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Transforming the core array in Tucker three-way component analysis to simplicity is an intriguing 
way of revealing structures in between standard Tucker three-way PCA, where the core array is uncon- 
strained, and CANDECOMP/PARAFAC, where the core array has a generalized diagonal form. For cer- 
tain classes of arrays, transformations to simplicity, that is, transformations that produce a large number 
of zeros, can be obtained explicitly by solving sets of linear equations. The present paper extends these 
results. First, a method is offered to simplify J × J × 2 arrays. Next, it is shown that the transformation 
that simplifies an I × J × K array can be used to also simplify the (complementary) arrays of order 
(JK - I) × J × K, of order 1 >:. (1K - J) × K and of order I × J × (IJ - K). Finally, the question 
of what constitutes the maximal simplicity for arrays (the maximal number of zero elements) will be con- 
sidered. It is shown that cases of extreme simplicity, considered in the past, are, in fact, cases of maximal 
simplicity. 
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Tucker 3-analysis (Tucker, 1966) is a three-way generalisation of PCA based on the follow- 
ing approximate factorisation of the data array 

P Q R 

Xijk ~ Z Z Z aipbjqCkrgpqr, 
p = l  q = l  r = l  

where  X i j k  is the value of unit i on variable j at occasion k, alp is an element of an I x P 
component matrix A for individuals, bjq is an element of a J x Q component matrix B for 
variables, ckr an element of a K x R component matrix C for occasions, and gpqr is an element of 
a so-called three-way core array G of order P x Q x R, containing weights for the joint impact of 
any triple of components from A, B and C. The parameters are usually estimated by minimising 
the sum of squared residuals for fixed numbers of components in each mode (Kroonenberg & 
de Leeuw, 1980). 

It is well-known that the parameters of the Tucker-3 model are not uniquely determined. 
In particular, the core array can be transformed in three directions. For instance, a 3 x 3 x 2 
core array containing two slabs or slices G1 and G2 can be replaced by an array with slices 
SG1T and SG2T, respectively, for any pair of nonsingular 3 x 3 matrices S and T. In addition, 
there is the possibility of transforming the array in the third direction by so-called slabmixing. 
That is, when U is any nonsingular 2 x 2 matrix, we may also transform SG1T and SG2T into 
G* 1 = u l l S G 1 T  + u21SG2T and G~ = u12SG1T + u22SG2T, respectively. In general, the 
slabs G1 . . . . .  GR, of any core array can be transformed to G~ . . . . .  G~ by means of the Tucker 
transformation 
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where S, T and U are nonsingular. 
The Tucker-3 model fit is not affected by such transformations provided that the compo- 

nent matrices are counter-transformed by the inverse matrices S - i ,  (TZ) -1, and (UI) -1. In fact, 
rewriting the model in matrix notation as 

we have 

Xk ~ A CkrGr W, k = 1, 2 . . . . .  K, 
\ r = l  / 

A CkrGr B t = A S - 1 S  Ckr Z ul*r Z UmlGm T T - 1 B  I 

r = l  r = l  I=1 m=l  

= (AS-l) Ii=~l ( Rr~lCkrLl[rl S (m=~lLlmIGmlTl (T-1BI) 

* * B , t ,  = A* CkiGl k = 1, 2 . . . . .  K 

where u[r indicates an element of U -1, A* = AS -1, B* = B(TI) -1 and C* = C (U I)-1, also 
see Tucker (1966). 

The interpretation of  a Tucker-3 analysis can be rather difficult because we have to evaluate 
the impact of  each triple of  components to explain the data. To reduce this difficulty, we can 
use the transformational freedom of the model to attain a "simple" core, that is, a core with a 
large majority of  zero elements. In this way the interpretation of  the results should be easier 
because many triples of  components appear to have no impact, see Kiers (1998a, 1998b) for 
a discussion. This approach is supported by previous studies on transformations to simplicity 
which have shown that many elements of  the core array can be zeroed without any loss of  fit (see 
Murakami, ten Berge, & Kiers, 1998; Rocci, 2001; ten Berge & Kiers, 1999). For instance, it 
will be shown below that the slabs of  a 3 x 3 x 2 array can generally be simplified to 

G~ = 1 G~ = 0 , 
0 y 

where x and y stand for nonzero elements. 

(1) 

The question of  how a core array in Tucker-3 analysis can be transformed to simplicity (a 
large number of  zeros) will be studied here from a more general point of  view. That is, we shall 
deal with the general question of  how any (real valued) three-way array can be transformed by 
(real valued) nonsingular transformations in three directions, to have as many zeros as possible. 
The answer will have various implications for three-way analysis. 

1. In the context of CANDECOMP/PARAFAC (Carroll & Chang, 1970; Harshman, 1970), max- 
imal simplicity has direct implications for the rank (the smallest number of  components suf- 
ficient to fully decompose the array in CANDECOMP/PARAFAC) of a three-way array. For 
instance, if a 3 x 3 x 2 array can be transformed to the form (1), we know at once that the 
rank of  the original array will not be above 5, because the number of nonzero elements in a 
three-way array is a universal upper bound to the rank, and the transformations used to attain 
(1) are rank-preserving 



ROBERTO ROCCI AND JOS M.F. TEN BERGE 353 

2. As indicated above, simplifying a Tucker-3 core array may simplify the interpretation be- 
cause many triples of  components appear to have no impact. However, it should be pointed 
out that Murakami (1999) has given an example where the components tend to collinearity 
when the core is transformed to extreme simplicity. In his particular example, the simplicity 
transformation happened to be unique. Conceivably, the collinearity problem at hand can be 
avoided when the transformation involved is not unique. 

3. Simplicity results seem particularly interesting for three-way methods in between CANDE- 
COMP/PARAFAC and Tucker-3. For example, Kiers, ten Berge and Rocci (1997) have de- 
scribed a model based on 9 nonzero elements in a 3 x 3 x 3 Tucker-3 core array, and have 
proven that it is unique. It would be interesting to know whether or not the simple core ar- 
ray they specified can always be obtained by choosing a certain simplicity transformation, to 
distinguish mathematical artifacts from empirical results. 

Another example can be found in Gurden, Westerhuis, Bijlsma and Smilde (2001), who 
fitted a Tucker-3 model with the core array, of  order 5 x 5 x 3, constrained to have only 5 
nonzero elements in specified places. It is relevant to know whether or not this simple core can 
always be attained by transformations (as it happens, it cannot). Again, it is important to know 
where artifacts begin, because that is where meaningful empirical research comes to an end. 

The search for simplicity transformations is a fairly recent endeavor. It started with iterative 
procedures, designed to obtain a large number of  zeros in Tucker-3 core arrays. For instance, 
Kiers (1998b), also see Kiers (1992), has developed methods to attain small numbers of  nonzero 
elements directly. However, simplicity can also be obtained indirectly, as a by-product of  iterative 
orthonormalizing transformations (ten Berge, Kiers, Murakami & van der Heijden, 2000). 

These numerical procedures gave rise to certain hypotheses about feasible simple forms 
that were subsequently dealt with from a purely algebraic point of  view, to obtain closed-form 
solutions for the required transformations. So far, this has led to only a couple of results of some 
generality. Murakami, ten Berge and Kiers (1998) have shown how I x J x K arrays, when 
K = I J - 1 and J > I,  can be transformed to have only I + K - 1 nonzero elements. Ten Berge 
and Kiers (1999) have described transformations to extreme simplicity for I x J x 2 arrays, when 
I ~ J.  Both results will be reviewed in the next section. 

The present paper goes beyond these results, in three respects. Firstly, we provide simplicity 
transformations for 2 x 2 x 2 and 3 x 3 x 2 arrays and, in fact, for J x J x 2 arrays in general 
(see the Appendix). Secondly, it will be shown that simplicity transformations for any array of a 
particular order I x J x K can be used to simplify c o m p l e m e n t a r y  ar rays ,  defined as arrays of 
order ( J K - I )  x J x K ,  I x ( I K - J )  x K a n d  I x J x ( I J - K ) ,  at once, which considerably 
broadens the class of  arrays for which explicit simplicity transformations are available. 

Thirdly, we will enhance the practical value of  existing simplicity results by taking up the 
very issue of m a x i m a l  simplicity. So far, all available transformations to simplicity yield "extreme 
simplicity," without knowledge on what constitutes maximal simplicity, defined as the maximum 
number of  zero elements that can be attained. It will be proven that extreme simplicity resulting 
from various explicit transformation methods are, in fact, maximal simplicity results, which im- 
plies that it is not possible to obtain more zeros by any other Tucker transformation. We start by 
considering previous simplicity results. 

Previous Simplicity Results 

Murakami, ten Berge and Kiers (1998) have shown that I x J x K arrays can be transformed 
to have only I + K - 1 nonzero elements when K = I J - 1 and J > I.  In addition, these 
nonzero elements can be set to any specified value, such as 1. For example, a 2 x 3 x 5 array can 
be transformed into an array with slabs 
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with all but 6 elements zero. Similarly, 3 x 3 x 8 arrays can be transformed to 

E i ° i l [ i ° i l [ i l i l E i ° i l E i ° i l [ i ° i l [ i ° i l E i ° i l o O  o1 oO oO oO oO oO o1 
with only 10 elements nonzero. In general, we obtain I ( J  - 1) slabs with only one nonzero 
element and I - 1 slices with only two nonzero elements. 

Ten Berge and Kiers (1999) have shown that, for almost all I x J x 2 arrays with I > J ,  
we can attain the identity submatrix form 

which has the identity matrix | j  on top in the first slab, and zeros below, and vice versa for the 
second slab. For example, 4 x 3 x 2 arrays can be simplified to 

o 
0 1 " 
0 0 

(2) 

Both the Murakami form (whenK = I J  - 1) and the ten Berge & Kiers form (when K = 2) can 
be attained by transforming the array in only two of the three possible directions. The present 
paper goes beyond these results, by using all three of these. The first class of  problems that will 
be considered is concerned with the I x J x K case where K = 2, but with I and J equal. This 
is the part of  the K = 2 class that was not treated by ten Berge and Kiers (1999). 

Simplifying the J x J x 2 Arrays 

A J x J x 2 array X consists of  two slices (slabs) X 1 and X2 of  order J x J .  We exclusively 
consider cases where there exists at least one invertible matrix which is a slabmix of  X1 and 
X2, whence, without loss of  generality, we suppose that X1 is nonsingular. We also suppose that 
X]-IX2 is diagonalizable,  that is, it can be written as K A K  -1, with A diagonal, where some 
elements of  A or K may be complex. Other cases do in theory exist but never seem to arise in 
practice. 

When X]-IX2 has a real eigendecomposit ion X]-IX2 = K A K  -1, that is, A and K do not 
have complex elements, the eigenvectors can be used to diagonalize the matrices simultaneously, 
for example, ten Berge (1991). Specifically, we can replace X1 and X2 by the diagonal matrices 
SX1T = I j  and SX2T = A, using S = K - 1 X ]  -1 and T = K A slabmix will also set two of 
the diagonal elements to zero, reducing the number of  nonzero elements to 2 J  - 2. Let  )~j, j = 
1 . . . . .  J ,  be the eigenvalues in A.  Then, for J = 2, we can attain the simplified form 

0 0 ' "~2 - -  "~1 " 

For J = 3, we can attain a simplified array of  the form 

and so on. 

E 2 10 01E i 0 0 l 
O O O , ~2  - ~1 O , 

O O ~2  - ~3  O ~3 - -  ~1 

(3) 

When some elements of  A and K are complex, simultaneous diagonali ty is not possible. 
Still, we can find a very simple form. At  this point, it is important to note that (SX1T) - ISX2T 



ROBERTO ROCCI AND JOS M.F. TEN BERGE 355 

has the same eigenvalues as X]-lX2. The only way to change the eigenvalues of  "the inverse of 
one slab times the other slab" rests in the slabmix. It is worth pinpointing this influence in detail. 
Suppose we mix the slabs by a nonsingular matrix U, of  the form 

U=[1 u 1 2 ]  
u21 1 " 

We thus create mixed slabs Y1 = Xl + u21X2, and Y2 = u12Xl + X2. The question is how the 
eigenvalues of  Y]-1Y2 can be manipulated by U. Without loss of  generality, we set X1 = I, and 

define A = diag()~l, )~2 . . . . .  )~j) as the matrix of eigenvalues of X2, so X2 = K A K  -1, with K 
and A complex. Now, requiring that u21 ~ -1/)~h if IM()~h) = 0, we can write 

Y]-IY2 = ( K K  -1 + u 2 1 K A K - 1 ) - l ( u 1 2 K K - 1  + K A K  -1) = K ( I  + u21A)- l (u12I  + A ) K  -1.  

Because F -- (I + u21A)- l (u12I  + A) is diagonal, each eigenvalue )~h of X2 is transformed to 
an eigenvalue Vh of Y]-1Y2 by the rule 

gh = (u12 + Lh)/(1 + u21Lh), 

or, letting Vh = rl + i/z, )~h = c~ + i/~, and using the real coding of complex numbers, 

1 
r l + i / z =  (1+u21c~2) +(/~)u21- 2 { ( l + u 2 1 o , ) ( u 1 2 + o ~ ) + u 2 1 ~  2 + i / ~ ( 1 - u 2 1 u 1 2 ) } .  (4) 

This expression is at the basis of 

Result  1. The slabmix permits producing complex eigenvalues with real part zero. 

Proof  It is immediate from (4) that the real part of  Vh, that is, rl, vanishes if and only if 

(1 + u21o')(u12 + o~) + u21fl 2 = O. (5) 

[] 

Note that, because U is nonsingular, the h-th eigenvalue Yh after the slabmix is real if and only 
if the h-th eigenvalue )~h before the slabmix is real. This shows that the slabmix cannot change 
the number of complex eigenvalues. Result 1 does show, however, that solving (5) allows us to 
change the nature of the complex eigenvalues, to the effect that at least one pair of  them will be 
purely complex (i.e., with real part zero). 

When J = 2, any solution for U which satisfies (5) will produce a pair of  purely complex 
eigenvalues i #  and - i #  for Y]-IY2. We have ample freedom to do this. For instance, we may 
solve (5) with u21 = 0 or with u12 = 0, or we may solve (5) subject to u21 = -u12,  which 
renders U proportional to an orthonormal matrix. We shall now demonstrate how purely complex 
eigenvalues can be used to obtain simplicity, when J = 2. 

It is clear that Y]-IY2 = K F K  -1, with F = diag(i#,  - i / z ) .  Define A = Y]-IY2. Then A 2 
has two equal real eigenvalues _ / z 2  Let tl be a real eigenvector of  A 2, so A2tl = - / z2 t l .  Define 
t2 = - A t l / / z ,  and let T = It1 It2], and S = T - 1 Y ]  -1. Then we have already SY1T = 12. Next, 
we note that At~ ---- - /z t2 ,  so A2t~ ---- - / zAt2  ---- - / z2 t l .  Hence At~ ---- - / z t2  and At2 ---- /zt~, 
which means that 

AT = [_/zt2 i /ztl] = T [ 0/z / z ]  
0 " 
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It follows t h a t Y l l y 2 T  = T [  0 #  #0 ] '  so Y2T = Y1T[  0 #  #0 ] '  hence SY2T = [_0# #0] .  

Note that T must be invertible, otherwise, if tl is proportional to t2, t~ would be an eigenvetor 
associated with a real eigenvalue of  A. 

We have thus simplified the 2 x 2 x 2 array to the form 

SY~T = [10 0 1 ] , S Y 2 T : [ 0 #  ~ ] "  (6) 

When J - - - -  3, and two eigenvalues are complex, we may obtain one eigenvalue zero by taking 
u 12 = - ) u ,  where )u is the real eigenvalue of X]-lX2. The associated eigenvector will also 
be real, and is the first column of  T. We solve (5) for u21, which amounts to evaluating u21 = 

)~1 --of ~2_--g~1+/~2. Using an eigenvector of  A 2, associated with a nonzero eigenvalue, and applying 

the method used in the J = 2 case, yields the other two columns of  T. Finally, upon setting 
S = T -1Y]  -1, we find simplicity in the form 

SY1T = 1 , SY2T = 0 . 
0 - #  

(7) 

It can be shown that, if the eigenvalues are real, we also can obtain (7), but without the minus sign 
in SY2T. Since this form is less simple than (3), in the sense that it has more nonzero elements, 
it will be ignored. 

Simplicity for J x J x 2 arrays with J > 3 will be treated in the Appendix. We continue 
with the orthogonal complement method. 

The Orthogonal Complement Algorithm 

So far we have been concerned with Tucker transformations to simplicity for arrays with 
K = 2 (ten Berge & Kiers, 1999, and the previous section). For arrays with K = I J  - 1 we can 
use the results of Murakami, ten Berge & Kiers (1998). The "smallest" array in the Murakami 
class, which is not in the K = 2 class, is the 3 x 3 x 8 array. So we can simplify the 3 x 3 x 8 
array and the 3 x 3 x 2 array (previous section), but nothing in between. We shall now show how 
to simplify, for instance, a 3 x 3 x 7 array introducing the orthogonal complement algorithm 
which is an algorithm to simplify an array "indirectly" Before illustrating the algorithm in detail, 
we have to introduce the concept of orthogonal complementary array and its main properties. 

Below, we shall often use the (row) vectorised version of a matrix, where the rows of  a 
matrix W are stacked one below the other into a column vector denoted by vec(W). We shall 
use also a matrix version of  an I x J x K array, where the I rows of  each slice are stacked 
column-wise into a I J x K matrix. This I J x K matrix will be referred to as the mvec form of 
the array. Specifically, mvec(X) = [vec(Xl)l "'" I veC(XK)]. 

For example, a 3 x 3 x 7 array can be rewritten in mvec form as a 9 x 7 matrix. Clearly, 
there exists a 9 x 2 matrix which completes that matrix to a square 9 x 9 matrix. The latter 9 x 2 
matrix, in turn, can be thought of  as the mvec form of a 3 x 3 x 2 array. In this sense, we shall 
say that the 3 x 3 x 7 and the 3 x 3 x 2 arrays are of  complementary sizes. 

In general, arrays of  size I x J x K are complementary to arrays of  size ( J K  - I) x J x K,  
of size I x ( I K  - J )  x K, and of  size I x J x ( I J  - K).  For instance, 5 x 4 x 3 arrays are 
complementary to 7 x 4 x 3 arrays, to 5 x 11 x 3 arrays, and to 5 x 4 x 17 arrays. However, for the 
sake of  brevity and without loss of  generality, in what follows we will refer only to arrays which 
are of  complementary sizes along the third way, that is I x J x K and I x J x ( I J  - K).  We will 
also ignore the case where an array has linearly dependent slices in one of  the three directions. 
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Two arrays of complementary sizes may be also orthogonal in the following sense: 

Definition 1. An orthogonal complement to an I x J x K array X is an I x J x (I  J - K )  array 
X c such that the columns of its mvec form Xc span the space orthogonal to the column space 
of X, the mvec form of X, and completes X to a square nonsingular matrix. That is, [X [ Xc] is 
nonsingular and XIXc = 0. Note that it is not required that the columns within X or within Xc 
are orthogonal. The following result is immediate: 

Result  2. If Xc is an orthogonal complement to X then every other orthogonal complemen- 
tary matrix can be written in the form XcV, for some nonsingular V. 

We are interested in orthogonal complementary arrays because it can be easily verified that 
every array in simple form has an orthogonal complementary array which is also in simple form. 
For example, suppose we have a 3 x 3 x 2 array X having the following simple mvec form 

0 0 0 0 # 0 - #  

which is the mvec form of (7). A simple orthogonal complement is given by 

1 0 
0 1 
0 0 
0 0 

X9, 7 = --1 0 
0 0 
0 0 
0 0 
0 0 

0 0 0 0 0- 
0 0 0 0 0 
1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 
0 0 0 1 0 
0 0 - 1  0 0 

(8) 

It is readily seen that X9, 7 is of rank 7, and that its columns are orthogonal to those of X9,2. 

The simplicity transformations considered in the present paper typically entail simplicity 
for the orthogonal complementary arrays also. This is because the mvec forms involved can be 
permuted into direct sum form, and finding an orthogonal complement to a direct sum amounts 
to finding orthogonal complements for the nonzero blocks in the direct sum. An example may 
clarify this: 

The mvec form X9,2 given above can be permuted row-wise into the direct sum form 

where A = [1 1 1] I, and B = [# - #]i. Finding a simple orthogonal complement can be done by 
taking the direct sum of a 3 x 2 matrix A* orthogonal to A, a simple 2 x 1 matrix B* orthogonal 
to B, and 4 columns of the identity matrix. So the orthogonal complement has the form 

• 

Permuting the rows back to the original order gives X9, 7 given above. 
It can be proven generally that the structure of optimal simplicity for the orthogonal comple- 

ment of a direct sum is another direct sum. What remains is to find optimal block-wise simplicity. 
The possibilities are completely determined by the order of the complementary blocks. When, 
for instance, the block A has p rows and q columns, A* is of order p x (p - q). It can be shown 
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that A* can be taken in banded form where each column has only q + 1 nonzero elements (proofs 
are available from the authors). 

The last property we have to establish is the link between the orthogonal complement  of  an 
array and the orthogonal complement  of  its Tucker transformation. 

It is well-known that, for any three matrices A, B, and C, vec(ABC) = (A ® Ct)vec(B),  
with ® the (right hand) Kronecker product. Given an I x J x K array X we consider its mvec 
f o r l n  X I j ,  K = [vec (X 1 ) I " '" I vec (Xx)  ] and the Tucker transformation 

I-IIJ, K = [vec(I-I1)] . . .  vec(I-IK) ] 

= [vec (S(u i iXi  + . . .  + uI(iXI()T)]. . .  ]vec (S(u ixXi  + . . .  + uI(I(XI()T)], 

also see Kiers (2000). Because 

vec(Hk) = (S @ Tt)vec(ulkXl  + . . .  + u x k X x ) ,  

we can write 

I-IIJ, K = [ v e c ( I - I 1 ) ]  . .  • ] v e c ( I - I K )  ] 

= ( S  @ Tt)XIJ, KU. 

In this notation, it is quite easy to see how S and T play a key role in linking the orthogonal 
complement  of  XIJ, I( to that of  HIJ, K. 

Result 3. If  the mvec form X I  J, K of  an I X J x K array X is Tucker-transformed to HI  j, K = 
(S ® Tt)XIJ, KU and HIj,(IJ-K) is an orthogonal complement  of  HIJ, K, then every orthogonal 
complement  of  XIJ, I( can be written a s  XIj , ( IJ_K)  = (S  t @ T)HIJ,(IJ-K)V, where V is some 
nonsingular matrix. 

Proof Let W = (S t @ T)IJIJ,(IJ_K). Noting that XIJ, K = ( S  @ Tt)-IIJIJ, KU -1, it is easy 
to verify that the columns of  W are orthogonal to those of  XI j, K, and that rank of  W is the same 
as that of HI j, (I J-K). The statement follows because by Result 2 we know that every orthogonal 
complement  of  XIJ, I( can be written a s  XIj , ( IJ_K)  = W V  = (S  t @ T)IJIJ,(IJ-K)N, for some 
nonsingular matrix V. [] 

At  this point, we can introduce the orthogonal complement  algorithm to simplify an array 
indirectly by using the simplifying solution for an orthogonal complement.  

The orthogonal complement algorithm: 

1. Given the array X I j, K compute an orthogonal complement  X I j, (I J -  K) ; 
2. Compute ItlJ,(IJ_K) = (S @ Tt)XIj,(IJ_K)U in such a way that ItlJ,(IJ_K) is in simple 

form; 
3. Find the orthogonal complement  of Itlj ,  (I J-K) in simple form, say ItlJ, K; 
4. Find the matrix V such that XIJ, K = (S t @ T ) - I H I j ,  KV (see Result 3). 

As an example, let us apply the algorithm to a 3 x 3 x 7 array X. First, we compute an 
orthogonal complement  X c which is a 3 x 3 x 2 array. From the previous section, we know that 
there exist three matrices S, T and U such that this kind of  array can be simplified in either the 
form (7) or the form (3). In the former case, we can take (8) as orthogonal complement,  in mvec 
form. In the latter case, we can take the matrix 
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H9, 7 = 

-0 0 0 0 0 0 ; - 3 - ; - 2  
1 0 0 0 0 0 0 
0 1 0 0 0 0 0 
0 0 1 0 0 0 0 

O O O O O O ~1 - ~3 
0 0 0 1 0 0 0 
0 0 0 0 1 0 0 
0 0 0 0 0 1 0 

0 0 0 0 0 0 )~2 -- )~1 

Finally, it is straightforward to compute the matrix V such that X9,7 = (S t @ T)- IH9,7V.  
The orthogonal complement method was inspired by the method of  Murakami,  ten Berge 

and Kiers (1998). They simplified, for instance, the 3 × 3 × 8 array by using the singular value 
decomposit ion of a certain 3 × 3 matrix. The 3 × 3 × 1 mvec form representing that matrix 
happened to be an orthogonal complement  of the original 3 × 3 × 8 array. We have now generalized 
this by simplifying, for instance, a 3 × 3 × 7 array by simplifying the orthogonal complementary 
3 × 3 × 2 array. Similarly, once we know how to simplify the 3 × 3 × 3 array we can simplify 
the 3 × 3 × 6 array, and simplifying the 3 × 3 × 4 array will amount to simplifying the 3 × 3 × 5 
array. 

The method of  finding a complementary array size can be used repeatedly. For instance, the 
3 × 3 × 2 array has the 3 × 3 × 7 array as its complement,  which in turn has the 7 × 18 × 3 array 
as a complement,  which has the 47 × 18 × 3 array as a complement,  and so on, ad infinitum. 
Solving one simplicity transformation problem thus solves the simplicity problem for a whole 
chain of arrays of  complementary sizes. 

Maximal  Simplicity 

In the previous sections we faced the problem of  finding, directly or indirectly, the Tucker 
transformation to simplicity of  an array. Now we move on to the issue of  optimal simplicity. 
Whenever we apply a particular transformation to simplicity, the question arises whether or not 
this simplification is optimal. In other words, it is important to know if it is possible to find a dif- 
ferent transformation which produces a larger number of  zeros or, equivalently, a smaller number 
of  nonzero elements. In this section we will show that the Tucker transformation proposed by ten 
Berge & Kiers (1999) and the one proposed by Murakami,  ten Berge and Kiers are indeed opti- 
mal in the sense that they produce the maximum number of  zeros, see Results 4 and 5. We also 
give Result 6, dealing with optimal simplicity when I > J and K = I J - 2. We start with the 
result of  ten Berge and Kiers. 

Result 4. When an array X of  order I × J × 2, with I > J ,  can be transformed to the simple 
form 

AX1B = G1 = , AX2B = G2 = 

by nonsingular matrices A and B, then the smallest possible number of nonzero elements that 
can be attained by Tucker transformations is 2 J .  

Proof Suppose there exist three nonsingular matrices S, T and 

u =  Iull u121 
ku21 u22j 
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such that the total number of  nonzero elements of 

H1 = S (uHXl  + u21X2)T 

H2 = S(ul2Xl  + u22X2)T 

is strictly less than 2J .  This implies that 1-11 and/or 1-12 have a rank strictly less than J .  However, 
we note that 

[:,1) rank(Hi)  = rank(u l iXl  + u2iX2) = rank(ul iG1 + u 2 i G 2 )  = rank uli  + u2i • 

It follows that rank(Hi)  is strictly less than J if  and only if  uli  = u2i = 0. In other words, it is 
not possible to have less than 2 J  nonzero elements unless U is singular. [] 

Next, we show that Murakami 's  transformation is optimal. This transformation yields as 
few as I + K - 1 nonzero elements, when K = I J - 1 and I < J .  It will  now be shown that 
this is the smallest possible number of  nonzero elements. 

R e s u l t  5. Let X be an array of  order I x J x K,  where K = I J - 1, having the slices along 
the third direction linearly independent. The minimal  number of  nonzero elements for a Tucker 
transformation of  X is K + r - 1, where r is the rank of  the orthogonal complementary array. 

P r o o f  Let H be a Tucker transformation of  X, having z nonzero elements. First, we note 
that if  m is the number of  slices in the third direction of  H having only one nonzero element then 

z = m + (number of  nonzero elements in the remaining K - m slices) 

_> m + 2 ( K  - m) = 2K - m, (9) 

because we cannot have zero slices in H when the slices of  X are linearly independent. Let X~: 
be the I x J x 1 orthogonal complement  array to X, and let __H c be a I x J x 1 orthogonal 
complement  array to H. Then we note that 

(a) rank(X c) = rank(H c) because it is clear from Result 3 that one is a Tucker transformation 
of  the other; 

(b) if  the slice HHj of  1.1 has only one nonzero element in the (k, I) position then the matrix H c 
must  have a zero in the same position; 

(c) if  the slice HHj of  H has only one nonzero element in the (k, I) position and the slice HHj/has 
only one nonzero element in the (k', I ')  position then (k, I) ~ (k', I ') otherwise the slabs of 
H, as well as the slabs of  X, would not be linearly independent. 

From (b) and (c) we deduce that H c must have m elements equal to zero. However, we know 
by (a) that rank(H c) = rank(X c) = r which implies 

m <_ I J  - r (10) 

Combining (9) and (10) we have 

z > 2 K - m  > 2 K -  I J  + r  = K + r - 1 .  [] 

To link this result to the Murakami transformation, note that, in the present case H c is just  
an I × J matrix, typically of  rank I .  

We end this section with a result about the maximal  simplicity of  arrays of  order I × J × K,  
w h e r e K = I J - 2 a n d I  > J .  
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Result 6. Let X be an array of order I x J x K,  where K = I J - 2 and I > J ,  having 
the slices along the third direction linearly independent. If  its complementary array is a Tucker 
transformation of  an I x J x 2 array G of the form 

[:1 G1 = , G2 = , 

then the minimum number of nonzero elements that a Tucker transformation can produce is 
I J  + 2 J - 4 .  

Proof The proof  is analogous to that of  the previous result. Let  H be a Tucker transforma- 
tion of  X, we note that if  m is the number of  slices in the third direction of  H having only one 
nonzero element then 

z > 2 K - m ,  (11) 

because the slices of  X are linearly independent. I f X  c is a I x J x 2 array orthogonal complement  
of  X and H c is a I x J x 2 array orthogonal complement  of  H, then we note that 

(a) if  the slice H j  of  H has only one nonzero element in the (k, l) posit ion then the two I x J 
slices of  H c must have a zero in the same position; 

(b) if  the slice Hj  of  H has only one nonzero element in the (k, l) position and the slice H i / h a s  
only one nonzero element in the (U, 11) position then (k, l) ~ (U, l ~) because otherwise the 
slabs of  H, as well as the slabs of  X, would be linearly dependent. 

From (a) and (b) it follows that both slices of  H c must have at least m elements equal to 
zero in the same position. This implies 

m <_ J ( I -  2) (12) 

provided that it is not possible to find a complementary array of H having the same column 
with only one nonzero element in both the slices at the same position. To show that the latter 
condition is met, first we note that every H c is a Tucker transformation of  X c which is a Tucker 
transformation of  G. This implies that every I-I c is a Tucker transformation of  G, say 

Hc;1 = S(u11G1 + u21G2)T 

Hc;2 = S(Ul2G1 q- u22G2)T 

where S, T and U are nonsingular. If  the two slabs of H c would have the same column with only 
one nonzero element then there would exist a linear combination of  them with rank less than J .  
However, 

rank(VlItc,1 + v2Itc,2) = rank(Vl(UllG1 + u21G2) + v2(Ul2G1 + u22G2)) 

= rank((VlU11 + v2u12)G1 + (VlU21 + v2u22)G2) = J, 

unless (VlU11 + v2u12) = (VlU21 + v2u22) = 0, which holds if  and only if Vl = v2 = 0 because 
U is nonsingular. Combining (11) and (12) we obtain 

z > 2 K - m  > 2 K - J ( I - 2 ) = I J + 2 J - 4 .  [] 

The question that remains is whether or not the lower bound of  I J + 2 J - 4  nonzero elements 
can be attained by a Tucker transformation. The answer is positive and relies on the orthogonal 
complement  algorithm. We demonstrate this for an example. 
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Let X be a 4  x 3 x 10 array. We compute an orthogonal complement X c which is a 4  x 3 x 2 
array. From ten Berge and Kiers (1999) we know that there exist three matrices S, T and U = I 
such that this kind of  array can be simplified in the form (2). As an orthogonal complement, in 
mvec form, we can take the matrix 

-0 0 
1 0 
0 1 
0 0 
0 0 
0 0 

I-I12'1° = 0 0 

0 0 
0 0 
0 0 
0 0 
0 0 

0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 - 1  1 0 0 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 0 0 0 0 - 1  1 
0 0 0 0 0 - 1  0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 - 1  

The last step is to compute the matrix V such that X12,1o = (S I ® T)-lH12,1oV. 

Discussion 

In the derivation of simplicity transformations, we have ignored cases that arise with proba- 
bility zero. For instance, the ten Berge and Kiers (1999) transformation for two-slab arrays (like 
the 4 x 3 x 2 array) works almost surely (with probability one), which means that simplicity 
for the complementary arrays (like the 4 x 3 x 10 array) also can be attained almost surely. A 
similar statement can be made for the Murakami transformation (when K = I J  - 1). Also for 
the J x J x 2 arrays, we have ignored certain cases of  zero probability. It seems, therefore, 
that the transformations of  this paper generally work. However, in view of one particular realm 
of  application, a word of  caution is in order. The probability results assume random sampling 
from a continuous distribution. The core matrix of Tucker-3 analysis, however, is not randomly 
sampled, but arises at convergence of  an iterative algorithm. This means that we cannot infer 
that simplicity transformations which work almost surely for random arrays will also work for 
Tucker-3 core arrays. Fortunately, all Tucker-3 core arrays encountered so far do seem to be- 
have as if randomly sampled from a continuous distribution, and do allow the transformations to 
simplicity that we have considered. Still, a formal proof for this is lacking. 

The proofs of maximum simplicity derived in this paper seem particularly relevant for core- 
constrained Tucker-3 analysis. When a Tucker-3 core is constrained to have more zeros than 
would be possible for arrays of  that size, then this part of  the analysis becomes non-trivial rather 
than a tautology based on an inactive constraint. On the other hand, when fewer core elements 
are constrained to be zero than the maximal number, we cannot infer triviality at once: It may 
still happen that, even when a given number of  zero elements is trivially attainable, the particular 
pattern (location) of  the hypothesized zeros involved represents an active constraint for arrays of 
that size. 

Appendix 

Simplifying the 2 x J x J Array with Complex Eigenvalues When J > 3 

For 2 x 2 x 2 arrays and 2 x 3 x 3 arrays, there was ample freedom to remove the real part 
from the pair of  complex eigenvalues involved. When a 2 x 4 x 4 array, with slices Xl and X2 
of  order 4 x 4, has only two eigenvalues of X]-lX2 complex, we are in a situation similar to the 
2 x 3 x 3 case with complex eigenvalues. There is again freedom to render one real eigenvalue 
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zero, and, using essentially the same method, we arrive at the simple form 

SY1T = 14, SY2T = 
[ 000 0 

0 0 
0 - #  

In general, when two out of  J eigenvalues are complex, for J > 3, we can use the slabmix to 
remove the real part from these eigenvalues, and have freedom left to set one real eigenvalue to 
zero. This leaves us with J nonzero elements in SY1T = I, and J - 1 nonzero elements in SY2T. 
We now turn to the situation where we have two or more pairs of  complex eigenvalues. We shall 
use the following matrix result: 

R e s u l t  Z For each J × J matrix A with distinct real eigenvalues ~1, . . . ,  ~m and distinct 
complex eigenvalues a l  -4- i f i l  . . . . .  c~n -4- ifln such that m + 2n = J ,  there exists a real-valued 

K - 1 A K  = 

matrix K such that 

,~m 
F1 

(A1) 

where 

[ o~j flj] 
Fj = _flj o~j • 

The decomposit ion is well-known and can be found, for example, in Horn and Johnson 
(1993, chapter 3) or Lutkepohl (1996, p• 89). When the eigenvalues are not all distinct the decom- 
position can fail• However, this exception, which arises with probabil i ty zero, will be ignored• 
We shall now apply this decomposit ion to simplify J × J × 2 arrays with four or more complex 
eigenvalues• 

We have shown (see (5)) how to find a slabmix that guarantees two purely complex eigen- 
values for Y]-IY2• We also have seen that there is freedom left. It will now be shown how to 
use this freedom for removing the real parts from four complex eigenvalues simultaneously• All  
it takes is to solve two equations of the form (5), to obtain that A = Y]-IY2 has four purely 

complex eigenvalues• Let  four complex eigenvalues of  X]-IX2 be a l  + ifil ,  a l  - ifil ,  a2 + ifi2, 
and a2 - ifi2• Then we need to solve 

-u21/~ = (u12 + al)(1 + u21al) (A2) 

and 

-u21/~ = (u12 + a2)(1 + u21a2)• (A3) 

Write (A2) as 

and (A3) as 

u12 = ( - u 2 1 ~  - ~2 - u 2 1 a ~ ) / ( 1  + u21~2)• 
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T h e n  ( - u 2 1 / 3  2 - o{ 1 - u21o{2;/(1 q- u21o{1; = ( - u 2 1 / 3  2 - o{ 2 - u21o{2;/(1 q- u21o{2;, a q u a d r a t i c  

equation in u21. The two solutions for u21 are 

0~2 _~_ / 3 2 _  0~12 __ /32 -Jr-((0~ 1 --0{2) 4 - ~ - ( / 3 2 _  /32)2 _~_ 2(/312 +/32) (0 !  1 __ 0~2)2)1/2 

bt21 = 2c~2(c~12 q_/32) _ 2oQ (o~ 2 q- /32)  (A4) 

The solutions yield the same columns of U, but in a different order. 
If we apply (A4) to mix the slabs first, and then use the transformation given in (A1), we 

obtain zero diagonals for F1 and F2, or any other pair of Fi and Fj. Once we have this form, 
solving for S and T is easy, using the same method as was used to arrive at (6). The resulting 
array has one slab I j  and the other of the form (A1), with four real parts of complex eigenvalues 
set to zero. For example, if we have a 9 x 9 x 2 array with 8 complex eigenvalues, we arrive at a 
transformed array with one slab SYIT 

-)~1 0 

0 0 

0 --/31 
0 

SY2T = 0 
0 
0 
0 
0 

I9, and the other of the form 

0 0 0 0 0 0 0 -  
ill 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 /32 0 0 0 0 
0 -/32 0 0 0 0 0 
0 0 0 c~3 [33 0 0 
0 0 0 --/33 tY3 0 0 
0 0 0 0 0 a4 /34 
0 0 0 0 0 --/34 0{4 

(A5) 

It should be noted that there is still room for further simplification of F3 and F4. When these sub- 

m  ce  epo  ul p.edby  -- El0 -V  ] dpremul p.edwi   l-- El0 
i = 3, 4, respectively, only three nonzero elements remain. By absorbing these multiplications 
in S and T, any L-1FiL can be guaranteed to have at least one zero element. Applying this final 
step to the example (A5), we end up with 9 nonzero elements in the first slab, and 11 in the 
second slab. 

In general, when X11X2 is diagonalizable and has m real and 2n complex eigenvalues and 
m + 2n = J > 2, the transformation yields a simplified array having only 2(J  - 1) + n nonzero 
elements. The optimality of this transformation, in the sense that no Tucker transformation could 
yield more zeros, can be proven when at most four complex eigenvalues are involved. For cases 
with more than four complex values it is our conjecture that the transformation described above 
is optimal. A formal proof has eluded the authors. 
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