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The PARAFAC model has been used in several applications in chemistry, e.g. for overlapped spectra
resolution and second-order calibration. In general, the PARAFAC method uses a vector space
approach by considering the matrices resulting from the decomposition as a collection of vectors.
This paper presents a PARAFAC application where the factors resulting from the decomposition are
considered as functions. The functional objects used for this are spline functions. The methodology
used performs the Spline-PARAFAC decomposition based on the Bro-Sidiropoulos approach for the
unimodality constraint. One of the advantages of using splines is the possibility of achieving a
controlled degree of smoothing on the decomposed components. The amount of smoothing applied
on the components in the presented methodology is controlled by a penalty parameter or by the
number of basis functions. Thus Spline-PARAFAC requires the calculation of the parameter /. and
the number of basis functions, which were determined in this work by using ordinary cross-
validation (OCV). Spline-PARAFAC was applied to a carbon monoxide data set comprising
concentrations measured every hour during the years 1997 and 1999 in the city of Sao Paulo, Brazil.
Each data set was arranged in a three-way array of dimension (24 hours x 5 days x 52 weeks). Spline-
PARAFAC showed a good performance, producing smoothed profiles describing the daily variations
in emitted gas and the seasonal effects during the year. Copyright © 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION
especially the PARAFAC and Tucker models, have been

Multiway methods, which first appeared in psychometrics . . .
y PP psy used for second-order calibration, curve resolution and other

[1,2], have received more and more attention in chemo-
metrics in the last two decades. This family of methods is
appropriate for the analysis of large structured data sets,

chemical applications, after some refinements that are
needed owing to unpredictable variation in the experiments.
In curve resolution, for example, when applied on over-
lapped spectra and time profiles, the aim of multiway
methods is to fit each of the overlapped spectra and time

which have become common in chemistry owing to
instrumental developments such as hyphenated instruments
(e.g. LC-UV, GC-MS, MS-MS).

In general, the chemometrics approach is based on the profiles. In this case a non-negative constraint has been

shown to be useful, since it is known a priori that the

decomposition of data matrices into latent variables, as for . .
components to be fitted are non-negative. Smoothness,

example in th.e pr-mc1pal compon.ent analysis (PCA) method, which can be achieved by several methods, may be required
where a matrix X is decomposed into the product of the score . . . .

to avoid rapid variation in the decomposed profiles. In the
multiway analysis context, Bro [3] applied PARAFAC with a

smoothing constraint based on a penalty approach for curve

and loading matrices (i.e. X=TP", where the superscript
denotes the transposed matrix). In the same way, three-way
methods can be considered as an extension of PCA-like
methods to multiway data, since it is possible to perform a
similar kind of data analysis.

The multiway methods developed in psychometrics,

resolution of fluorescence data. Timmerman and Kiers [4]
have also used a smoothing spline approach for three-way
component analysis.

The spline, which historically originated in engineering to
draw a smooth curve between specified points, has become a
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mathematical term, consisting in the solution of a con-
strained optimization problem. Splines are purely interpo-
latory in nature. Although interpolating splines are useful
for non-noisy data, which have limited use in experimental
data analysis, there is a type of smoothing spline that makes
it possible to describe the data but not be constrained to

Copyright © 2002 John Wiley & Sons, Ltd.



interpolating exactly [5]. Ramsay and Silverman [6], Besse
and Ramsay [7] and Silverman [8] have shown the
usefulness of functional analysis applied on principal
component-like methods by means of smoothing spline-like
methods. In chemometrics, splines have been used for curve
fitting [9], data compression [10] and linearization of non-
linear regression problems [11].

An important topic to be considered when analysing a gas
concentration in the atmosphere is the correlation between
the gas emission sources and the atmospheric conditions. An
interesting example mentioned by Comrie and Diem [12]
refers to a taxi strike in the city of New York when carbon
monoxide (CO) emission was reduced by 34% but, owing to
coincident low wind speeds, its concentration in the atmos-
phere was reduced by only a few per cent. The data set
studied in this work is built from measurements of CO
concentration collected every hour for a year. We consider
the data as having a three-way structure with the following
modes: hours of the day x days of the week x weeks of the
year (HD x DW x WY). The first mode, HD, represents the
emission during the day; the second mode, DW, refers to the
contribution of the days of the week to the CO emission; and
the last mode, WY, represents the contribution from seasonal
effects during the year. Additionally, the profiles for the HD
mode are assumed to be systematic and with a gradual
variation (i.e. without random changes) within their ele-
ments. Thus the profiles for the HD mode would be related
to systematic sources of CO emission and the profiles for the
WY mode would represent changes in climatic conditions
due to the different seasons during the year. These charac-
teristics, i.e. systematic profiles and smooth variation, are
imposed on the model by considering the profiles for each
mode as functions, which is done here by means of splines.

Paatero and Juntto [13] have carried out a data analysis of
carbon monoxide data using their method to perform a
PARAFAC-like decomposition.

The aim of the present work is to fit the systematic
variation for the HD mode and verify the presence of
seasonal effects in the WY mode. Additionally, the useful-
ness of combining PARAFAC and functional analysis, by
using Bro’s approach to applying the unimodality constraint
[3], is evaluated.

2. THE DATA

The data set comprises measurements of carbon monoxide
(CO) concentration in the city of Sao Paulo, Brazil during the
years 1997 and 1999 collected every hour, every day.

3. METHODS

PARAFAC is based on the decomposition of a multiway data
set into a linear combination of multilinear components
[14,15]. This decomposition can be constrained if the data set
demands it, e.g. a non-negative constraint can be used for
curve resolution of time profiles and spectra. The approach
described in this work considers the PARAFAC factors as
functions.

Before starting the description of the functional objects, it
is necessary to describe the PARAFAC method represented

Copyright © 2002 John Wiley & Sons, Ltd.
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by Equation (1) for a three-way array:
X = Alps(CT ® BY) + E (1)

where X (M x [N-R]) and Ipg (F x [F-F]) denote the matrix
representation of the data set and superdiagonal three-way
arrays respectively. The matrix X is built by juxtaposing
horizontally R matrices of dimension (M x N), which are
called slices, e.g. 52 matrices of dimension (24 hours x 5
weekdays). F denotes the number of trilinear components
fitted. The matrix form of the superdiagonal three-way array
is built in the same way as X, where each slice is a square
(F x F) matrix which has only one element different from
zero and equal to one, i.e. the (f, f) element of its diagonal,
where fis the slice number. A, B and C are the component
matrices of dimensions (M x F), (N x F) and (R x F) respec-
tively [16]. E (M x [N-R]) corresponds to the part of X that
cannot be accommodated in the trilinear model.

The estimates for parameters (i.e. A, B and C) of the
PARAFAC model described in Equation (1) can be deter-
mined by an alternating least square (ALS) algorithm where
the component matrices A, B and C are found one at each
step. This formulation is called global by Bro [3]. Another
approach suggested to find A, B and C is the columnwise
formulation [3]. Here Equation (1) is first rewritten as
Equation (2) [3,16]:

XZ = ZAAT = zA‘la{ + zA‘zag + -
+ ZA,faJI + - +zaraf +E (2)
where
Zy = [Ios(C" @ B")]" = (zaalzazl - |2ar) (3)

and X, is the same as matrix X, but where the subscript A is
used to denote that the component matrix A is not
participating directly in the product (---®--).

The global PARAFAC decomposition is obtained by an
ALS optimization where the function described by Equation
(4) is minimized:

l(aj,ay,...,ar) = | X} — (za1al +2za0a) +---
+zagal +--- +zarap)|’ (4)

The columnwise formulation is found by rewriting Equation
(4) as Equations (5) and (6), where the fth multilinear
component fitting is represented as shown in Equation (7)
for mode A:

Ir(as) = (X} — zana] —zanag — -+

— zarar) —zAfa}HZ (5)
Ff)Y = Xg — zA,laI — ZAQag — = zA,paE (6)
Ir(ap) = Y = zagaf | (7)

Thus, for every fitting of the factor f, the minimum of
Equation (7) is sought.

The solution for the optimization problem of minimizing
the function described by Equation (7) when a; is under
constraint is equivalent to the problem [3,16]

rr}xin||af — OlfH2 (8)
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where o is subjected to a constraint and af is the
unconstrained least square solution for the problem
described by Equation (7).

3.1 The functional constraint

The unconstrained least square solution for the problem
expressed in terms of Equation (7) can incorporate some
information in the PARAFAC factors which is not directly
related to the phenomenon studied. Therefore it would be
interesting to incorporate some extra information, based on
characteristics of the data set, to constrain the PARAFAC
fitting. In this work the factors for one mode are required to
describe a systematic variation, whereas the variation within
the elements of each factor must be smooth. Thus splines are
used to impose these characteristics on the PARAFAC
factors. A special problem in applying functional methods
(i.e. splines) to experimental data is due to sudden high local
variation. The goal is to obtain a spline representation of the
data that reflects some natural behaviour without being
affected by random changes (rapid local variation). Produ-
cing a good fit and avoiding too much rapid local variation
can be achieved by incorporating some regularization into
the fitting of the PARAFAC components. One simple
method to obtain this regularization is to represent the
components by a linear combination of basis functions,
where the degree of regularization is controlled by the
number of basis functions. Another method is to measure
such rapid local variation by a roughness penalty parameter
[6,17]. In this work the roughness penalty parameter used to
smooth the fth vector of a component matrix is represented
by the integrated squared second derivative added to the
minimized expression in Equation (8), as shown in the
following:

o) = Sl =+ 4 [ (g )

where
a} = (z}zf)flz;(fﬂY (10)
o = (g(h)gr(ta) - gr(tm)) (11)

and asdenotes the fth column vector of a component matrix
having its values calculated by the function g¢«(t) on the ¢
points in a given interval. The term J'(g’j’:)2 dt in Equation (9) is
responsible for the curvature of the function g¢(t) (or the rate
of exchange between residual error and local variation). In
this way, changing the value of 1 causes the j(g’}’c)2 dt value to
be changed and consequently the curvature of gg(t) to be
adjusted [17], where the double-prime superscript denotes
the second derivative of g(f).

The algorithm for the solution of Equation (9) is not
discussed here but can be found elsewhere [6,18-21].

The function g(t) used to represent the PARAFAC
components is a linear combination of basis functions, as
mentioned before. Two of the most common basis functions
used to represent a data set are B-spline functions and
Fourier series. B-splines have the computational advantage
of being represented by a basis function matrix (to be
described next) which is a banded matrix (i.e. one whose
elements are zero everywhere except over a finite interval).

Copyright © 2002 John Wiley & Sons, Ltd.

For those cases where the data are periodic, Fourier series are
indicated. As an advantage, Fourier series can produce an
orthogonal basis function matrix when the data points are
equally spaced. The function g(t) represented by B-spline
functions is given by Equation (12) (see References [5,9,18]
for an introduction and Reference [19] for technical details):

Mbasis

gr(t) = Z 7,Qi(t) = Q7 (12)

j=1

where Q(t) is the jth column vector of the basis function
matrix Q, 7 is the vector of t; coefficients and 71pais is the
number of B-spline basis functions. The knot sequence is &,,
=12, ... ,fgnots plus the boundary knots &y and &,.,1, where
Ninots 18 the number of knots.

The description of the g¢«(t) function in terms of a Fourier
series is given in Equation (13):

8r(t) = co + c1 sin(@t) + c; cos(wt)
+ ¢38in(20t) + ¢4 cos(2mt) + - - - (13)

which can be described by
g(t) = by (14)

where the columns of the basis function matrix ¢ are
do(t) =1, ¢y, _1(t) = sin(rodt) and ¢,,(t) = cos(rat). The par-
ameter » determines the period 2n/m, which is equal to the
length of the interval T, and g«(t) is periodic [6]. The
parameter r defines the number of cycles (each cycle is a
full period). For instance, in a matrix for a basis with five
functions the first column is a vector of ones, the second and
third columns correspond to =1 and the fourth and fifth
columns correspond to r=2. In this work the number of
basis functions is taken as an odd number in order to
produce a complete basis set. The vector ¥y is the vector of
coefficients.

3.2 Choosing the smoothing parameter A and
the number of basis functions

The smoothing, as mentioned before, is accomplished here
by two methods: one using a relatively small number of basis
functions and the other using a penalty parameter. The first
method is based on achieving the regularization of the
profiles only by the penalized least square approach (for an
odd number of data points the the number of basis functions
is the same, otherwise it is one less). The second uses the
penalized least square approach for one mode and the
smoothing control by the number of basis functions for
another mode. A similar approach was used by Timmerman
and Kiers [4].

The CO data may present a systematic variation with a
period of 24 hours and a seasonal effect during the year due
to changes in the climatic conditions. Thus PARAFAC was
tested with two different combinations of splines. Fourier
series were chosen as basis functions to represent the hours
of the day (HD), because this mode is periodic and one of the
characteristics required for the factors of this mode is to
present a systematic, or periodic, variation among their
elements. The fitting of this mode was regularized by the
penalized least square approach, and the weeks of the year
(WY) mode was smoothed by Fourier series or B-spline basis
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Table I. Outline of methodology

Smoothing method

Method name

Mode Basis functions Regularization control Method A Method B
Hours of the day (HD) Fourier series Penalty parameter (/) (penalized least square) X X
Weeks of the year (WY) Fourier series Penalty parameter (/) (penalized least square) X

Cubic B-splines Number of basis functions X

Days of the week (DW) Considered as constant

- X

functions. In the first case the WY mode profile was
regularized by the penalized least square approach and in
the second case the amount of smoothing was controlled by
the number of B-spline basis functions. The contribution of
the days of the week (DW) mode was considered as constant,
since the contribution of the weekdays is expected to be the
same (see Section 3.3). Table I summarizes the methodolo-
gies described above, and the two combinations of smooth-
ing methods are termed method A and method B.

When the PARAFAC fitting is constrained by method A,
the smoothing depends on one parameter, i.e. the penalty
parameter. For method B, which uses B-splines for the WY
mode, there are several parameters to be adjusted (i.e.
number of knots, knot positions, penalty parameter, spline
order). In this case the PARAFAC fitting is prohibitive
because of the large number of parameters to be optimized.
Thus the number of parameters used for the B-splines was
reduced by using equally spaced knots, with the number of
knots given by fixnots = basis — (07dpol + 1) + 2, where ord,,; is
the polynomial order, ord,, +1 is the number of knots
needed to span the spline space, and the value 2 corresponds
to the boundary knots. We also used cubic B-splines (i.e.
ordye = 3) as basis functions.

The choice of the penalty parameter or the number of basis
functions must produce a realistic curve that expresses some
characteristics of the phenomenon represented by the data
set. Additionally, every factor fitting must preserve the
convergence of the ALS algorithm. In this work the penalty
parameter A in Equation (9) and the number of basis
functions for the B-splines were found by using an ordinary
cross-validation (OCV) method [17,20]. This method is based
on the principle of leaving the data points out one at a time
and choosing that value for the desired parameter when the
missing data points are best predicted by the remainder of
the data set. The best value for the parameter is the one
which minimizes the cross-validation scores given by
Equation (15):

OCV(2) = El:(afj M) (15)
i=1

1

where “/a(#) is the resulting function from the approximation
due to Equation (9) when fitted without the point i, and A'iocﬁi
is the ith value calculated by the function “'a(t) for the
parameter /.

For method B the variable in the function OCV is the
number of basis functions, and the term f(g”f)2 dt in Equation
(9) vanishes since it was not penalized.

OCV is chosen to determine the penalty parameter

Copyright © 2002 John Wiley & Sons, Ltd.

because it minimizes the sum of squares given in Equation
(8), as pointed out by Hastie and Tibshirani [18], and
consequently preserves the ALS algorithm convergence. The
OCV method as described by Equation (15) is time-
consuming, but an efficient calculation of the cross-valida-
tion score can be used [21].

All the calculations were performed on an IBM-compatible
PC using MATLAB®™ running under Windows™. The spline
toolbox used on this work is described in the book by
Ramsay and Silverman [6]. The toolbox was obtained
through the internet [22].

3.3 PARAFAC model for CO data

As mentioned in Section 1, the gas concentration in the
atmosphere depends on, among other factors, the gas
emission and the climatic conditions. In short, if the climatic
conditions are not favourable for gas dispersion, a sample of
the gas concentration in the atmosphere is measured,
otherwise only a fraction of it is measured. In this way the
gas data analysis would be performed by a model that
discriminates between the gas source contribution and the
contribution to the gas dispersion due to changes in the
climatic conditions. In this work the concentration of carbon
monoxide (CO) in the atmosphere is analysed. In this case
the CO emission is assumed to be periodic, with a period of
24 hours. Considering that this periodic characteristic of the
CO emission can be used to identify the emission source and
that the climatic conditions are not equal during the year
[23], acting differently on the CO dispersion, a PARAFAC
model is suggested in Equation (16) for the data analysis:

F
5(mm = Zamfbnfcrf (16)
f=1

where %,,,, is the estimated CO concentration at hour m of
day n in week 7, a,,cis proportional to the emission of source f
at hour m, b, is the contribution of day n of the week for
source f, ¢,sis proportional to the seasonal effect for week r on
source f, and F is the number of factors (sources).

For the data set dealt with in this work, it is known a priori
that automobile traffic is the main source of carbon
monoxide [23] at the measurement site. Thus the amount
of gas collected at the site depends mainly on the number of
automobiles and on the climatic conditions. It is assumed
that the automobile traffic is the same for the 5 weekdays
during the whole year (the weekend days would present a
different daily periodic variation during the year), with a 24
hour periodic variation in the number of automobiles. It is
also assumed that there are no significant changes in the
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Figure 1. Ordinary cross-validation functions (for penalty
parameter using method A) for (a) hours of day mode and (b)
weeks of year mode for 1999 (a.u., arbitrary unit).
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Table Il. Results for ordinary cross-validation fitting of spline

parameters
Year
Method Regularization control 1997 1999
A Penalty parameter A(HD) 0.149 0.012
Penalty parameter A(WY) 180.000 120.000
B Penalty parameter A(HD) 0.151 0.012
Number of basis functions (WY) 5 5

climatic conditions during each week, i.e. sudden changes

are considered to be random. Based on these assumptions,
the CO data sets for the years 1997 and 1999 were arranged
as three-way arrays of dimension 25 x 5 x 52, where the 25
in the HD mode corresponds to 24 hours plus 1 hour to
complete a full cycle (i.e. a period from zero to 2x).

(a)
03
o
025t
ozt
a
015t
01 ——  Method-A
----  Method-B
o o Unconstrained
005 1 1 't 1 1
o 5 10 15 20 25
Hours

4. RESULTS

A one-factor PARAFAC model was fitted to the CO data sets
to verify the possibility of describing the automobile traffic
contribution and how it is affected by the climatic changes
during the year. The resulting PARAFAC components are
the following: a is the systematic profile (the automobile
contribution), which represents the HD mode; b is fixed,
having unit elements for all five days of the DW mode; and ¢
is used to describe the seasonal effects during the year in the
WY mode.

Two typical cross-validation curves for the year 1999 fitted
by method A (i.e. these curves correspond to the last fit) are
shown in Figure 1 and the results for the years 1997 and 1999
are summarized in Table II.

Figure 2 shows the PARAFAC components for the HD
mode for the two years. These components describe the daily
systematic variation, showing a high correlation with the
traffic flow during the day. The positions of peaks and
valleys are in agreement with the automobile traffic as
described by a report from the traffic department for April of
these two years [24].

The PARAFAC components for the WY mode are shown
in Figures 3 and 4 for the two years. The two methods
described in Table I differ in the fitting of the WY mode.
From the results shown in Figures 3 and 4, it is possible to
verify small differences between the profiles fitted by
methods A and B. Comparing these differences with the
variation within the elements of the profiles found by
unconstrained PARAFAC (Figure 3) and the differences
between the smoothed profiles by the same method for the
two years (Figure 4), it is reasonable to suggest that the
differences due to methods A and B are not significant with
respect to the different kinds of variation, i.e. rapid local
variation and variation due to different years.

Seasonally, the CO concentrations are highest in the dry
season during stagnant conditions. Among the factors
responsible for these stagnant conditions, a high frequency
of atmospheric temperature inversion and a low wind speed
are important factors for less propitious conditions for CO

(b)
04y
035
03+ o
025+
>
o
02+
015t G\\
- \:_9/ ——  Method-A
o
01 r ----  Method-B
o o Unconstrained
n.os 1 L L L ]
0 5 10 15 20 25

Hours

Figure 2. PARAFAC loadings for hours of day mode for (a) 1999 and (b) 1997 (a.u., arbitrary unit).
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Figure 3. PARAFAC loadings for weeks of year mode for (a) 1999 and (b) 1997 (a.u., arbitrary unit).
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Figure 4. PARAFAC loadings for weeks of year mode for 1999
and 1997 (a.u., arbitrary unit).

dispersion [25]. Figure 5 shows the frequencies of tempera-
ture inversion [23] during the dry season for these two years,
where it is possible to verify that in 1997 there are higher
frequencies than in 1999. Since the temperature inversion
limits the vertical ventilating capacity of the atmosphere [25],
the higher frequency of atmospheric temperature inversion
for 1997 is assumed to have contributed to the relatively
higher carbon monoxide concentration compared to 1999.
Table III shows the number of days per month with
conditions not propitious for CO dispersion. Figure 5 and

Figure 5. Frequencies of temperature inversion for (a) 1997 and
(b) 1999.

Table III describe the climatic conditions during the dry
season (weeks 19-39, months 5-8), which suggest that 1997
presented less propitious conditions for CO dispersion
compared to 1999. In terms of PARAFAC trilinear compo-
nents the daily systematic variation is better captured in a
week with many days not propitious for CO dispersion,
resulting in a high value for the element in the WY loading.
On the other hand, a week with good conditions for CO
dispersion presents a small value for its element in the WY

Table Ill. Number of days not propitious for CO dispersion

Number of days not propitious for CO dispersion

January May June July August September November
Year (weeks 1-4) (weeks 19-21) (weeks 23-25) (weeks 27-30) (weeks 32-34) (weeks 36-39) (weeks 45-47)
1997 0 4 10 14 5 1
1999 1 0 1 4 10 8 0

Copyright © 2002 John Wiley & Sons, Ltd.
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loading. In short, these data, which reflect the climatic
conditions in the dry period (Figure 5 and Table III), show
that the WY PARAFAC component does describe the
seasonal effects for these two different years.

In summary, the two methods used for regularization in
the fitting of PARAFAC for the WY mode, one controlling
the amount of smoothing by a penalty parameter (method A)
and the other by the number of basis functions (method B),
have resulted in profiles which are in agreement with the
climatic conditions for the period under consideration. It is
worth mentioning that method B provides a more parsimo-
nious model, since the component for the WY mode uses a
small number of B-spline basis functions without being
penalized by the integrated squared second derivative,
making it computationally more efficient.

5. CONCLUSIONS

The focus of the present work is the description of
PARAFAC components in terms of functional objects (i.e.
splines). Splines are useful mathematical tools, though their
use is not a simple task owing to the number of parameters to
be optimized. For the experimental data used in this work,
the unpredictable variation (or rapid local variation) results
in an additional difficulty, which is to produce a curve with
physical meaning, representing some natural behaviour of
the data set, without being affected by the rapid local
variation. However, one of the most important points for
applying splines on such experimental data is how to control
the amount of rapid local variation. Additionally, the
description of the PARAFAC components by splines must
preserve the convergence of the alternating least square
algorithm. Thus the complexity of the approach described in
this work is mainly determined by the spline fitting. In this
context, two methodologies are discussed here in terms of
the kind of basis functions as well as ways of controlling the
amount of rapid local variation, which were tested on real
data. As a result, Spline-PARAFAC produced components
which are in agreement with the natural characteristics of the
data set, showing a large influence of rapid local variation. In
conclusion, the results described here suggest that splines
can be useful in PARAFAC fitting of data sets that require
functional characteristics as well smoothing variation within
the components.
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