
PSYCHOMETRIKA--VOL. 59, NO. 3, 377-380
SEPTEMBER 1994

A SIMPLIFICATION OF A RESULT BY ZELLINI ON THE MAXIMAL
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Zellini (1979, Theorem 3.1) has shown how to decompose an arbitrary symmetric matrix 
order n x n as a linear combination of~(n + 1) fixed rank one matrices, thus constructing 
explicit tensor basis for the set of symdaetric n x n matrices. Zellini’s decomposition is based
on properties of persymmetric matrices. In the present paper, a simplified tensor basis is given,
by showing that a symmetric matrix can also be decomposed in terms of~n(n + 1) fixed binary
matrices of rank one. The decomposition implies that an n x n x p array consisting of p
symmetric n × n slabs has maximal rank 2Ln(n + 1). Likewise, an unconstrained INDSCAL
(symmetric CANDECOMP/PARAFAC) decomposition of such an array will yield a perfect fit
in ~n(n + 1) dimensions. When the fitting only pertains to the off-diagonal elements of the
sydametric matrices, as is the case in a version of PARAFAC where communalities are in-
volved, the maximal number of dimensions can be further reduced to ~(n - 1). However,
when the saliences in INDSCAL are constrained to be nonnegative, the t~nsor basis result does
not apply. In fact, it is shown that in this case the number of dimensions needed can be as large
as p, the number of matrices analyzed.
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Zellini (1979, Theorem 3.1) has proven that the set of real symmetric n x 
1

matrices has tensor rank ~n(n + l) in the real field. Zellini’s proof is based on the
decomposition of symmetric matrices in terms of a fixed basis of eigenvectors of per-
symmetric matrices. The same result (for real symmetric matrices) will now be obtained
without resorting to persymmetry. Instead, a simple basis of binary rank one matrices
will be constructed. In addition, it will be shown that Zellini’s result has direct impli-
cations for the number of dimensions needed to perfectly fit the scalar products version
of the INDSCAL model (Carroll & Chang, 1970), and for the problem of maximal rank
of symmetric three-way arrays, more generally.

A Binary Basis for the Set of Symmetric n x n Matrices

Let S be an arbitrary symmetric n x n matrix with elements Sjk = ski, j, k =
1 ..... n. Let I n be the n x n identity matrix, with columns e1, ..., en. Construct t
binary symmetric matrices, with t -- ½n(n ÷ 1), as follows. For j -- 1, ..., n, let

rjj m eye), (1)

of rank one, and let, for j, k = 1 .... , n, (j < k),

Tjk = (eje~: ÷ eke~.), (2)

of rank two. It is trivially verified that S can be expressed as the linear combination
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n

S = ~ sjkTflc. (3)

The linear span of T~ .... , Tt does not change if we replace every rank two matrix Tjk,
~

eforj < k, by Ujk Tfl, + Tjj + T~c. Note that Uj~ = (ej + ek)(ej + ~,) , a matrix
of rank one. Clearly, all resulting t matrices are now of rank 1, and they are linearly
independent. Writing the n rank one matrices Tjj, and the ½n(n - 1) rank one matrices
Uj~, j < k, as aia), for certain vectors ai, and collecting these vectors in an n x 
matrix, we obtain a matrix A such that, regardless of the elements of S, there always
exists a diagonal matrix D for which S = ADA’.

It should be noted that the matrix A above has a very natural form: Its columns
consist of all possible n-vectors such that all but one or all but two elements are zero,
the nonzero elements being 1. An alternative way of saying is that A contains the n
columns of In, and all pairwise sums of these columns. The elements of the diagonal
matrix D can be expressed explicitly in terms of elements of S or they can be computed
by solving an equation in Vec-notation, to be discussed below, see (6).

Applications to the Scalar Products Version of the INDSCAL Model

The INDSCAL model is a highly popular tool for analyzing symmetric matrices of
proximities or dissimilarities. In the (quasi) scalar product version of INDSCAL, which
is also known as symmetric CANDECOMP/PARAFAC, the model reads

Si = ADiA’ + Ei (4)

i = 1 .... , p, where Si is the i-th observed symmetric matrix of order n × n, typically
pertaining to judge i, .4 is an n × r group space matrix, Di is a diagonal matrix of
idiosyncratic weights (saliences) for judge i, and Ei is a matrix of residuals for judge i
(Carroll & Chang, 1970; Harshman, 1970). In practice, the number r of dimensions 
chosen as the smallest value that still permits an adequate least squares fit. That is, it
should be possible to obtain a low value for the sum of squared elements of E~, ...,

It is well-known that it usually takes more than n dimensions to attain a perfect fit,
with El .... , Ep = 0. It will now be shown that ½n(n + 1) is an upper bound to this
number of dimensions. In fact, this is immediate from the previous section. Specifi-
cally, for i = 1, ..., p, Si can be decomposed as Si = ADiA’, where A is either based
on Zellini (1979) or it is the binary n by ½n(n + 1) matrix derived in the previous section,
with columns el, ..., en, (e1 + e2) ..... (en_ 1 q- en). To find Di, it is convenient to
note that Si = ADiA’ if and only if

Vec(Si) = (A A)di, (5)

where the vector di contains the diagonal elements ofDi and × represents the column-
wise Kronecker product. That is, thej-th column of (A x A) is the Kronecker product
of thej-th column of A and itself. The coefficient matrix (A x A) is of full column rank,
which means that di can be obtained at once as

[(A × A)’(A × A)]-I(A A)’Vec(Si). (6)

It has thus been shown how to compute an explicit INDSCAL solution in ½n(n + 1)
dimensions, and that ½n(n + 1) is an upper bound to the INDSCAL rank.

Admittedly, there is no guarantee that Di will be nonnegative, for i =
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1..... p. The present results have no bearing on INDSCAL subject to a constraint of
nonnegative weights, to be treated below.

Although½n(n + 1) is an upper bound to the number of dimensions in (uncon-
strained) INDSCAL, it will overestimate this number when p, the number of symmetric

1
matrices analyzed, is less than the bound. However, when p >- ~n(n + 1), the bound
is sharp. This will be shown in the next section.

It was pointed out by J. Douglas Carroll (personal communication, 1993) that the
upper bound ½n(n + 1) to the number of dimensions in INDSCAL can also be obtained
by means of singular value decompositions of S1 ..... Sp, followed by a selection of
½n(n + 1) linearly independent vectors from the much larger set of vectors involved. In
this way it can be shown that a basis of ½n(n + 1) rank one matrices can always be
constructed for any given set of symmetric matrices S 1, ¯ ¯., Sp. This differs from the
approach adopted in this paper, where the basis is known in advance. The resulting
upper bound, however, is the same in either approach.

From Upper Bound to Maximal Rank

The number of dimensions r needed in INDSCAL is closely related to the rank of
the three-way array S of order n x n × p, consisting of symmetric slabs S 1, ¯ ¯ -, Sp.
It is well-known (e.g., Kruskal, 1989) that the latter rank is the smallest number 
dimensions needed to decompose Si, i = 1, ..., p, as

Si = ADiB’, (7)

where Di is a diagonal matrix, and, contrary to (5), there is no constraint that A and 
are equal. It will now be shown that, when p >- ½n(n + 1), the maximal number of
dimensions in INDSCAL and the maximal three-way rank coincide and are equal to
½n(n + 1). To verify this, write (7) equivalently in Vec-notation 

Vec(Si) = (A × B)di (8)

for i = 1, ..., p, where x again refers to the column-wise Kronecker product. Con-
sider a set of ½n(n + 1) matrices S1, ..., Sp such that their Vec’s form a linearly
independent set (the matrices Tjj and Tjk of (1) and (2) are a case in point). If there 
a solution for (8), the matrix (A x B) must at least have ½n(n + 1) columns. It follows
that ~n(n + 1) is not merely an upper bound but is in fact the maximal rank of 
symmetric n x n x p array with p >- ½n(n + 1).

Nonnegative Saliences

So far we have only considered the unconstrained scalar products version of
INDSCAL (symmetric CANDECOMP/PARAFAC) model. In practice, it is typically
desired to have D1, ..., Dp, the diagonal matrices of saliences, nonnegative. In that
case the tensor basis result described above is of no avail. In fact, if the constraint of
nonnegative saliences is imposed, the number of dimensions needed to decompose a
symmetric n × n × p array may require as many as p dimensions, regardless how large
p may be. To see this, consider the case of an array consisting ofp nonproportional psd
rank one arrays St, ..., Sp. Decomposing any slab Si as ADiA’, when Si has rank 1,
and Di is constrained to be nonnegative definite, implies that ADi1/2 must have rank 1,
hence ADi must be of rank one. Writing Si as uiu~, i = I, ..., p, it follows that ui
must be proportional to a column ofA. Hence, when none of the vectors u~ .... , up
are proportional, we need p dimensions to perfectly fit the INDSCAL model with
nonnegative saliences. In this case, the matrices Sl ..... Sp are each decomposed
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independently. Interestingly, this is a case where the INDSCAL solution is unique in
the sense that only permutations and reflections are allowed (Harshman, 1972), yet the
uniqueness conditions given by Harshman (1972) and Kruskal (1989) are not 
Computational methods for INDSCAL subject to the constraint of nonnegative sa-
liences have been examined by ten Berge, Kiers and Krijnen (1993).

Discussion

1Zellini’s result implies that taking r = ~n(n + 1) dimensions in INDSCAL guar-
antees the existence of a perfectly fitting solution, regardless of the number p of sym-
metric matrices Si involved. Also, it has been shown that a n × n x p array has

1maximal rank ½n(n + 1) when the array consists ofp -> ~n(n + 1) symmetric slabs.
Comparing this to what is known in general about the maximum rank of a n x n x p
array, it can be seen that symmetry entails a lower rank, as is to be expected. For
instance, a 3 x 3 x 6 array may have rank 7 (Atkinson & Stevens, 1979; also see Franc,
1992, pp. 214-215) but it can have rank 6 at most in case of symmetry. Similarly, the
4 × 4 x 12 array may have rank 14 (same references), but it has rank I0 at most in case
of symmetry.

Although the value ofr = ½n(n + 1) is sharp whenp -> r, it may overestimate the
number of INDSCAL dimensions needed when p < r. For instance, when n = 3 and
p = 2, the maximum rank is 4; when n = 3 andp = 3, the maximum rank is 5 (Kruskal,
1989). In such cases, the rank one matrices used in the decomposition of S 1, ¯ ¯., Sp
are not known in advance but depend on the elements of S 1, ¯ ¯., Sp.

Harshman’s PARAFAC procedure for symmetric CANDECOMP/PARAFAC has
an option for "communality estimation" as in ordinary factor analysis. That is, it allows
the free determination of the diagonal entries of S1, ̄  ¯., Sp. It is obvious from the
binary basis derived above that in this case the maximal number of dimensions needed
to obtain a perfect fit is½n(n - 1), because only the off-diagonal elements need to be
fitted.
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