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1. Representation of the three-way data set 

Let X= {xijh : i E 1, j E J, h EH} be the three-way or three-mode data set, 
where xijh is a real value of the variable j-th observed on the i-th unit, 
according to the h-th Situation, and 1 = (1,. . . , n}, J = (1,. . . , k) and H = 
{l, * * *, r} are the sets of indices of modes i (units), j (variables) and h (occa- 
sions) respectively. We now analyze the representation of the three-way data set 
according to data types and different data structures forming X. 

1.1. Matrix representation of X 

The three-way data set X tan be represented as a set of matrices: 
(a) r units-variables matrices, or k-variates, called frontal slabs (or slices) 
X, .h = {xijh: i E 1, j E J} (h EH) (Harshman and Lundy, 1984). They tan be 
considered the result of the Observation, on a set of y1 units, of k variables; 
Observation repeated for r situations. With this data representation of X we tan 
evaluate: the relations between different occasions, i.e., the association or 
dependence between sets of variates (Ramsay et al., 1984; Vichi, 1989) exam- 
ined on the same units in different occasions; or the dissimilarity between 
studies (Escoufier, 1987) that is between sets of units on which the same 
variables have been measured in different occasions; 
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(b) k units-occasions matrices or r-variates, defined lateral slices X,,= {xijh: 
i E 1, h E H} (j E J). They tan be seen as the result of the Observation, on a set 
of n units, of I times the variable j; Observation repeated for k different 
variables. With this data representation we tan evaluate the relations between 
different variables repeatedly observed, i.e., by the relations between set of 
variates each set compound by the same variable repeatedly observed in differ- 
ent occasions. 
(c) IZ variables-occasions matrices, called horizontal slices, Xi. ,= {xijh: h E H, 
j EJ} (i E 1). They tan be considered as the result of the Observation of k 
variables in Y situations, on the i-th unit; Observation repeated for n different 
units. With this data representation of X we tan evaluate the dissimilarities 
between different units on the base of different variables examined on several 
occasions (for example k time series related to II units). 

The three-way data set tan be the result of the straight collection, or calculus 
- repeated in Y occasions - of a prefixed proximity measure between couples of 
units or variables. In this case the three-way data matrix X is a two mode matrix 
represented generally as a set of: 
(d) r similarity or dissimilarity Square matrices of dimension rz or k. Note that 
using the dissimilarity and similarity definition adopted by Gower and Legendre 
(1986), the dispersion and the correlation matrices tan be considered similarity 
matrices of Order k. 

1.2. Vector representation of X 

The three-way set X tan be seen as a set of equal vectors (or fibers): nr row 
(k-elements) vectors Xi.h (i E 1, h EH), each one associated to the i-th unit 
examined in the h-th occasion; kr column (n-elements) vectors X,j, (j EJ, 
h EH), each one associated to the j-th variable observed in the h-th occasion; 
nk lateral (r-elements) vectors (tubes) Xij, (i E 1, j E J), each one associated to 
the i-th unit on which variable j has been observed; also called fibers in 
direction of modes i, j and h respectively (Harshman and Lundy, 1984). 

1.3. Pooled representation of X 

In Order to make multivariate analysis of a three-way matrix possible, it is often 
useful to represent X as a large pooled two mode matrix, for instance juxtapos- 
ing the frontal slabs: 

0) 

There are twelve different ways to represent-a three-mode matrix as a pooled 
matrix. The first six may be defined through the column vectorization of the 
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slabs or the transposes of the slabs of the three-way matrix, while the other six 
are the transposes of the first six. We therefore have: 
1) The column frontal pooled matrix * : 

X, =knXr = (vec X, .i vec X. ,*. . . vec X. .r), (2) 

where vec X h is the column vectorization of the frontal slab X, .h, i.e., the k 
column (n-eiements) vectors X,j, (j EJ), forming columns of X, .h, are strung 
out. X, has kn rows and Y columns. 

D’Alessio (1986) and Rizzi (1989) principal matrices are detected via Princi- 
pal Component Analysis (PCA) of X,. The interstructure analysis of STATIS 
(L’Hermier des Plantes, 1976 Escoufier, 1977, 1987), is actually the PCA of the 
column frontal pooled matrix {vec X, ,hX.‘,h: h EH}. Also the interstructure 
analysis, based on a three-way similarity matrix (D’Ambra, e Marchetti, 1986; 
Coppi, 1986) and computed according the types of variables observed, is the 
PCA of the column frontal pooled matrix of the three-way similarity matrix. 
2) i%e row frontal pooled matrix: 

X,, =nkXr = (vec X[., vec Xl,z.. . vec XT,,), (3) 

where the n row (k-elements) vectors Xi,* (i E Z), forming the rows of X, ,h, are 
strung out. Matrix X,, has nk rows and r columns. 
3) The column lateral pooled matrix: 

X, =rnXk = (vec X,,, vec X,, . . . vec X.,.), (4) 

where r column (n-elements) vectors X., (h EH), forming the columns of Xzj., 
are strung out. Matrix X, is matrix (11, and has rn rows and k columns. Levm 
(1966) generalized PCA is essentially equivalent to the PCA on the pooled 
matrix X,. Also simultaneous Component Analysis, based on a gradient method 
(Millsap and Meredith, 1988) or on alternating least Square algorithm (Kiers and 
Ten Berge, 1989; 1991; Kiers 1990) - consists of an improved Version of PCA on 
X,. 
4) The row lateral pooled matrix: 

XL, = .rX, = (vec XII. vec X.>, , . . vec X(,,) , (5) 

where the n tube (r-elements) vectors Xij, (i E Z), forming the lateral slab X,j, 
are strung out. Matrix XL, is formed by nr rows and k columns. 
5) i%e column horizontal pooled matrix: 

X, =krXn = (vec X,, vec X,, , . . . vec X,, ), (6) 

where the k tube (r-elements) vectors Xij, (j EJ), forming the columns of the 
horizontal slab Xi, ,, are strung out. Matrix X, has kr rows and n columns. 

* In the second notation used for the pooled matrix the subscript on left of X indicates the 
number of its rows and the subscript on the right of X the number of its columns; i.e., &Y, is a 
pooled matrix with kn rows and r columns. 
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Table 1 
Parameter estimation of the Tucker’s models 1, 11 and 111 trough frontal, lateral and horizontal 
pooled matrices. The numbers on the left side - reported in the table (excluding the Zero) - 
correspond to the original Steps indicated in the work of Tucker (1966) 

The TUCKER MODEL for X with elements X+ has the form: 

xijh = f ‘5 5 aimbjpchqb’mpq + eijh 
m=l p=l q=l 

where a,,, bjP, ckq are the elements of matrices A, B and C; while gmpq are the entries of the 
three-way core matrix G 

PARAMETER ESTIMATION OF THE MODEL ACCORDING TO 

0. 
l.-2. 
3. 

0. 
l.-2. 
3. 
4.-5. 

6. 
7. 
8.-9. 

0. 
1. 
2.-3. 
4.5 

6.-7. 

TUCKER MODEL 1 
given the transposes pooled matrices: XL, XL and Xk; 
compute PCA of Xh, Xl, Xk defining principal component coefficient m,atrices A, B, C; 
compute the core matrix G = A'Xk(B@C). 
TUCKER MODEL 11 
given the pooled matrix XL; 
compute PCA of XL defining the principal component coefficient matrix B; 
compute principal component matrix YL = B'XL; 
rewrite Yf. as the transpose of the column frontal pooled matrix Yi and compute PCA of 
YL, defining principal component coefficient matrix C; 
compute principal component matrix Zk = C'Y;; 
rewrite Zk as the transpose of the column horizontal pooled matrix ZL; 
compute V which columns are eigenvectors associated to eigenvalues appearing in the 
diagonal matrix S of Z,Zh, then compute G = VS*/* and A = ZLS-1/2. 
TIJCKER MODEL 111 
given the column horizontal pooled matrix: X, 
compute matrix R = X,Xh 
‘compute PCA of X, and X, defining principal component coefficient matrices C and B; 
compute matrix (B'@C')R(BBC), then compute their eigenvectors - arranged on columns 
of V - and eigenvalues, appearing on diagonal matrix S; 
compute matrices: G = VS1/’ and A = X$B@C)K!5-'/2 

6) The two horizontal pooled matrix: 

X,, = rkXn = (vec Xi, . vec Xi, . . . vec Xk, ,), (7) 
where the r row (k-elements) vectors Xi.h (h E H), forming the rows of Xi, ., are 
strung out. Matrix X,, has rk rows and ~t columns. The transpose of Matrix 
X,, tan be also obtained placing frontal slices one beside the other. Escofier 
and Pages (1984, 1989) multiple factorial analysis is based on the transpose of 
the row horizontal pooled matrix. 

Also the solutions of the Parameters of the three fundamental models 1, 11 
and 111, defined by Tucker (1966, 19721, are computed trough PCA on frontal, 
lateral and horizontal pooled matrices, as we have summarized in Table 1. 
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2. Synthesis of a three-way data set 

The information given by a three-way data set tan be synthesized according to 
different data structures or types of representation forming the three-way data 
set (fibers, matrices and 3-way arrays). 

Many authors have considered data structures, principally matrices, which 
from their Point of view average the three-way data set. These matrices hold 
different properties so we have to clarify what tan be properly considered a 
Synthesis or mean structure of X. 

A fixed data structure X” is a representutive synthesis (mean) of X if: (a) X* 
minimizes differentes between itself and the data structures of the same 
dimension of X” compounding X; (b) X* satisfies the internality property, that 
is, each element of X* is internal to the interval formed by the least and the 
largest corresponding elements of the data structures forming X. We tan 
therefore define: one-way or fiber Synthesis, two-way or slab Synthesis, three-way 
or global Synthesis. 

Note that we have to distinguish a Synthesis of X from what it tan be called a 
fuctorial dutu structure, (that is a factor (one-way structure) or a factorial matrix) 
which does not average X, but it insure a data structure with minimum loss of 
information of X, (according to a prefixed measure of loss of information). 
Examples of one-way factorial structures are the principal components of each 
slab forming X, while the compromise matrix (Escoufier, 1980, 1987) principal 
matrices (Rizzi, 1989) and factorial matrices (Vichi, 1990) are examples of 
two-way factorial structures. 

2.1. One-way Synthesis of X 

One-way Synthesis or fiber mean of X is the mean of the elements of each: 
column-vector X., (j EJ, h E Hl; or row-vector Xij, (i E 1, j EJ); or tube-vec- 
tors Xi,h (i E 1, h E H). These means may be arranged into matrices that are 
synthesis mubices of X, according to the definition given in Paragraph 2. 

The matrix .X. .F, which elements are the power mean of tube-vectors Xij. 
elements. 

is a Synthesis matrix, named, frontal Synthesis matrti, or frontal mean matrix of 
X, since defined a dissimilarity between a frontal slab X, ,h and PX, ,F, 

..h> .‘..F) = 5 i (+h -z;.)2T 
i=l j=l 

(9) 

i.E., the Square of the Euclidean norm (Frobenius norm) of matrix {x$, -X$, 
PX, .,_satisfies the following two properties: 
ca) px. .F minimizes C, d(X, ,h, x, .F), over the sum of dissimilarities between 
X. ,h and any real matrix with same dimensions of X. .h; 
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(b) pF. .F satisfies the internality property of a matrix: i.e. 

minX. .h s px. .F < maxx. .h 2 where 

min X, .h = (min(xii,:hEH): iEZ, jE.Z), 

max X,.,= max xijh: hEH): iEZ, jEJ) ( ( 
and A IB means that aij I bijVi, j. 

The frontal mean matrix of a three-way, three mode matrix X, tan be used to 
average the influence of the occasions and to apply multivariate statistical 
analysis to the so obtained two-way data Set. For instance when the occasions 
are’ the months of a year, the frontal mean matrix averages the influence of the 
seasonality of the observed data. 

With the Same procedure we tan define the lateral synthesis matrix, or the 
lateral mean matrtx of X, which elements are the power mean of the row-vectors 

Ai’h p%,,.= (pZi.h= [~j$lx~h]“p: iEZ, ,tZZ], 

which satisfies: 
Ca) ,X,,. minimizes the sum of dissimilarities: 

(10) 

(11) 
i=l h=l 

over all sums of dissimilarities between each X,j. and any real matrix with Same 
dimensions of_X, j; 
cb) minX.j.5 px.LS maxX,j., where minX.j.’ (min(Xijh: j EJ): i E Z, h EH}, 

maxX,j,- (mt+x,jh: h EH): i EI, h EH), 

Note that when X is a three-mode matrix the lateral mean matrix has no 
statistical meaning since the mean of the elements of the row vectors of X mixes 
modalities generally with different unit of measure. Such mean matrix is useful 
when: X is a proximity three-way matrix (two mode matrix), or to define ipsative 
data. 

Finally we tan define the horizontal Synthesis matrix, or the horizontal mean 
matrix of X, which elements are the power mean of the column-vectors X,jh 

pXH.,z (pz,jh= (~~~~h)‘“: h EH, jE./), (12) 

which satisfies: 
(a) pXH.. minimizes the sum of dissimilarities 

d,(% J p%f.. ) = ; E (XGh -x$h)2, 
j=l r=l 

(13) 
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3.2. Two-way uariability of X 

Two-way variability of X is the slab or multivariate variability of each data set 
X, ,h (h EH), X,, (j EJ), Xi. _ (i EI>, forming X. 

A multivariate measure of variability of a given data matrix A may be defined 
through a norm of the dispersion matrix of A, as was noted by Mathai (1967), 
Lunetta (1973) and Amato (1981). 

Indicated with: 

Z, .h E ("(X.jh> x.,,) j? ’ EJ)Y (h EH); 

~,j.~ (g(x,jh> X,jm) h, m EH), (j EJ); 
Si,,” ("(xij,3 xiu,) j> ’ EJ)? (iEI); 

the dispersion matrices of X, ,h, X,j, and Xi., respectively, and using in the 
following notation for the subscripts the letter a in Order to unify the treatment, 
we tan consider the indices: 

a,( X,) = {tr( Z,); the total Variation of X,; 

aZ(X,) = dtr(J$,J$,); the Euclidean norm of X,; 

c~( X,) = 1 Z, 1; the determinant of X, or generalized variance of Wilks; 

where, for a = ..h, a = .j., a = i.. we have multivariate variability indices respec- 
tively for the frontal, lateral and horizontal slabs of X. 

3.3. Three-way variability of X 

The analysis of the conjoint variability (or dispersion) of the three-way data set 
X is here faced with an axiomatix approach, giving desiderata properties that an 
index a(X) of variability of X should held. The variability of X is evaluated 
through slabs and fibers forming X. Here, for reasons of space, we discuss in 
depth the case of frontal slabs and column fibers. However the considerations 
stated below remain valid for the other cases (variability of X evaluated through 
lateral slabs and column fibers; or horizontal slabs and tube fibers), for which 
we give, at the end of this Paragraph, the corresponding measures. 

In Order to introduce an index a(X), we have first’to ‘guarantee that it is the 
logical extension of both an univariate and a multivariate well known variability 
measures, with the following properties: 
Ca> a(X) is a function of the univariate measures of variability of each variate 
X.jh, ( j E J, h E H) belonging to X; 
(a’) a(X) is a function of the multivariate measures of variability of the 
k-variate associated to X. ,h, (h EH) of X; 
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(b) a(X) is reduced to an univariate measure of variability when X degenerates 
into a variate X,j,, (one-way data set, i.e. IZ > 1, k = 1, r = 1); 
(b’) (T(X) is a multivariate measure of variability when X degenerates to a 
k-variate X, ,h (two-way data set; i.e. IZ > 1, k > 1, r = 1). 

An index a(X) has also to satisfy the following conditions before it tan be 
considered a useful measure of variability of a three-way data set: 
(1) a(X) 2 0; it is non negative; 
(2) o(X) = o(X,), where X, = {X h - .l,l’C,: h EH} is the three-way matrix 
translated according to matrices 6; = diag(c,,, . . . , ckh), cih E IR (h E H) and ,l 
(m = TZ, k) is a m-vector of unitary elements; it is invariant under trunslution of 
euch variute X,jh,of X; 
(2’) a(X) = a(X), where 8= {(,I -,l,l’(l/n))X. ,h: h EH} is the tree-way ma- 
trix fiber-centered, i.e. determined one-centering each variate of X (see section 
4.4), and ,$ is the identity matrix of Order n; it is invuriant under one-wuy 
centering of euch variute of X; 
(3) a(X)=0 if and only if X=O~X={X~~~=C~~: iEI, ~EJ, h EH}, cjh~lR! 
(real); it is null h w en all elements of the three-way (one-wuy ) centered mutrix 2 ure 
Zero. 

Properties (a) and (a’) are required since it is useful to know the total degree 
of variability of a three-way data set, but such index might be considered too 
synthetic for a so complex and large data set, therefore, what we also need is 
what we tan cal1 a super-index i.e. an index which summarizes the variability of 
the structures of X (vectors or slabs forming X). 
Properties (b) and (b’) are also necessary since when the three-way matrix 
degenerates into a one or two way data matrix, then o(X) has to be one of the 
univariate or multivariate indices of variability already introduced in the statisti- 
cal literature. 

Conditions (l), (2) and (3) tan be considered an extension of those held by the 
univariate indices and it does not seem there are reasons not to preserve them 
also in the case of a three-way data set. 

Conditions (2) and (2’) imply the possibility to express index a(X) as a 
function of the differentes of the values xijh from their mean or from prefixed 
values. 

Condition (3) is a rigid extension of that valid in the univariate case. However 
when variables are more then one in many other cases it may be believed the 
variability null. For instance it may be feasible to give null variability to X when 
its two way slices X, ,h are linked by linear (or non liner) functions each other. 
Therefore condition (3) may be changed to satisfy other axioms. However here 
we do not treat furthermore this important Problem. 

The indications we set out may be formalized through the following index of 
total Variation of X, called variunce of X: 

(T(x) = C E fl u(X.jhp X.uh)> 
h=l j=l u=l 

(14) 
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where u(X.~~, X.J is the covariance between j-th and u-th variables of X, .h. 
Therefore a(X) is the sum of the covariances among rk2 couples of variates 
(X,jh, X,& so that properties ca> and (b) directly follow. 

Now to prove properties (a’) and (b’) we have first to consider the strong 
index of covariance between slabs X ,, and X, ,m introduced by Vichi (1989): 

cov(x. .hy x. .m) = fl C a(X.jh7 x.um)3 (15) 
j=l u=l 

which is in the case X h =X, ,m a multivariate measure of variability. In fact - 
given X, .h = (X.lh,. . . , Xkh) and considered the linear combination of its vari- 
ables yh = a,,X,,, + * . . +a,,X,,,, with coefficients ajh - the variability of the 
k-variate X, ,h tan be computed as the dispersion of the univariate y,: 

C(YJ = ‘T(%X.,h + * * - +ak/zX.kh) = C 5 a(X.jh7 X.uh)“j*umh~ (16) 
j=l u=l 

from (16) we have a(Y,) = ~ov(X,.~, X, J, when ujh = 1 (j EJ); hence 
cov(X, J,, X. ,h) is a multivariate measure of variability of X, .h. 

From expression (15) the total Variation of X tan be written: 

c(x) = i cov(x. .h> x. .h) = tr(z)y 
h=l 

(17) 

that is, the sum of the strong index of covariance COVCX. ,h, X, ,h) t/ h E H, or the 
trace of 2 = (cov(X, .h, X, ,J: h, m E H}, i.e., the dispersion matrix of X. From 
(17) properties (a’) and (b’) follow. 

Conditions (l), (2) and (2’) follow directly. Also condition (3) is satisfied, 
excluding the degenerate case k = 2 and r = 1 (two variables one occasion), i.e., 
the three-way data set degenerates to a bivariate (X, Y) data set. In this case 
a(X) = 1/2 + (1/2)r,,, (computed without loss of generality, on the standard- 
ized variables), is null also when rxy = - 1. Now for r > 1 and k > 1, that is, 
when we actually have a three-way matrix X, it is weh known (Naddeo, 1978) 
that three or more variables cannot have simultaneously Pearson correlation 
coefficient equal to - 1, therefore index (14) vanishes only for condition (3). 

In the case we evaluate the variability of X through lateral slabs and column 
vectors; or through horizontal slabs and tube vectors, we have the indices 
corresponding to expression (17): 

ffL(x) = E C C a(X.jh9 X.jm), (18) 
j=l h=l m=l 

aH(x) = 2 Z It a(Xij> xiu.)* (19) 
i=l j=l j=l 

Other measures of variability of a three-way matrix X defined through frontal 
slabs and column vectors; or lateral slabs and column vectors; or horizontal slabs 
and tube vectors are given considering the two-way variability measures exam- 
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ined in Paragraph 3.2, which are also functions of univariate measures of 
variability: 

a,(X) = E a:(X,) = E tr(Z,), (20) 
h=l h=l 

o,(X) = C ai(X,) = 2 tr(.Z,-ZJ. (21) 
h=l h=l 

Note that when a = ..h (frontal slab) equation (21) is equal to the sum of the 
numerator of RV coefficient of Escoufier (19’7’3) computed On matrices X, ,h. 

4. Data preprocessing 

Before performing a three-way analysis on the data matrix X, it is often 
convenient to carry out some basic transformations, or data preprocessing, in 
Order: (1) to return data appropriate for the three-way analysis; (2) to allow to 
extend the applicability of the adopted three-way model; (3) to turn interval 
scale data into ratio scale data (centering); (4) to quantify qualitative data; (5) 
to control the influence of different unit of measurements of the variables and 
equate differentes of variability among variables (standardization); (6) to equate 
the influence of the correlation within each slab of the three-way data set. 

4.1. One-way, two-way and three-way centering of X 

Centering is done subtracting to the elements of each structure of the three-way 
data matrix X (i.e., fibers or slabs, or the three-way matrix itself), their mean so 
that the resulting data structures have zero mean. 

According to Kruskal (19811, Harshman and Lundy (1984) centering tan be 
done in three different ways: fiber or one-way centering, slab or two-way 
centering, global or three-way centering. 

One-way centering is necessary when we need to turn interval scale variables 
of X into ratio scale data. This is generally done for many multivariate 
techniques such as principal component analysis, multidimensional scaling and 
cluster analysis. Two-way centering is useful when variables have different 
origins between slabs and we want to equate these origins. 

4.2. Three-way or global centering 

Three-way centering or global-centering transforms the three-way matrix X into 
a Score three-way matrix, subtracting to each element of X the mean X 
computed over all its elements. This type of transformation makes invariant the 
analyses of data matrices transformed by a unique additive constant. 
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4.3. Two-way or slab centering of X 

Slab-centering transforms each slab of X into score slab, subtracting from the 
elements of the slab their mean, so that we have: 

frontal Score matrix : s..h =x ..h -’ .h nl/cl’ ch EH); 

lateral Score matrix : S.j,=x,j.-X,j, .1,1’ (j EJ); 
horizontal Score matrix: Si, ,=Xi, .-Xi,, ,l,l’ (i EI); 

In the frontal, lateral and horizontal Score slab the sum of their elements is 
equal to Zero. 

Even if slab-centering has been considered the most natura1 kind of centering 
for X, Harshman and Lundy (1984) noted that in Order to apply PARAFAC 
three-linear model (Harshman, 1970), slab-centering is undesirable for three 
main reasons: firstly it introduces in the model unwanted constants; secondly it 
does not remove two-way interaction constants: thirdly it removes only one of 
the one way constants of PARAFAC. 

4.4. One-way or fiber centering 

Fiber-centering transforms each fiber of X in vector Score, subtracting from the 
elements of the fiber their mean. Considering slabs and Synthesis matrices 
(Paragraph 2.1) we tan define the three-way fiber centered matrices subtracting 
from the slab the corresponding (frontal, lateral or horizontal) mean matrices. 
However, one-way-centering tan be computed also utilizing the matrices L, 
(m = n, r, k) which are symmetric, indempotent, have rank m - 1 and their 
rows and columns sum to Zero. We therefore have three-way fiber centered 
matrices: 
(1) centered by tube 

C=(C,,,=X,,,-&: hHI) 

= (X,j.L,=X,j.(,‘- (l/r),l,l’): j EJ) 
= {L,Xi_= (rZ- (l/r),l,f)X,.; iEI}, (22) 

formed respectively by: r frontal matrices C, .h, not centered; k lateral slabs 
centered by rows; n horizontal slabs centered by columns. 
Matrix C is centered by tube, that is formed by tube-vector scores: C,,,= Xij,- 
Xi, rl (i E 1, j E J) with zero mean. This centering equates the origin of the 
variables among different units, turning interval scale variables j of unit i into 
ratio-scale variables. 
(2) centered by row 

c = (C,j,=X.j,-&; j E J} 

= [X. .hLk =X, ,&- (l/k),l,l’): h EH) 

=(Xi,,L,=Xi,,(,I-(l/k),l,l’): iEI), (23) 
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formed respectively by: k lateral slabs not centered; r frontal slabs centered by 
rows; 12 horizontal slabs centered by rows. Matrix c is centered by row, that is 
formed by row-vector scores: Ci,h = Xi.h - ii,hkl (i E 1, h E H), with zero mean, 
defining the so called ipsative data. This centering is commonly employed when 
data are ability tests scores for groups of People. 
(3) centered by column 

C=(C,_=X,,,-X,,; iEI) 

= (L,&, = (,/- (l/n),l,l’)X~,,: h EH) 

= (L,X,j,= (,‘- (l/n),l,l’)X,j! j EJ}, 
(24) 

formed respectively by: n horizontal slabs not centered; r frontal slabs centered 
by columgs; k lateral slabs centered by columns. 
Matrix c is centered by column, that is formed by column-vector scores: 
C,, =X.jh -X.jhnl (j E J, h EH), with zero mean. 
The main objective of this centering is to turn a given interval-scale variable j of 
Situation h, into a ratio-scale variable, so that to equate the origin of the 
variables within each occasion h. 

Of course if the sum of the elements in each fiber is zero also the sum of the 
elements of each slab and also the sum of all elements of the three-way matrix is 
Zero. Hence fiber centering implies slab centering and global centering, but not 
vice-versa. 

It is easy to show that successively applying fiber centering across modes i, j 
and h removes in PARAFAC model all the constant terms due to interval scale 
variables, centering all the factor loading matrices associated to modes i, j and 
h. 

Another fiber-centering of X tan be computed applying double-fiber-center- 
ing of each slab, so that to define the following three-way matrices: 

D = (LX. .&k = (J- (l/+J,J’)X, .h(,J- (l/k)J,l’): h EH), (25) 

formed by the frontal slab double-centered matrices; 

D=(L,X,j,L,=(~I-(l/r),l,Y)X,,h(nl-(l/n),l,r): jEJ}; (26) 
formed by the lateral slab double-centered matrices; 

G = (L,X,..L, = (/- (l/r),l,l’)X, ,h(ki- (l/k),l,l’): i EI}; (27) 

formed by the horizontal slab double-centered matrices. 
Note that the double centering frontal slabs modify the correlation between 

frontal slabs computed through the weak or the strong index of correlation 
(Vichi, 19891, while this does not happen with the previous one-way centering. 

In the double-centered matrices the elements of the rows and the columns 
sum to Zero, therefore double-centering implies slab-centering, but not vice- 
versa. Obviously if the sum of elements in each slab is zero the sum of the total 
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to define new scores whose Standard deviation is comparable among variables 
(independent from the unit of measurements), but not necessary equal to one: 

u.j, = ic.j, = =Ljh -,l 
‘.jh X.jh 

(J- EJ, h EH), (30) 

uij,= =Lij,= LXii-,l 
xij. zij. 

(j E J, i EI). (31) 

In each standardized CO~WZ uector or column u-Score ujh, the mean is zero 
and the Standard deviation of variable j is equal to the Pearson’s coefficient of 
Variation. Also for the standardized tube vector or tube u-score Uij,, the mean is 
zero and the Standard deviation of variable j is Oij,/j”ij: 

4.7. Two-way OY slab standardization 

Slab-standardization transforms slabs (multivariate variables) of X into fiber- 
standardized (u-scores) matrices which elements are divided by their multivari- 
ate measures of variability. We tan define the three-way slab standardized 
ma trices : 

(1) v= v..h=,<; h)U..h:hEH , 
1 . 

(32) 
compound by r frontal slabs formed by columns v-Score 

1 
‘.jh = 

al(X. .h) 
u.jh = (jEJ, h EH), (33) 

with zero mean and variance equal to CT,~~/E~=,U,~~. 

(2) Y= i Yj.=u~~,)o.,j,:j~J 
1 .J. 

compound by k lateral slabs formed by columns v-Score 

G.jh = 
1 1 

+. .h) 
u.jh = (jEJ, h=H), (35) 

with zero mean and variance equal to a,Th/Ch=Ia,;h. 

consisted of n horizontal slabs formed by tube v-scores 
1 

yj,= 
@lCxi. .) 

qj. = (jEJ, iEI), 

(36) 

(37) 
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with zero mean and variance equal to a,~,/~~=,~~~. 
Slab standardization is recommended when in each slab variables have equal 
unit of measurement, but different between slabs. In this case two-way standard- 
ization equate the variability between slabs. 

4.8. Two-way full standardization 

Often, when we consider three-way three mode matrices X, it is necessary to 
examine the relations between matrices that remain invariant under the elimina- 
tion of the internal relations between variables of each frontal slab. This was 
one of the aim of Hotelling (1936) when he proposed canonical correlation. In 
these cases we have to apply a specific transformation (rotation). 

Given a slab X,, where a = ..h (frontal), a = .j. (lateral), a = i.. (horizontal), 
full standardization of X, is the procedure that allows to define the fully 
standardized slab R, with: mean of the elements of the column-vectors of R, 
null; variance unitary; and correlation coefficient rjU = 0 for j # u (j, u EJ). 

The fully standardized slab tan be defined: 

R, = ZaQafl;1/2, where (38) 
Q, is the matrix the normalized eigenvectors of ZLZ,; 
0, is the diagonal matrix with diagonal elements equal to the eigenvalues of 
ZL&; 

Note that given two fully standardized frontal slabs R. .h and R, ,m for the RV 
coefficient of Escoufier we have: RV(R. .h, R, J = 1. 
In fact, the dispersion matrix of R, ,u is (l/n)R: ,u R. ,. = 1, u = h, m, and hence 
RV = tr(l)/tr(l) = 1, therefore such transformation, according to RV maximize 
the similarity between the two configurations corresponding to R, ,h and R. ,m. 
Differently for the weak and strong correlation coefficients (Vichi, 1989) the full 
standardization does not necessary imply that cor(R. .h, R. ,,> = 1. 

5. Principal matrices analysis 

We now show that Principal Matrices Analysis in the case of quantitative 
variables (Rizzi, 19891, defines factorial data structures insuring minimum loss 
of information according to a three-way variability index considered in para- 
graph 3.3. 

When a large set of k-variates X, ,h (h = 1,. . . , r), arranged into a three-way 
matrix X are studied, it may be interesting to inquire whether this set tan be 
replaced by a smaller not directly observable set of k-variates Y h 
(h = 1,. . . , r’; r’ < r), forming the three-way matrix Y, so that to insure the 
minimum loss of variability of X. 

This Problem is equivalent to find Y _g (g = 1, . . . , r), which explain, one after 
the other, the maximum variability, provided that the variability of Y (when 
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6. Summary 

In the first section of this Paper we describe the structures (vectors and 
matrices) on which a three-way data set X tan be organized, and the informa- 
tion we tan Point out when using these structures. Many three-way analyses are 
based on pooled representations of X, that are systematically studied. The 
information given by a three-way data set tan be synthesized according to the 
structures utilized to represent X. In the second section we define one-way, 
two-way and three-way syntheses of X. Also the variability of a three-way data 
set is evaluated, in section three, according three different levels: one-way or 
fiber variability, two-way or slab variability and three-way variability. The 
syntheses and the variability indices of X tan be used for data preprocessing of 
X, which is here discussed in section four. Furthermore we discuss, in Section 5, 
the Principal Matrices Analysis on the base of three-way variability indices. 
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