-
centration profile of a specific solute is the same as
for the sample as such, but due to the pH gradient, the
first part of the sample plug is dominated by proto-
nated solutes and the last part by deprotonated solutes.
Depending on the pKa of a given solute it will exhibit
different acidic and basic profiles in the sample plug,
as shown in Fig. 4 for all three solutes. The pKa val-
ues of 2-HBA, 3-HBA and 4-HBA are 8.37, 8.98 and
7.61, respectively [18].

3. Description of the data

The spectra of the acidic forms of 2-HBA, 3-HBA
and 4-HBA are denoted assa2, sa3 andsa4, respec-
tively, and the spectra of the basic forms denoted as
sb2, sb3 andsb4, respectively. The subscript ‘2’, ‘3’
or ‘4’ refers to 2-HBA, 3-HBA or 4-HBA and the ex-
tension ‘a’ or ‘b’ to the acidic or basic form. Like-
wise, the concentration profiles of the acidic forms of
2-HBA, 3-HBA and 4-HBA are denoted byca2, ca3
and ca4, and the concentration profiles of the basic
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Fig. 3. Spectra of 2-HBA in its acidic and basic forms.

Fig. 4. Acidic (on left) and basic time profiles for 2-HBA, 3-HBA and 4-HBA.
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forms by cb2, cb3 and cb4. These spectra and con-
centration profiles refer to unit concentrations of the
solutes unless stated otherwise.

The measured responses of the pure solutes 2-HBA,
3-HBA and 4-HBA are denoted asNNN2-HBA, NNN3-HBA
andNNN4-HBA, respectively. These matrices have dimen-
sions 89× 99, this being the number of time points
by the number of wavelengths. Assuming Beer’s law
for the measurements, the response of the pure solute
2-HBA at unit concentration can be written as follows:

NNN2-HBA = ca2 · saT
2 + cb2 · sbT

2 + EEE2-HBA (1)

whereEEE2-HBA is the measurement error.

4. Calibration

The aim of the calibration is to quantify an analyte
of interest in the presence of one (or more) unknown
interferent(s) (the so-called ‘second-order advantage’
[2]). In this work, only the quantification of an analyte
in a binary mixture is considered. For that, two ma-
trices are used: a standard,NNN , where only the analyte
is present with a known concentration, and a binary

Fig. 5. Total concentration profiles for 2-HBA, 3-HBA and 4-HBA.

mixture,MMM, consisting of the analyte at an unknown
concentration (to be found by the calibration method)
and an unknown interferent.

5. Rank overlap

During the analysis, the total concentration profile
of a compound (acidic and basic form) is given by
ca+ cb. This gives three total concentration profiles:
ctot2 (= ca2 + cb2), ctot3 (= ca3 + cb3) andctot4
(= ca4+cb4) for 2-HBA, 3-HBA and 4-HBA, respec-
tively. These are shown in Fig. 5. The shape of the
total concentration profile is defined by the dispersion
properties of the FIA channel (and is independent of
molar absorptivity of the species or the type of detec-
tor used). Since the solutes resemble each other very
much, it can be expected that the dispersion behaviour
is equal for all three [11]. Hence, the shape of the total
concentration profiles is equal (i.e.ctot2 = α ·ctot3 =
β · ctot4, whereα and β are constants). This phe-
nomenon puts a restriction on the calibration problem
and destroys the rank linear additivity of the system,
resulting in a rank overlap between the time profiles.
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For an algebraic description of the rank overlap, an
example of a calibration of 2-HBA as standard and
a mixture containing 2-HBA as analyte in presence
of an unknown interferent (e.g. 3-HBA or 4-HBA) is
used. The mixture can be written as follows:

MMM = γ · ca2 · saT
2 + γ · cb2 · sbT

2 + cau · saT
u

+cbu · sbT
u + EEEM = M̃̃M̃M + EEEM (2)

whereMMM is the experimental response in presence
of measurement noise,̃M̃M̃M the experimental response
in the ideal case without measurement error,EEEM the
measurement error,γ the concentration of the analyte
in the mixture and the subscript ‘u’ indicates the un-
known interferent. The concentration information for
the interferent is absorbed incau andcbu without loss
of generality.

Given that the total concentration profiles for ana-
lyte 2-HBA and the unknown interferent have the same
shape, as expressed in Eqs. (3) and (4):

ctot2 = ca2 + cb2 (3)

α · ctot2 = cau + cbu (4)

whereα is a scalar constant, then the standard and
mixture responses given by Eqs. (1) and (2) may be
rewritten by eliminatingca2 and cbu using Eqs. (3)
and (4) as follows:

NNN = ctot2 · saT
2 + cb2(sbT

2 − saT
2) + EEEN (5)

MMM = γ · ctot2 · saT
2 + γ · cb2(sbT

2 − saT
2)

+α · ctot2 · sbT
u + cau(saT

u − sbT
u) + EEEM

= ctot2(γ · saT
2 + α · sbT

u) + γ · cb2(sbT
2 − saT

2)

+cau(saT
u − sbT

u) + EEEM = [ctot2|cb2|cau]

×




γ · saT
2 + α · sbT

u

γ · (sbT
2 − saT

2)

saT
u − sbT

u


 + EEEM (6)

Eq. (6) shows that the pseudo-rank ofMMM, which
corresponds to the actual rank of̃M̃M̃M (rank(MMM) >

pseudo-rank(MMM) due the measurement error), is ac-
tually three, becausẽM̃M̃M can be described in terms of
matrices of rank 3.M̃̃M̃M is said to have a rank overlap of
one, since it is the result of a sum of two matrices both
having pseudo-rank 2 and its psedu-rank in 3, because
the rank linear additivity of the system does not hold.

6. Calibration methods

The two methods used to quantify the analyte
in the presence of an unknown interferent were
chosen for their algebraic characteristics, one be-
ing eigenvalue-based (NBRA) and the other least
squares-based (RBL). The aim is to verify if these
characteristics provide stable estimations despite the
non-ideal behavior of the experimental data (i.e. rank
overlap, collinearity, reproducibility, spectral noise).
For this purpose, the methods must present a general
treatment of the problem, with no prior information
about the data being used during the calibration. For
NBRA, the only assumption is that the rank of the
mixture must be known. This can be found by rank
analysis techniques [19], although in this work the
rank is known using prior knowledge of the data. For
RBL, the rank of the interferent can be determined
within the RBL algorithm [3], although again, here
external knowledge of the rank of the interferent is
used so as to increase the speed of the algorithm. In-
cluding the rank values as prior information does not
affect the generality of the methods, but reduces the
computational time spent for each analysis.

6.1. NBRA

NBRA is explained here by considering the case
where the pseudo-rank of the mixture is equal to three
and the analyte equal to two, without losing the gener-
ality of the method which can be applied to mixtures
having different number of interferents. Following the
general representation of the rank overlap problem
suggested by Kiers and Smilde [10], Eqs. (5) and
(6) can be put in terms of Eqs. (10) and (11) via
Eqs. (7)–(9).

XXXr = [ctot2|cb2] (7)

YYY r = [sa2|(sb2 − sa2)] (8)

DDDr =
[

γ 0
0 γ

]
(9)

NNN = XXXrYYY
T
r + EEEN (10)

MMM = XXXrDDDrYYY
T
r + XXXsYYY

T
s + XXXtYYY

T
t + EEEM (11)

whereXXXr (I × 2) andYYY r (J × 2) give the profiles
for the analyte;DDDr gives the concentration ratio of the
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analyte in the mixture with respect to the analyte in the
standard;XXXs (I ×1) = ctot2 andYYY s (J ×1) = α ·sbu
denote the profiles for the analyte which have rank
overlap with the interferent (the column ofXXXs equals
the first column ofXXXr); finally, XXXt (I × 1) = cau and
YYY t (J ×1) = sau−sbu denote the profiles for analytes
that have no rank overlap with previous analytes.

The NBRA algorithm used in this work was for-
mulated in terms of the GRAM method described by
Sanchez and Kowalski [7], where the following eigen-
value problem must be solved:

Ū̄ŪU
T
MV̄ S̄MV̄ S̄MV̄ S̄

−1
ZZZ = Z333Z333Z333 (12)

whereŪ̄ŪU , S̄̄S̄S and V̄̄V̄V are the results, truncated to three
components, from an SVD ofWWW , where

WWW = MMM + NNN (13)

and so

W̄ = Ū S̄V̄W̄ = Ū S̄V̄W̄ = Ū S̄V̄
T

(14)

where the pseudo-rank ofWWW is equal to the
pseudo-rank of the mixture,MMM (given that the stan-
dard,NNN , is also present in the mixture). The solution
to this eigenvalue problem is shown in Appendix A.
Three eigenvalues are found, of which the smallest is
the eigenvalue used for finding the analyte concentra-
tion (see Eq. (A.7)).

Summary of NBRA:
1. Solve the eigenvalue problem given in Eq. (12) —

only the pseudo-rank ofMMM is required.
2. Use the smallest eigenvalue to findγ , and thus, the

analyte concentration.

6.2. RBL

Residual bilinearization is a least squares method
that considers the residual signal in the data (i.e. after
the analyte has been subtracted) to have a bilinear
structure. In this case, the residual signal is the sum of
the interferent(s) and experimental noise. The aim of
RBL is to minimize the loss function given by Eq. (15):

EEE = ||MMM − γNNN − PQPQPQT||2 (15)

wherePPP andQQQ are the scores and loadings from a
principal component decomposition of(MMM − γNNN).
The rank of the interferent must be known, but can be

found by increasing the estimated rank of the inter-
ferent, starting at one, until the variance of residuals
equals the measurement noise [3], or by using prior
information as done in this work. For the data de-
scribed here, the rank of the interferent in the binary
mixtures is two. The algorithm, given in Appendix B,
converges when the principal componentsPPP span the
column space of the interferent and componentsQQQ

span the row space of the interferent, i.e.

PPP spans([XXXsXXXt]), QQQspans([YYY sYYY t]) (16)

7. Validation

Validation of the calibrations was performed using a
resampling procedure [20]. Subsets of the full 89×99
matrices were generated systematically, 16 submatri-
ces (67 × 75) being generated for each full matrix.
The first data set of the 16 corresponded to the wave-
lengths 2, 3, 4, 6, 7, 8,. . . (the wavelengths 1, 5, 9,. . .

being left out) and the times 2, 3, 4, 6, 7, 8,. . . (the
times 1, 5, 9,. . . being left out). For each set of wave-
lengths, four sets of different times were constructed
and validated. In total, 16 concentration values were
calculated for each mixture being calibrated, the final
concentration value being the mean of these 16.

8. Calibration results

The calibration results for six binary mixtures
formed by combinations of the three isomers (2-HBA,
3-HBA and 4-HBA) using both NBRA and RBL are
shown in Table 1. This table presents the relative
error percent of the calibration found by using the
formula: error%= 100× (cest − ctrue)/ctrue, where
cest is the estimated concentration andctrue the true
concentration. Note that each row gives the results of
two calibrations. For example, the row for mixture 1
considers both the case where 3-HBA is the analyte
and 4-HBA the interferent, and the case where 4-HBA
is the analyte and 3-HBA the interferent.

Each estimation is the mean value of 16 concentra-
tions found by the validation step. The standard devi-
ation around the mean of 16 concentrations predicted
in each validation set varied between 0.05 and 0.87%
of the concentration value being predicted for all but
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Table 1
Calibration of six binary mixtures of 2-HBA, 3-HBA and 4-HBA using NBRA and RBLa

No. Mixture (mM) Relative error (%)

2HBA 3HBA 4HBA NBRA RBL

2HBA 3HBA 4HBA 2HBA 3HBA 4HBA

1 0 100 40 – −1.09 10.94 – −0.87 13.32
2 0 100 60 – 15.50 −3.83 – 17.39 −5.50
3 50 0 60 −0.54 – −5.97 −13.09 – 7.84
4 100 0 60 2.22 – −7.26 0.86 – 12.47
5 50 100 0 79.94 68.86 – 20.29 19.44 –
6 100 50 0 15.53 288.59 – 13.55 74.54 –

a A negative value indicates that the predicted concentration was smaller than its real value.

two of the calibrations, these being 1.43% for the cal-
ibration of 3-HBA (50mM) in the presence of 2-HBA
(100mM) using NBRA and 4.44% for the same cali-
bration using RBL. The small values of these standard
deviations shows that spectral noise does not have a
large influence on the calibration results, as the results
are almost equal for calibrations using different wave-
lengths.

The results for the calibrations of 4-HBA as an ana-
lyte in the presence of 2-HBA or 3-HBA are generally
good and similar for both methods. For the calibra-
tion of 2-HBA or 3-HBA as the analyte with 4-HBA
as the interferent the results do not differ much be-
tween the methods. However, for the calibration of
mixtures consisting of 2-HBA and 3-HBA, the results
are not good, although RBL does give better results
than NBRA. A detailed explanation for this is given
in the following sections.

9. Exploratory analysis

The purpose of the exploratory analysis described
here is to investigate why the mixtures of 2-HBA
and 3-HBA yielded poor calibration results. The time
profiles of the acidic and basic forms of 2-HBA and
3-HBA in both the standards and mixtures are found
using two mode-component analysis (TMCA) [21]
and the reason that rank overlap affects the estimation
of these time profiles is considered.

The principle of TMCA is to decompose a matrixLLL

into three full rank matrices and a matrix of residuals:

LLL = WKZWKZWKZT + EEE (17)

where the matrix dimensions areLLL (n×m),WWW (n×r),
KKK (r×q),ZZZ (m×q) andEEE (n×m). Note that a special
case of TMCA is the singular value decomposition
(SVD), whereWWW andZZZ are orthogonal matrices andKKK

is a square(q = r), diagonal matrix with non-negative
elements. A set of restrictions are used here for the
TMCA, in which theKKK andZZZ matrices are restricted
to equal known parameters.

For the FIA data, the matrix containing the spectral
response of the experiment (time versus wavelength)
is decomposed into a time profile matrix, a concentra-
tions matrix and a spectral profile matrix, where the
last two matrices are known a priori. The time pro-
files of a standard, for example, 2-HBA, are found by
solving the following least squares problem:

min||NNN2-HBA − XXX2-HBADDD2-HBAYYY T
2-HBA ||2 (18)

where

XXX2-HBA = [ca2|cb2] (19)

DDD2-HBA =
[

γ2-HBA 0
0 γ2-HBA

]
(20)

whereγ 2-HBA is the actual concentration of 2-HBA,
and

YYY 2-HBA = [sa2|sb2] (21)

For a mixture of, for example, 2-HBA and 3-HBA, the
time profiles are found by solving

min||MMM − XDYXDYXDYT||2 (22)

where

XXX = [ca2|cb2|ca3|cb3] (23)
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DDD =




γ2-HBA 0 0 0
0 γ2-HBA 0 0
0 0 γ3-HBA 0
0 0 0 γ3-HBA


 (24)

and

YYY = [sa2|sb2|sa3|sb2] (25)

The UV-spectra of the pure compounds used in the
TMCA, YYY , were obtained by an auxiliary experiment
performed for each solute at different pH values cor-
responding to the acidic and basic conditions in the
FIA experiment [15]. The actual concentrations of the
solutes contained inCCC are also known in advance.

Using TMCA, the time profiles for 2-HBA and 3-
HBA in both the standards and a mixture (number 6 in
Table 1) were calculated. These are shown in Fig. 6 in
terms of the total concentration profiles (i.e. basic and
acidic time profiles added). The shape of the curves
found for the standards agree with the curve expected
for the FIA system. However, the curves found for 2-
HBA and 3-HBA in the mixture present shapes that do
not have physical meaning in terms of the FIA system.

The reason that finding theXXX matrix by solving
the Eq. (22) results in the wrong time profiles can be
explained as follows. TheMMM matrix has a rank >3 due
to the presence of measurement noise(rank(MMM) >

pseudo-rank(MMM)). Using matricesDDD andYYY , which are
of full rank (and have, therefore, a rank 4) for solving
the least squares problem in Eq. (22) implies that the
estimatedXXX also has rank 4. However, as the trueXXX

has rank 3 (like the pseudo-rank ofMMM — see Eq. (6)),
then fittingXXX with rank 4 results in noise modelling.

The correct TMCA model should be formulated tak-
ing into account the rank overlap present in the data.
Eq. (6) can be reformulated as follows:

MMM = [ctot2|cb2|cau] ×




γ · saT
2 + α · sbT

u

γ · (sbT
2 − saT

2)

saT
u − sbT

u


 + EEEM

= [ctot2|cb2|cau] ×

 γ 0 0 α

−γ γ 0 0
0 0 1 −1




×




saT
2

sbT
2

saT
u

sbT
u


 + EEEM = XXX∗DDD∗YYY T + EEEM (26)

which can be checked by matrix multiplication. Note
that the matricesXXX andDDD have been updated and that
XXX∗ has rank 3, made explicit now becauseXXX∗ has
three columns, instead ofXXX, which had four linearly
independent columns.

The TMCA model is estimated using the known
spectra,YYY , and known concentration ratio,γ . This re-
sults inXXX∗ and α. Fig. 7 shows the new total con-
centration profiles, which are almost equal when cal-
culated from either the standards or the mixture. This
shows that the property of linear additivity, in accor-
dance with the Lambert–Beer law, holds good for the
data.

10. Discussion

The basic profiles of 2-HBA and 3-HBA in the stan-
dards and in the mixture as calculated by the refor-
mulated TMCA are shown in Fig. 8, where it is seen
that the profiles in the mixture are highly collinear. To
study the relationship between the collinearity among
the time profiles of the dissociated species and the iso-
mer dissociation constants, the dissociation of the iso-
mers represented by Reaction (1) and the dissociation
constantska−2 of 2-HBA and ka−3 of 3-HBA given
by Eqs. (27) and (28) are considered:

AH + H2O
ka
A− + H3O+ Reaction(1)

ka−2 = [A−]2,t [H3O+]t
[AH] 2,t

(27)

ka−3 = [A−]3,t [H3O+]t
[AH] 3,t

(28)

where [A−]2,t and [A−]3,t are the concentrations of
the basic forms of 2-HBA and 3-HBA at timet (or,
alternatively, at a certain point in the FIA channel)
and [AH]2,t and [AH]3,t are the concentrations of the
acidic forms of 2-HBA and 3-HBA at timet.

Using the fact that the total concentrations of
2-HBA and 3-HBA are proportional

ctt = [A−]2,t + [AH] 2,t (29)

α · ctt = [A−]3,t + [AH] 3,t (30)
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Fig. 6. Total concentration profiles from a standard and a mixture as found by TMCA for (a) 2-HBA(ca2+cb2) and (b) 3-HBA(ca3+cb3).
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Fig. 7. Total concentration profiles from a standard and a mixture as found by the reformulated TMCA for (a) 2-HBA(ca2 + cb2) and
(b) 3-HBA (ca3 + cb3).
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Fig. 8. Time profiles of the basic species of 2-HBA and 3-HBA as found by the reformulated TMCA (a) in the standards and (b) in the
mixture.
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where ctt is the total concentration at timet and α

the scalar constant, the relationship between the basic
profiles of 2-HBA and 3-HBA can be found as follows:

[H3O+]t = ka−2(ctt − [A−]2,t )

[A−]2,t

[H3O+]t = ka−3(α · ctt − [A−]3,t )

[A−]3,t

ka−2(ctt − [A−]2,t )

[A−]2,t

= ka−3(α · ctt − [A−]3,t )

[A−]3,t

[A−]3,t = (α · ctt ) · [A−]2,t ka−3

ka−2ctt + [A−]2,t (ka−3 − ka−2)
(31)

Eq. (31) shows that the difference between the ba-
sic profiles of the isomers depends upon the values
of the dissociation constants,ka−2 andka−3. In cases
whereka for the two isomers are very similar, the term
‘ka−3 − ka−2’ in Eq. (31) is close to zero and the time
profiles of 2-HBA and 3-HBA become collinear (note
that a similar analysis holds for the acidic profiles).
Considering the values ofka for the isomers (ka−2 =
4.27×10−9, ka−3 = 1.05×10−9 and ka−4 = 24.55×
10−9), it is possible to explain the high collinearity
between profiles of 2-HBA and 3-HBA in the mixture,
in other words, the mixtures of 2-HBA and 3-HBA
are more difficult to calibrate due to the collinearity
between the time profiles of interferent and analyte
which can be attributed to the similarity between the
ka values of 2-HBA and 3-HBA.

The basic time profile of 3-HBA in the mixture
is shifted in comparison to the same profiles in the
3-HBA standard (compare Fig. 8(a) and (b)). This shift
can be explained by taking as an example the dissoci-
ation shown in Reaction (1) where the concentration
of the basic species at timet is calculated in terms of
the dissociation constant given in Eq. (28), the total
concentration at timet as given in Eq. (30) and the pH
at timet given as

pHt = −log10([H3O+]t ) (32)

The shape of the pH gradient as present in the sam-
ple plug depends on the length of the sample zones
in the FIA system. The sample zones for duplicates
of an FIA experiment for the same sample are illus-
trated in Fig. 9, wherew1 is the length of the sample

Fig. 9. (a) Duplicate one of the FIA experiment wherew1 is the
length of the sample zone; (b) duplicate two of the FIA experiment
where w2 is the length of the sample zone;C = carrier stream
(Britton–Robinson buffer, pH= 4.5); S = sample (77ml); and
R = reagent (770ml, Britton–Robinson buffer, pH= 11.4).

zone for the first duplicate andw2 for the second du-
plicate(w1 > w2). Considering that it is not possible
to reproduce the exact length of the sample zones, the
shape of the pH gradient will induce a small variation
between the two duplicates as illustrated by Fig. 10.
This variation in the pH at the timet for the two du-
plicates is represented by

[H3O+]dupl-2,t = [H3O+]dupl-1,t + δt (33)

where the subscripts ‘dupl-1’ and ‘dupl-2’ indicate the
first and second duplicate, respectively, andδt is the
difference between the [H3O+] concentration of the
duplicates at timet.

New expressions for the concentration at timet of
the basic form of 3-HBA for the two duplicates can
now be written:

[A−]3,dupl-1,t = α · ctt
10pKa−pH + 1

(34)

[A−]3,dupl-2,t = α · ctt
10pKa−pHt + δt10pKa + 1

(35)

Eqs. (34) and (35) show that shift in the time profiles
due to small changes in the shape of the pH gradient
depends on the pKa of the isomers, so that the higher
the pKa value, the larger the shifts in the time profiles.
Given the problem of exactly duplicating the FIA sam-
ple zone length, it is apparent that solutes with higher
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Fig. 10. The pH gradient shape and the time window of FIA
measurement for (a) duplicate one of the FIA experiment, where
w1 is the length of the sample zone; (b) duplicate two of the FIA
experiment wherew2 is the length of the sample zone.

pKa values have a higher associated experimental er-
ror in terms of reproducibility. Considering the pKa
values of the three solutes (2-HBA= 8.37, 3-HBA =
8.98 and 4-HBA= 7.61), this explains why the cali-
bration of 3-HBA, which has the highest pKa among
the three isomers, generally gives the worse results.

11. Conclusions

Using the second-order FIA system to analyse
mixtures of solutes with similar dispersion properties
(such as for the HBA isomers described here) in-
troduces a rank overlap problem. Both second-order
calibration methods described here, NBRA and RBL,
have been shown to be capable of handling the rank
overlap problem.

It is shown that similar solutes which also have
similar pKa values give collinear basic and acidic time
profiles. Under these conditions, the eigenvalue-based
method, NBRA, yielded poor results, because the

eigenvalue used to find the concentration of the ana-
lyte in the mixture depends upon how the eigenvectors
are placed in the vector space of the mixture matrix.
The collinearity between analyte and interferent re-
sults in an unstable subspace being defined by the
eigenvectors and, thus, the subspace is more sensi-
tive to the presence of experimental noise. The least
squares solution, RBL, seemed to be more stable in
the presence of collinearity, which is an important
aspect if collinearity cannot be eliminated from the
experimental data. This finding is in accordance with
the work of Wang et al. [9] who suggested that RBL
will generally have a better noise-filtering capability
than NBRA.

Finally, it has been shown that the basic and acidic
time profiles can experience a shift due to the dif-
ficulty of exactly reproducing the FIA sample zone
length. Solutes with a high pKa exhibit a larger shift
and, therefore, a larger experimental error in terms of
reproducibility. This shift will cause a lack of synchro-
nisation between the time profiles within the standard
and mixture matrices [22] and, therefore, a breakdown
in the trilinear structure assumed by second-order cal-
ibration methods such as NBRA and RBL. This is
seen in the calibration of 3-HBA in the presence of
2-HBA (mixture 6 in Table 1), for which both NBRA
and RBL perform badly.

The success of second-order calibration of this data
is found to depend strongly on the collinearity be-
tween the acidic and basic time profiles and the re-
producibility of the pH gradient. By comparing the
results obtained here with the results from using re-
stricted Tucker models, multivariate curve resolution
and PARATUCK2 presented in the literature [15], it
is seen that for cases where collinearity and shift in
the time profiles is not significant, both NBRA and
RBL work comparably well, with NBRA having the
advantage of being computationally faster.
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Appendix A. Non-bilinear rank annihilation
(NBRA)

To solve the eigenvalue problem posed by NBRA,
as described in the main text, the first step is to express
matricesMMM andWWW as follows:

MMM = XXXrDDDrYYY
T
r + XXXsYYY

T
s + XXXtYYY

T
t + EEEM

= XXXr(YYY rDDDr + [YYY r|0])T + XXXtYYY
T
t + EEEM (A.1)

where the matrices are the same as defined for Eq. (11)
in the main text and the column ofXXXs equals the first
column ofXXXr.

WWW = MMM + NNN = XXXr(YYY rDDDr + [YYY s|0])T

+XXXtYYY
T
t + EEEM + XXXrYYY

T
r + EEEN

= XXXr(YYY r(DDDr + III ) + [YYY s|0])T

+XXXtYYY
T
t + EEEM + EEEN (A.2)

The solution for the eigenvalue problem shown in
Eq. (A.3a) is found by solving the determinant in
Eq. (A.3b), which can be rewritten in terms of

Eq. (A.3c) by usingS̄̄S̄S = Ū̄ŪU
T
W̄ V̄W̄ V̄W̄ V̄ from Eq. (14):

Ū̄ŪU
T
MV̄ S̄MV̄ S̄MV̄ S̄

−1
ZZZ = Z333Z333Z333 (A.3a)

|Ū̄ŪUT
MV̄MV̄MV̄ − λS̄̄S̄S| = 0 (A.3b)

|Ū̄ŪUT
(MMM − λW̄̄W̄W)V̄̄V̄V | = 0 (A.3c)

The determinant shown in Eq. (A.3c) is reduced to
the form shown in Eq. (A.5). This is done first by
replacingMMM andWWW in Eq. (A.3c) by Eqs. (A.1) and
(A.2), which results in Eq. (A.4).∣∣∣UUUT[XXXr|XXXt][YYY r(DDDr − λ(DDDr + III ))

+[(1 − λ)YYY s|0]|(1 − λ)YYY t]
TVVV

∣∣∣ = 0 (A.4)

As the square matrixUUUT(XXXr|XXXt) is non-singular, it
can be removed from Eq. (A.4), which is thus reduced
to Eq. (A.5).

|[YYY r(DDDr − λ(DDDr + III )) + [(1 − λ)YYY s|0]|(1 − λ)YYY t]
TVVV |

= 0 (A.5)

The determinant in Eq. (A.5) has three eigenvalues
as solutions (it is the determinant of a 3× 3 matrix)
which can found by setting the columns of the matrix
[YYY r(DDDr −λ(DDDr +III ))+ [(1−λ)YYY s|000]|(1−λ)YYY t] equal
to zero. The results are shown in Eqs. (A.6b), (A.7b)
and (A.8):

yyy1(γ − λ1(γ + 1)) + yyy3(1 − λ1) = 0 (A.6a)

yyy3
Tyyy1γ + yyy3

Tyyy3

yyy3
Tyyy3 + yyy3

Tyyy1(γ + 1)
= λ1 (A.6b)

yyy2(γ − λ2(γ + 1)) = 0 (A.7a)

λ2 = γ

γ + 1
(A.7b)

λ3 = 1 (A.8)

whereyyy1 andyyy2 are the columns ofYYY r andyyy3 is the
column ofYYY s.

The eigenvalueλ2 from Eq. (A.7) is used to findγ
the ratio of the concentration of the analyte in the mix-
ture to that in the standard.λ2 is the smallest eigen-
value among the three found as solutions to the eigen-
value problem of NBRA, as can be shown by consid-
ering the inequalities given by Eqs. (A.9) and (A.10):

yyy3
Tyyy1γ + yyy3

Tyyy3

yyy3
Tyyy3 + yyy3

Tyyy1(γ + 1)
>

γ

γ + 1
, γ > 0 (A.9)

γ

γ + 1
< 1, γ > 0 (A.10)

Appendix B. Residual bilinearization (RBL)

The RBL algorithm is given as an alternating least
squares procedure with the following minimization
function:

min
γ,PPP ,QQQ

||MMM − γNNN − PQPQPQT||2 (B.1)

whereγ is minimised using a vectorised regression
andPPP andQQQ are minimised using the NIPALS algo-
rithm.

B.1. Initialization

The procedure is begun by making an initial esti-
mate forγ :

γ0 = vec(NNN)+vec(MMM) (B.2)
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where the vectorisation function is given as

vec(xxx1 . . . xxxi . . . xxxI ) =




xxx1
...

xxxi

...

xxxI




(B.3)

andxxxi is a column vector.

B.2. Main loop

PPP andQQQ are estimated using the NIPALS algorithm,
in alternation with the estimation ofγ , until conver-
gence is reached:

PPP kQQQ
T
k = MMM − γkNNN (B.4)

γk+1 = vec(NNN)+(vec(MMM) − vec(PPP kQQQ
T
k )) (B.5)

If γk+1 − γk is greater than a given convergence
criterion, thenk = k + 1 and another iteration is
performed.
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