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Abstract

We simultaneously determined carbendazim, fuberidazole and thiabendazole by excitation–emission matrix (EEM) flu-
orescence in combination with parallel factor analysis (PARAFAC). Three-way deconvolution provided the pure analyte
spectra from which we estimated the selectivity and sensitivity of the pesticides, and the relative concentration in the mixtures
from which we established a linear calibration. Special attention was given calculating such figures of merit as precision,
sensitivity and limit of detection (LOD), derived from the univariate calibration curve. The method, which had a relative
precision of around 2–3% for the three pesticides, provided limits of detection of 20 ng ml−1 for carbendazim, 4.7 ng ml−1 for
thiabendazole and 0.15 ng ml−1 for fuberidazole. The accuracy of the method, evaluated through the root mean square error
of prediction (RMSEP), was 27.5, 1.4, and 0.03 ng ml−1, respectively, for each of the pesticides.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Pesticides are polluting compounds whose con-
centration is regulated by the European Commission
in many samples such as drinking waters. Tradi-
tionally, instrumental techniques to determine these
compounds involve gas (EPA method 515.1) or liquid
chromatography (EPA method 531.1, 632 and 8318).
Fluorimetric techniques can also be used to analyse
pesticides in mixtures since many pesticides, includ-
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ing the ones studied in this paper, are intrinsically
fluorescent. Fluorescence spectroscopy is a versatile
analytical technique, which provides high sensitivity
of detection. However, in multicomponent mixtures
the fluorescence signal is normally overlapped and
chemical procedures (in few cases) or chemometrical
techniques of resolution have to be applied if it is
to be quantitatively analysed. One of the mathemati-
cal resolution strategies is the collection of an entire
excitation–emission matrix (EEM) fluorescence spec-
trum combined with multi-way deconvolution and
calibration algorithms. In this way, Picón Zamora
et al. [1] determined three pesticides by taking linear
trajectories across the EEM and applying principal
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component regression (PCR) and partial least squares
(PLS1 and PL2) algorithms; Saurina et al.[2] resolved
the EEM of triphenyltin in synthetic and natural
sea water samples with multivariate curve resolution
(MCR); and JiJi et al.[3] determined carbamate pes-
ticides by parallel factor analysis (PARAFAC) of the
excitation–emission matrix. We applied a procedure
similar to this latter one, and paid particular attention
to the internal validation of the method and to the
calculation of the figures of merit.

We determined carbendazim, fuberidazole and thi-
abendazole in mixtures of the three pesticides by
PARAFAC deconvolution of the three-dimensional
excitation–emission data. Internal validation was as-
sessed from the correlation between the pure excita-
tion and emission spectra of each compound, and the
reference spectra, as a measure of the reliability of the
model. The selectivities of the three pesticides were
calculated from the recovered spectra. Next, a univari-
ate regression was performed for each pesticide by
relating the loadings of the PARAFAC decomposition
with the known concentrations of the pesticides in the
calibration samples. From these univariate calibration
lines, figures of merit such as precision, sensitivity
and limit of detection (LOD) were calculated. The
effect of the spectral selectivities on these figures of
merit is also discussed. Finally, the accuracy of the
method was estimated by predicting a new set of
samples, which were not included in the calibration
step.

2. Theory

2.1. Three-way decomposition of fluorescence data

Fluorescence three-way data can be decomposed by
parallel factor analysis because each analyte in the
sample can ideally be described by one PARAFAC
component[4]. This means that each fluorophore’s
contribution to the emission is independent of the con-
tribution of the remaining fluorophores and identical
for different samples (only varying in proportions).
Hence, the PARAFAC model for a three-way array
(xijk) can be denoted as:

xijk =
F∑

f=1

aif bjf ckf + eijk (1)

In the case of excitation–emission matrix fluorome-
try, thekth slice of the trilinear cubeX is the (I × J)
matrix of excitation and emission profiles of the fluo-
rescent components for thekth sample. Thus,aif , bjf

and ckf are the typical elements of the loading ma-
trices A, B and C (emission wavelength, excitation
wavelength and relative concentrations in the sam-
ples, respectively) for a given number of components
F. Using an alternate least squares (ALS) procedure,
the trilinear model is found to minimise the sum of
squares of the residualseijk. In matrix notation, and
using the Khatri–Rao product[5], the PARAFAC
model can be formulated in terms of the unfolded
array as shown inEq. (2):

Xk︸︷︷︸
(IJ×K)

= ( B︸︷︷︸
(J×F)

| ⊗ | A︸︷︷︸
(I×F)

) CT︸︷︷︸
(K×F)

= Z︸︷︷︸
(IJ×F)

CT (2)

An important characteristic of the PARAFAC model
is the uniqueness of its solution. This means that
additional constraints, such as orthogonality or exter-
nal information to solve rotational freedom are not
needed to identify the model[6]. This property is
an extension of the second-order advantage and so
trilinear data (here fluorescence data) can be cali-
brated when there are unknown interferences in the
samples.

In dilute solutions or suspensions, fluorescence
intensity is linearly proportional to the solute concen-
tration, and fluorescent excitation–emission measure-
ments follow a trilinear model, such as the PARAFAC
[5,7–9]. However, spectral properties are affected by
the local environment. The most common environ-
mental factors that influence fluorescence properties
are solvent polarity, pH and fluorescence quench-
ing (quenchingis any process which decreases the
fluorescence intensity of a sample, e.g. excited-state
reactions, molecular rearrangements, energy trans-
fer, ground–state complex formation and collision
quenching, such as the one produced by molecular
oxygen)[10].

Despite this environmental influence, fluorescence
measurements can still fulfil the trilinear model if
we keep the conditions constant throughout the ex-
periments. However, other problems cannot be so
effectively handled by PARAFAC based models. One
of these is the emission region below excitation,
where the intensity is approximately zero, i.e. the flu-
orophore shows no fluorescence. Whether these data
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are recorded or not, they should be treated as missing
values and cannot be replaced with zeros to prevent
the PARAFAC model from trying to fit them[5,11].
Other potential problems are Rayleigh and Raman
scattering. Raman interference due to the solvent can
often be almost completely removed by subtracting
the solvent spectra from the sample spectra. Rayleigh
scattering occurs in the EEM when the excitation
wavelength is equal to the emission wavelength and
there are no intrinsic profiles in either theX- or
Y-order to extract. Several strategies for solving this
problem have been described in the literature (e.g.
data analysis can be restricted to regions were the
scattering does not appear, a blank spectra can be sub-
tracted if available or the data points can be weighed)
[7,12].

2.2. PARAFAC calibration and prediction

The decomposition of the three-way data by
PARAFAC gives rise to three loading matrices, one
of which, C, corresponds to the sample mode. The
C-loadings are the relative concentrations of the pes-
ticides in the mixtures. In the calibration step, these
loadings are regressed against the real concentrations
of each pesticide in the mixtures to get a linear cali-
bration line[2]. In the prediction step, this regression
line can then be used to predict (if any new inter-
ferent is present) the concentration of each pesticide
in future test samples,Xun that are not in the initial
calibration dataset, by interpolating their loadings of
relative concentration,CT. These loadings can be
previously calculated from theEq. (2) multiplying
the pseudoinverse of theZ matrix by the test sample
data, as showsEq. (3):

CT = (ZTZ)−1ZTXun (3)

Another way to predict future test samples is to in-
clude them in the initial PARAFAC model. In this
way, the loading matrices for both the calibration
and the prediction sets are recovered. All the sam-
ples are considered to calculate the model param-
eters although the regression fit is only performed
with the calibration samples. Finally, the loadings
of the PARAFAC model for the prediction samples
are interpolated into the corresponding regression
line to obtain the predicted concentration of each
analyte.

3. Experimental

3.1. Samples and standards

To determine the pesticides in synthetic samples, a
set of 12 mixtures was prepared in methanol between
0 and 100 ng ml−1 for carbendazim, 0–0.7 ng ml−1

for fuberidazole and 0–40 ng ml−1 for thiabendazole.
A standard of each pure pesticide was also prepared
(Table 1).

Excitation–emission fluorescence matrices were
recorded for all the standards. In each experiment, a
methanol blank was subtracted to remove the inter-
fering Raman effect of the solvent.

3.2. Instrumentation and data analysis

Measurements were performed with an Aminco–
Bowman Series 2 luminescence spectrometer equi-
pped with a 150 W continuous xenon lamp. The EEM
were defined so that they would collect the variation
in the signal caused by the pesticides, and not record
either excitation signals below emission or Rayleigh
scattering. The dimension of the data matrices was
50× 38, from 310 to 370 nm in the emission domain
and from 260 to 306 nm in the excitation domain.
The excitation and emission slits were both main-
tained at 4 nm and the scanning rate was 7 nm s−1. All

Table 1
Concentration of the pesticides in the synthetic mixtures and in-
dividual standards

Sample Carbendazim
(ng ml−1)

Thiabendazole
(ng ml−1)

Fuberidazole
(ng ml−1)

Ml 0 20 0.4
M2 50 20 0.0
M3 50 0 0.4
M4 30 30 0.5
M5 60 35 0.6
M6 20 15 0.1
M7 100 25 0.2
M8 90 35 0.4
M9 40 25 0.4
M10 60 20 0.5
M11 80 40 0.1
M12 90 35 0.3
Carbendazim 75 0 0.0
Fuberidazole 0 0 0.7
Thiabendazole 0 35 0.0
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measurements were performed in a 10 mm quartz cell
at 750 V.

An AB2 software version 1.40, running under OS/2
2.0 was used for spectral acquisition and MATLAB
6.0 (The MathWorks Inc., 2000) was used for data
analysis. In the Matlab environment, commercial[13]
and home-made algorithms were used to process the
data.

4. Results and discussion

4.1. Preliminary study of the data

A preliminary principal component analysis (PCA)
can provide information about the degree of correla-
tion of the data and the presence of outliers or influ-
ential samples. So we unfolded column-wise the EEM
of each sample to a row vector of 1900 elements, and
use them to build a new data matrix of 12 rows (sam-
ples) and 1900 columns (wavelengths). The dimen-
sionality of the data was reduced with the unfold-PCA
to two factors, which explained 97% of the variation
in the data. In spite of there being three components,
the high correlation between the fluorescence spectra
explains the presence of only two significant principal
components.Fig. 1 shows the PC1–PC2 scores plot
(explained variance is 86 and 11%, respectively) and
the influence plot (squared residuals onX versus lever-
age). We can observe that sample M12 is far from the
centre in the scores plot and has a high leverage value,
which indicates that it is an influential sample.

A PARAFAC model with three factors was also per-
formed with the whole set of mixtures to get an idea
of the distribution of the samples. We represented the
loadings of the sample mode in two dimensions and
observed that M12 was again the most different sam-
ple, according to the U-PCA results.

4.2. Individual standards

Fig. 2shows the excitation and emission spectra ob-
tained for each pesticide. They were obtained by ap-
plying PARAFAC with one factor and non-negativity
constraints to the three-dimensional matrices for the
individual fluorescence spectra of each pesticide. We
regarded these normalised profiles as the spectra of
the pure pesticides and used them as reference spec-

tra to evaluate the reliability of the models in the
calibration.

In a preliminary study[1], some of the authors
recorded the pure excitation and emission spectra at
the wavelengths of maximum emission and excitation,
respectively. Correlation between those spectra and the
ones in this paper, resolved by PARAFAC on the EEM
of the individual pesticides, was higher than 0.998.

We calculated the sensitivity and selectivity of the
pesticides from their first-order profiles in both the
excitation and the emission region (seeTable 2). All
figures of merit were calculated as described by Faber
et al.[14]. In terms of first-order profiles, fuberidazole
was the most sensitive compound, both in the excita-
tion and the emission region, but one of the least selec-
tive, together with thiabendazole. The most selective
pesticide was carbendazim, as its spectra are the most
different in shape (seeFig. 2) and therefore the least
correlated. This preliminary information suggests that
fuberidazole will be predicted at lower concentrations
(it is the most sensitive) but with a higher error of pre-
diction because it is highly correlated with thiaben-
dazole. It also suggests that carbendazim will be the
most accurately predicted because of its selectivity.

4.3. Calibration step

In the calibration step, we performed several
PARAFAC models, which consisted of different cal-
ibration samples, and not necessarily the individual
standards of each pesticide.

The models that included the individual standard
of carbendazim in the calibration set recovered the
profiles slightly better than the models that did not.

Table 2
First-order sensitivities and selectivities of carbendazim, thiaben-
dazole and fuberidazole, estimated from the standards of the pure
pesticidesa

Compound Sensitivity Selectivity

X (50× 3) emission
spectra

Carbendazim 15.45 0.8068
Thiabendazole 19.19 0.1976
Fuberidazole 356.5 0.2073

Y (38× 3) excitation
spectra

Carbendazim 7.635 0.3985
Thiabendazole 11.23 0.1157
Fuberidazole 240.9 0.1401

a Figures of merit for first-order spectral profiles.
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Fig. 1. Scores (a) and influence (b) plot from the PCA of the columnwise unfolded matrices corresponding to the 12 synthetic mixtures (explained variance 97%).
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Fig. 2. Excitation (solid lines) and emission (broken lines) spectra of (1) carbendazim (50 ng ml−1), (2) fuberidazole (0.7 ng ml−1) and (3)
thiabendazole (35 ng ml−1).

The same occurred with the standard of thiabenda-
zole. However, the presence of the standard of fu-
beridazole considerably improved the recovery of the
profiles and, therefore, the correlation between them
and the reference spectra. In the models which did not
contain fuberidazole, on the other hand, the profiles of
each pesticide could not be unequivocally identified.
This is due to the sensitivity and selectivity values of
the compounds. When mixtures of three analytes were
analysed by fluorescence, and the data were modelled
by PARAFAC, the standard of the most selective and
sensitive analytes did not have to be included, because
the model was able to recover their profiles in the pres-
ence of other analytes. This was the case of carben-
dazim. However, thiabendazole and fuberidazole are
less selective and highly correlated each other, so the
model needs extra information (such as the individual
standard) about the most sensitive of them (fuberida-
zole, in this case), so that the profiles can be reliably
recovered.

The best calibration set consisted of the calibra-
tion samples located at the extremes of the domain,
i.e. M2, M5, M7 and M11 (extrapolation out of the
linear range is avoided) together with the individual

standard of fuberidazole (see above). This PARAFAC
model was built with three factors and non-negativity
constraints in all the modes. The estimated profiles
matched the reference spectra (seeFig. 3), with cor-
relation coefficients of 0.996 for carbendazim, 0.998
for thiabendazole and 1.000 for fuberidazole in the
excitation region and 0.9995, 0.996 and 1.000, re-
spectively, in the emission region.

Table 3shows the figures of merit of this model.
They were calculated, using univariate statistics, from
the calibration line fitted with the loadings in the
sample mode obtained with PARAFAC, as explained
above.

Sensitivity was defined as the slope of the calibra-
tion curve. The values of this sensitivity measure cor-
relate well with those calculated from the net analyte
signal of the first-order spectra of each pesticide. Other
authors have suggested a single measure of sensitiv-
ity for PARAFAC models based on net analyte signal
calculations[15]. From the results ofTable 3we can
conclude that fuberidazole is the most sensitive com-
pound in the mixture, followed by thiabendazole and
carbendazim, in agreement with the spectroscopic data
from Table 2.
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Fig. 3. (a) Excitation and (b) emission spectra for carbendazim (1), fuberidazole (2) and thiabendazole (3). Broken lines: reference spectra;
solid lines: spectra recovered by the PARAFAC model.

The precision for each pesticide was calculated in
terms of concentration as the standard deviation of the
C-loading residuals for all standards divided by the
sensitivity, SEN, i.e. the slope of the calibration line as:

precision= sres

SEN
= SEN−1

√∑n
i=1(ci − ĉi)2

n − 2
(4)

ci are theC-loadings for the given pesticide estimated
from the PARAFAC model and̂ci are the loadings
estimated from the calibration lineC-loadings versus

Table 3
Statistical parameters and figures of merit of the linear relationship between the proportion loadings calculated by PARAFAC and the true
concentration of each pesticide

Carbendazim Thiabendazole Fuberidazole

Number of data points 5 5 4
Intercept 9.34× 10−3 −9.37 × 10−3 −3.78 × 10−3

Sensitivity (slope) 6.54× 10−3 16.4 × 10−3 349.3× 10−3

Standard deviation of intercept 19.9× 10−3 11.9 × 10−3 5.80 × 10−3

Standard deviation of slope 2.96× 10−4 4.27 × 10−4 181.3× 10−4

Standard error 22.3× 10−3 13.3 × 10−3 8.26 × 10−3

Correlation coefficient (r) 0.9969 0.9990 0.9973
Precision (%) 3.4 2.0 3.4
Limit of detection (ng ml−1) 20 4.7 0.15

pesticide concentration.n is the number of calibration
standards.

Finally, the LOD for each pesticide was estimated
from Eq. (5), which takes into account the uncertainty
of the calibration line and considersα andβ probabil-
ities of error, following the IUPAC recommendations
[16]:

LOD = δ(α, β)
sres

SEN

√
1 + 1

n
+ x̄2∑n

i=1(xi − x̄)2
(5)



54 M.J. Rodr´ıguez-Cuesta et al. / Analytica Chimica Acta 491 (2003) 47–56

xi is the concentration of the given pesticide in the
ith standard and̄x is the average concentration of the
calibration standards.

The values of the correlation coefficients indicate
the quality of the linear fits and the estimated pre-
cision shows that the calibration results are in close
agreement. The detection limits of this method are
in the order of magnitude of nanograms milliliters−1

(ng ml−1). Expressed as a percentage of the higher an-
alyte concentration in samples, they were around 20%
for carbendazim and fuberidazole and below 12% for
thiabendazole.

In order to test the second calibration strategy de-
scribed inSection 2, we also performed the PARAFAC
model with the chosen samples M2, M5, M7, M11, the
standard of fuberidazole and the remaining samples to
be predicted. We obtained the loadings of relative con-
centration for each sample, although the calibration
line was fitted only with the calibration set.Table 4
shows the statistical parameters obtained for this re-
gression. The estimated profiles were correctly recov-
ered but the correlation coefficients with the reference
spectra were slightly lower than those obtained with
the model that did not include the prediction samples.
This second model finds the solution that best explains
all the variations, so we could not detect any outlying
samples. Precision and limits of detection were of the
same order for thiabendazole and higher for carben-
dazim and fuberidazole than with the previous model.

4.4. Prediction step

We used the PARAFAC model built with the cal-
ibration set [M2, M5, M7, M11, Fub] to predict the

Table 4
Statistical parameters and figures of merit of the linear relationship between the loadings of calibration samples obtained from a PARAFAC
that includes the prediction samples (see details in text)

Carbendazim Thiabendazole Fuberidazole

Number of data points 5 5 4
Intercept 2.01× 10−3 −4.45 × 10−3 −7.37 × 10−3

Sensitivity (slope) 42.8× 10−3 10.45× 10−3 326.9× 10−3

Standard deviation of intercept 14.1× 10−3 70.7 × 10−3 103.1× 10−3

Standard deviation of slope 2.10× 10−3 2.55 × 10−3 32.2 × 10−3

Standard error 15.9× 10−3 7.94 × 10−3 14.7 × 10−3

Correlation coefficient (r) 0.9964 0.9991 0.9905
Precision (%) 3.7 1.9 6.4
Limit of detection (ng ml−1) 22 4.4 0.29

concentration of carbendazim, thiabendazole and fu-
beridazole in the prediction set consisting of the re-
maining samples inTable 1. For each pesticide, we
interpolated the estimated PARAFACC-loadings, cal-
culated fromEq. (3), in the corresponding regression
line (seeTable 3) and calculated the predicted concen-
tration.

Fig. 4 shows the calibration model with a straight
line, and the prediction samples indicated with crosses.
The prediction results for thiabendazole and fuberida-
zole are very good. The accuracy of the models was
calculated by the root mean square error of prediction
(RMSEP):

RMSEP=
√∑m

i=1(xi − x̂i)2

m
(6)

wherexi and x̂i are the measured and predicted con-
centrations of the given pesticide in theith prediction
sample, andm is the number of prediction samples.
RMSEP was 3.4% for thiabendazole and 3.9% for
fuberidazole. However, in the prediction of carben-
dazim, samples M4, M10 and M12 behaved very
differently from the model and the rest of the samples
and increased the RMSEP from 5.6 to 27.5%. Work
is in progress to efficiently detect and handle outliers
in prediction for PARAFAC models.

We also expressed these values in terms of recovery
(as the percentage ratio between the predicted and the
true concentration) so that they could be compared
with those obtained by the procedure described in a
previous study using multivariate calibration methods
[1] (Table 3, Model C). The average recoveries for the
PARAFAC procedure were 103.6% for thiabendazole,
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Fig. 4. Calibration graphs (straight line) for carbendazim (a), thiabendazole, (b) and fuberidazole (c). The crosses (×) represent the
prediction samples.

99.9% for fuberidazole and 111.1% for carbendazim.
For the multivariate calibration procedure they were
97.7% for thiabendazole, 93.3% for fuberidazole and
102.3% for carbendazim. So, in all the cases, recov-
eries were around the ideal 100% for both methods,
although the dispersion of the results was lower for
PARAFAC than for the multivariate calibration proce-
dure.

However, the methodology involving PARAFAC
did not require as many calibration samples as the
PLS models do and, what is more, would allow the
determination of any of the three pesticides in the
presence of unknown interferences (second-order
advantage) even if they were not included in the
model.

We also predicted the samples in the prediction
set by including them in the PARAFAC model. The
loadings estimated from the PARAFAC model were
interpolated into the calibration line that was fitted
only with the loadings of the calibration samples. In

Table 5
Prediction errors of the two PARAFAC calibration procedures (see
details in text)

RMSEP (%) Carbendazim Thiabendazole Fuberidazole

PARAFAC
(calibration set)

5.6 3.4 3.9

PARAFAC
(calibration+
prediction sets)

3.7 4.8 6.4
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this way, anomalous samples went unnoticed and the
RMSEP values were higher than those obtained by
prediction fromEq. (3) (seeTable 5). What is more,
we would have to rebuild the model for each new set
of prediction samples, which is less practical in a real
laboratory situation.

5. Conclusions

We determined carbendazim, fuberidazole and thi-
abendazole in mixtures of the three pesticides, by EEM
fluorescence and three-way PARAFAC calibration. We
used two main criteria for selecting the calibration
standards. Firstly, the model had to cover the exper-
imental domain, so standards were preferably taken
at the extremes of the domain to avoid subsequent
extrapolation. Secondly, we used the selectivity and
sensitivity information about the compounds to select
the calibration samples, and discussed whether it was
necessary to include extra information (i.e. individual
standards) in the model for the more sensitive or the
less selective analytes in the mixtures.

In the light of the results, we selected for further
study a calibration set with six samples: five combina-
tions of extreme concentrations for each pesticide and
an individual standard of fuberidazole. The prediction
ability of this model compared favourably with the
prediction ability of previous PLS models. PARAFAC
calibration also required fewer samples and would
make quantification possible even in the presence of
uncalibrated interferents.

Finally, the PARAFAC models were validated by
calculating the univariate figures of merit from the cal-
ibration curves that had been built by regressing the
PARAFAC sample loadings to the pesticide concen-
trations. These figures of merit were also used to com-
pare the quality of the different models.

Acknowledgements

The authors would like to thank the MCyT (Project
No. BQU2000-1256) for financial support and the
CIRIT of the Catalan Government for providing M.J.
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