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COMPONENT MODELS FOR THREE-WAY DATA: 
AN ALTERNATING LEAST SQUARES 

ALGORITHM WITH OPTIMAL SCALING FEATURES 

RICHARD SANDS AND FORREST W.  YOUNG 

UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL 

A review of the existing techniques for the analysis of three-way data revealed that none were 
appropriate to the wide variety of data usually encountered in psychological research, and few 
were capable of both isolating common information and systematically describing individual dif- 
ferences. An alternating least squares algorithm was proposed to fit both an individual difference 
model and a replications component model to three-way data which may be defined at the nomi- 
nal, ordinal, interval, ratio, or mixed measurement level; which may be discrete or continuous; 
and which may be unconditional, matrix conditional, or row conditional. This algorithm was eval- 
uated by a Monte Carlo study. Recovery of the original information was excellent when the cor- 
rect measurement characteristics were assumed. Furthermore, the algorithm was robust to the 
presence of random error. In addition, the algorithm was used to fit the individual difference 
model to a real, binary, subject conditional data set. The findings from this application were con- 
sistent with previous research in the area of implicit personality theory and uncovered interesting 
systematic individual differences in the perception of political figures and roles. 

Key words: individual differences, measurement level. 

The discovery of meaningful relations underlying complex bodies of data is impor- 
tant in many areas of psychology. One of the most commonly used procedures for this 
purpose is component analysis. The classical component-analysis procedure is applicable 
to two-way data, such as the scores of a group of subjects on a battery of tests. 

Often, however, psychological data are three-way (or multi-way). Common examples 
of such data are multi-trait multi-method matrices [Campbell & Fiske, 1959], the seman- 
tic differential [Osgood, Suci, & Tannenbaum, 1957], and personality trait ratings [Rosen- 
berg & Sedlak, 1972]. Because these data are three-way, they pose a problem for the clas- 
sical component-analysis procedures. 

Early solutions to this problem [Abelson, 1960; Cattell, 1952; Guttman, 1958] in- 
volved reducing the data from three- to two-way. For example, semantic differential data 
is frequently reduced to a concept by scale matrix by averaging across subjects. Or, if in- 
dividual differences are of interest, the data can be averaged across concepts or scales. 
However, there are a number of problems with such solutions. First, these solutions can- 
not be employed when differences in all three ways are of interest, because they do not 
allow the simultaneous analysis of all three ways. Second, if there are substantial differ- 
ences between subjects, then a solution based on the average may represent only a small 
minority of the subjects or, even worse, none at all. Third, the use of any reduction 
method involving arithmetic operations such as averaging is only appropriate for interval 
or ratio data. 

For these reasons, investigators have recently proposed a number of direct solutions 
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for three-way data [Carroll & Chang, 1970; Israelsson, 1969; Tucker, 1963, 1964, 1966; 
Harshman, Note 1; Jenrich, Note 2; Kroonenberg & de Leeuw, 1980]. These procedures 
are extensions of classical two-way component analysis. But because all of these new pro- 
cedures place stringent requirements on the measurement characteristics of the data, none 
of them are applicable to most of the data types usually encountered in psychological re- 
search. 

Three measurement characteristics can be used to classify the types of data encoun- 
tered in psychological research [de Leeuw, Young, & Takane, 1976; Young, de Leeuw, & 
Takane, 1976; Takane, Young, & de Leeuw, 1977; Young et al., Note 3]. These are mea- 
surement process, measurement level, and measurement conditionality. These three mea- 
surement characteristics describe a wide variety of data, including data in which the vari- 
ables' measurement levels and/or measurement processes are different. Recently, Takane, 
Young, and de Leeuw [1978] have developed a two-way component-analysis procedure 
appropriate to such data. However, there are no three-way procedures appropriate to such 
a wide variety of data. Both the reduction and direct three-way procedures, mentioned 
previously, are applicable to only unconditional interval or ratio data. 

The purpose of this work is to describe and evaluate a new procedure appropriate for 
a wide variety of three-way data. This procedure fits several component models to three- 
way data which may be defined at nominal, ordinal, interval, ratio, or mixed levels; which 
may be discrete or continuous; and which may be unconditional, matrix conditional, or 
row conditional. 

Models fo r  Three- Way  Data 

There are a number of component-analysis models for three-way data. (J/Sreskog, 
1971, proposed three-way factor-analysis models. However, this discussion is limited to 
component models, those models where uniquenesses are not estimated.) These models 
are extensions of the familiar model for two-way data. The most general of these models 
is Tucker's Three Mode Factor Analysis model [Tucker, 1963, 1964, 1966]. This model, 
which is a component model, not a factor analysis (since there is no provision for unique- 
nesses) is expressed as 

= 2 2 g ; 
s t u 

where zijk is the i, j, k 'h element of the three-way data matrix Z; the coefficients f,s, xj,, and 
Y,u are entries in the component matrices F, X, and ¥; and the coefficients c~,~ are entries in 
a three-way matrix, C, which Tucker calls the "core matrix." 

The matrices F, X, and Y give the scores of the variables, concepts, and individuals 
on the "idealized" component variables. It is not necessary that there be the same number 
of components for each way. In order to obtain a unique solution, F, X, and Y are as- 
sumed to be columnwise orthonormal. (Columnwise orthonormal will be used to desig- 
nate a matrix A where A'A -- I. Columnwise orthogonal will designate a matrix A, where 
A'A = DIAG.) C is an s by t by u matrix which gives the interrelations that connect the 
three sets of components. According to Levin [1965], the inner core matrix gives the scores 
of each "idealized" object on each "idealized" variable for each "idealized" individual. 
Application of the TMFA model has been limited, possibly because the model is hard to 
understand, making interpretation of results difficult. 

If the TMFA model is restricted by assuming Y = / ,  then the model becomes 

= E g f,a,,<,,, 
s t 
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where c,,~ is an element of  the k'h individual's two-way core matrix, and the other terms 
are as previously defined. Israelsson [1969], Jennrich [Note 2], and Kroonenberg and de 
Leeuw [1980] proposed this model. 

This model is more conveniently expressed as 

(1) Z~ = FCkX' 

where Z~ is the two-way data matrix and where C~ is the two-way core matrix for the k 'h 
individual. The core matrices can be interpreted as before. However, it is more appealing 
to think of  Ck as defining the k 'h individual's metric or rotation of  the common com- 
ponents, F or X. (Ck can operate on either F or X. For  the purposes of  interpretation it will 
be assumed that Ck operates on X.) For  this reason, it seems appropriate to call this a 
"generalized subjective metrics model." The cross product model derived from (1), 

Bk = Zk 'Z~= XC',FFCkX' = XC*X', 

is identical to Schonemann's [1972] "generalized subjective metrics model" for MDS, 
where C* = C'~F'FCk. 

There is a straightforward geometrical interpretation for this model. Each Ck de- 
scribes a unique oblique rotation (linear combinations) of  the common component scores 
X. So, the k 'h individual's component scores are formed by the linear combinations, C~, of  
the set of  common component scores X. And the same linear combinations, as specified 
by F, of these individualized component variables describe each person's original data. To 
obtain a unique solution, F and X are assumed to be columnwise orthonormal. 

There are several additional simplifying assumptions which can be made. First, we 
can assume that there are the same number of  components for each way. Then we can 
impose further constraints on Ck in (1). While a variety of  constraints could be investi- 
gated, we look into the situation where Ck = Wk, giving what we call the "weighted 
model": 

(2) Zk -- FWkX', 

where Wk is diagonal for all k. Harshrnan [Note 1] proposed this model. It is only neces- 
sary to restrict the size of  F and X to obtain a unique solution. Thus, the particular orien- 
tation of  F and X are determined by the model itself. 

In this model different individual weighting of  the common component variables 
gives the individualized component scores. There is no rotation of  the common com- 
ponent scores. Individuals differ only with respect to the salience of  each component. This 
model is analogous to the INDSCAL cross product model [Carroll & Chang, 1970]. 

It is interesting to note that this and the TMFA model are the only symmetric mod- 
els. That  is, no matter which way one fits the model to the data there will be a set of com- 
ponents for each way. This is most obvious when one expresses the model (2) as 

t 

where wk, are the diagonal elements of  Wk. This model seems to be the most direct exten- 
sion o f  the component-analysis model for two-way data, which is expressed as 

Zq = ~.~ f itxjt . 

I f  we assume that W~ = I for all k, we obtain what we call the "replicated model": 

(3) Zk --- FX' ,  



42 PSYCHOMETRIKA 

where F must be columnwise orthogonal and X columnwise orthonormal to obtain a 
unique solution. The interpretation of this model is that the same component scores repre- 
sent all individuals. That is, there are no individual differences. The model assumes that 
individuals' data are replications of each other. 

In this paper we develop an algorithm for fitting the weighted and replicated models 
to data with the variety of measurement levels, processes, and conditionality commonly 
encountered in laboratory and field research. It performs both internal and external [Car- 
roll, 1972] analyses. That is, for external analyses, F and/or X can be constrained to a pri- 
ori sets of parameter values. Also, the algorithm will fit the replications model, since it is a 
special case of the weighted model. Finally, the algorithm has been formulated such that 
it can be expanded to fit the "generalized subjective metrics model" discussed in this sec- 
tion. 

The ALSCOMP3 Algorithm 

This section presents the details of an alternating least squares optimal scaling al- 
gorithm for component analysis of 3-way data. 

The ALSCOMP3 algorithm involves two major phases and two minor phases. The 
first major phase involves obtaining the least squares estimates of the optimally scaled 
data Z* under the assumption that F, X, and Wk are constants. Specifically, this phase 
solves the conditional least squares problem which minimizes the loss function 

(4) if2= ~ ~ ~ (z**- 2ak) 2= ~ tr (Z*-FWkX')'(Z*-FWkX'),  
i j k k 

where z*~ and ~uk are, respectively, the optimally scaled data and the model estimates ob- 
tained from FWkX', and Z* is a scale by object matrix of optimally scaled data for the k t~ 
subject. Using the notation of Takane et al. [1977] this problem is denoted by 
MINz.[q~2(Z*/F,X, W)], where Z* is the collection of Z* matrices, and W is the collection 
of W~ matrices. The second major phase involves obtaining the conditional least squares 
estimates for the three model parameter subsets. The first subphase solves the problem 
MIN~[ep2(F/X, W,Z*)], the second subphase solves the problem MINx[ep2(X/F, W,Z*)], and 
the third the problem MIN w[ep2(W/F,X,Z*)]. The two minor phases are initialization and 
termination. The algorithm begins with the initialization phase, then alternates between 
the two major phases and the termination phase. The details of these phases are discussed 
in the next few sections. 

Initialization Phase 

The initialization procedure solves for the initial values of F, X, and Wk using the ob- 
served data Zk. This initialization procedure is analogous to the algebraic solution for 
subjective metrics proposed by Schrnemann [1972]. However, it differs from his solution 
because Z~ is rectangular, as opposed to a square symmetric matrix. (This approach was 
suggested by Yoshio Takane.) This solution is exact for the error-free, ratio-level, uncon- 
ditional measurement case. Recall the weighted model is 

(5) Z~ = FW~;C. 

This model does not have a unique solution, because 

Zk = (FD,) (D?' W,,D~) (DI'X') = F* I~ X*' , 

where D~ and D2 are diagonal matrices. Since the parameters of the model are only de- 
fined up to joint dilations and reflections, we must restrict the size of F, X, or Wk. We 
choose to resolve this indeterminacy by arbitrarily restricting the size of the Wk matrices 
such that 
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1 
(6) IV. = ~ ~ W~, = I ,  

k 

where N is the number of  subjects. Combining (6) and (5) and averaging gives 

(7) Z. = I ~ zk = FX ". 

We can use any method to find a factoring of  Z. .  Once P and X are obtained by an ap- 
propriate method of  factoring (ALSCOMP3 uses an Eckart-Young, 1936, decomposition), 
we have 

(8) z .  = P 2 '  = (PA) (A- 'Ye)  , 

where A is any nonsingular rotation matrix. Combining (7) and (8) gives 

(9) F = PA,  

and 

( i0 )  x = ~ ' A - " .  

So to find F and X we need to find A, since P and )i" are known from the factoring (8). 
To solve for A substitute (9) and (10) into (5) which gives 

(l l) Zk --- [:.4 W~A-' g '  = PC~YC , 

where C~ = A WkA-'. Since we know P, 3i', and Zk we can find Ck from (l l), where 

0 2 )  C~ = ( P ~ - ' P Z ~ , ~ ( ~ , t ) - ' .  

Using (12) to obtain Ck we can find A. Since Ck --- A W~A-' and Wk is diagonal for all k, A 
must be the right eigenvectors of  Ck. (Because Ck is not symmetric it has different right 
and left eigenvectors. That  is, A -~ # A'. Throughout this derivation, A is used to designate 
the right eigenvectors from the right eigenvector equation CkA = A Wk.) 

This suggests that the model only fits if all Ck from (12) have the same eigenvectors 
A. However, this will not be the case in most situations with fallible data. Although we 
could use the eigenvectors of  any Ck as an estimate of  A, it is more practical to obtain an 
estimate of  A based on some sort of  group average [Sch6nemarm, Carter, & James, Note 
6]. The problem is that the group average has multiple roots since 

C . = ~ C k = A  ~ W k  A - ' = A I A - ' = I .  

However, to avoid this difficulty we can use the average of  some integral power of  the C~. 
This gives 

(13) C. ~ = ~ C~ = A - '  = ADA- ' ,  

where D is a diagonal matrix and the Ck are estimated by (12). Thus, we can find A from 
an eigenvalue decomposition of  C.. (Following SchiSnemarm et al., Note 6, ALSCOMP3 
squares the Ck prior to averaging. Note that because the C~ are asymmetric, C. is asym- 
metric. Because this is not the standard eigenvalue problem, a separate routine is neces- 
sary to obtain the eigenvectors of  C.'. Therefore, C.. was decomposed by routines from 
EISPACK, Note 7, an eigensystem subroutine package for real general matrices. The de- 
composition of  an asymmetric matrix such as C: may result in complex eigenvectors. 
However, complex eigenvectors were only encountered in the three-dimensional analysis 
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of the real data to be discussed.) Given this estimate of A we find F and X from P and ~" 
by (9) and (10). And from F, X, and Zk we can find the W~ by regression. This will be 
explained in detail in the discussion of the model estimation phase. 

The initialization procedure is almost identical for an external analysis which allows 
for an arbitrary rotation of the known X. This model is 

(14) Zk = F W k A - ~ V  , 

where X is known and A -~ is some unknown nonsingular rotation. Assuming the same 
size restriction expressed in (6), (14) becomes 

(15) Z. = FA-~X ' . 

Since we know X, we can find P by regression, where 

P =  FA -1 , 

and from (15) 

(16) P = Z .  X (X 'X) - '  . 

And from (14) and (16) 

Zk = PA WkA-'  X" , 

which is identical to (11), except that we know X. The solution for A, F, and W~ proceeds 
exactly as before except X is used instead of 8. 

If arbitrary rotations of X are not allowed the initialization procedure is simpler. In 
this case the model is the same as that expressed in (5) except that X is known. One must 
still restrict the size of W~, which results in (7). However, since X is known, the least 
squares estimate for F is the regression equation 

F = Z .X(X 'X) - ' .  

Again, the Wk are found by regression. 

Optimal Scaling Phase 

This phase of the algorithm obtains the optimally scaled data Z* from the observa- 
tions Z~ and the model estimates 2k. There are two constraints on the Z*; (1) the relation- 
ship between Z~* and Z~ must conform to the specified measurement restrictions, and (2) 
the Z* must be least squares estimates of the 2k. By assuming that F, W, and X are known 
constants, this phase solves the conditional least squares problem MINz.[dp2(Z*l 
F, W,X)]. 

Compute model estimates. The first step is to compute Z~ from the current values of F, 
X, and Wk by (5). 

Optimal scaling. The second step is to actually perform the optimal scaling. For most 
types of data these procedures are familiar. The optimally scaled data for the nominal dis- 
crete case are the means of the model estimates for each category of the observations. The 
ordinal continuous and discrete measurement restrictions correspond to Kruskal's [1964] 
primary and secondary monotonic transformations. Interval and ratio discrete transfor- 
mations are regressions of Zk on Zk with or without an intercept. The nominal continuous 
transformation is the two-step process described by Young et al. [1976]. They give more 
detailed formulations for these procedures. 

Normalization. The final step in the optimal scaling phase is to normalize the solu- 
tion. There are two distinct normalization problems. The first concerns the normalization 
of the model parameters so as to define a unique solution. The second concerns the nor- 
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malization of  the loss function. The normalization of  the loss function must be performed 
after each iteration in order to avoid certain degenerate solutions. However, the normal- 
ization of  model parameters need only be done prior to the printing of  the final solution. 

The need for normalization of  the model parameters is a result of  the indeterminacy 
of  the model expressed in (5). Harshman [Note I] recognized this indeterminancy, noting 
that two of the three parameter subsets must be constrained. However, since optimal scal- 
ing is included in ALSCOMP3 it is necessary to impose constraints on all three model pa- 
rameter subsets. Therefore, for unconditional data the following set of  normalization con- 
straints are imposed on the final solution: 

f~f, = N~ for all t, 

x~x, = Nj  for all t, 

and 

E E  wk, = NkR; 
t k 

where f, and x, are, respectively, the t 'h column vectors of  F and X; and N,, N~, Ark, and R 
are the number of  scales, objects, subjects, and dimensions, respectively. For subject con- 
ditional data the constraint on W is 

w~, = R for all k. 
t 

And for row conditional data it is necessary to constrain F such that 

f,, = R for all i. 
t 

Finally, if the data are row conditional and the assumed measurement level is not ratio, 
each column of  X must be centered. That is, under these conditions it is necessary to im- 
pose the constraint 

3(, ' /= 0 for all t, 

where 1 is a column vector of  ones. 
The second normalization consideration is normalizing the loss function. In order to 

avoid certain degenerate solutions, it is more desirable to minimize a normalized loss 
function. However, the normalized loss function is the ratio of  two quadratic forms. This 
produces a quite complicated minimization problem. Conveniently, the normalized loss 
function can be minimized by adjusting the optimally scaled data obtained by solving the 
unnormalized problem. For this reason, ALSCOMP3 finds the parameters which solve 
the unnormalized loss function, and then adjusts them appropriately. The appropriate ad- 
justment depends on the exact form of  the desired normalized loss function. 

There are three relevant questions in determining the exact form of the normalized 
loss function. (1) Should normalization be within partitions? (2) Should normalization be 
with respect to model estimates or to the optimally scaled data? (3) Should normalization 
be by sums of squares or by the variance? 

Kruskal and Carroll [1969], Takane et al. [1977], and Roskam [Note 8] addressed the 
first question for a variety of  MDS models. They argued that normalization must be 
within data partitions to avoid certain degenerate solutions. These arguments and con- 
clusions apply to the models fit by ALSCOMP3. Therefore, it is necessary to normalize 
the ALSCOMP3 loss function within partitions. 
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Considering the second question, whether to normalize by the model estimates or by 
the optimally scaled data, both Kruskal and Carroll [1969] and Young [1972] argued that 
the choice is arbitrary. However, Takane et al. [1977] argued that, for the row conditional 
case of the INDSCAL model, normalization must be by the optimally scaled data. They 
noted that the distances in the INDSCAL model are jointly determined to a single multi- 
plicative constant. For this reason, they argued that adjusting each row of the distance 
matrix (normalization by distances) by different multiplicative constants violates the 
model. However, recent arguments by Young et al. [Note 4] present an alternative view 
suggesting that one may normalize by either the model estimates or the optimally scaled 
data without the necessity of adjusting model estimates. Although the decision now ap- 
pears arbitrary, the ALSCOMP3 loss function is normalized by the optimally scaled data. 

Kruskal and Carroll [1969] considered the third question: whether to normalize by 
the variances or sums of squares. They emphasized the importance in MDS models of 
normalizing by the variances when the data is row conditional. This is equally important, 
even with unpartitioned data, for multiplicative models like those in ALSCOMP3. Con- 
sider a simple case of unpartitioned data from one individual. If the loss function is nor- 
malized by the sums of squares of Z*, then a perfect fit can always be obtained by repre- 
senting all scales and objects by the same point. Since F and X have constant column 
vectors, Z* will be a matrix of constants. And for any transformation the least squares es- 
timate of Z* will be the matrix of constants, Z~. This means that the numerator of the loss 
function would be zero, and the denominator some constant. The value of the loss func- 
tion would be zero, indicating a perfect fit. However, if one uses the variances of the Z*, 
then as this solution is approached the denominator will also approach zero, producing an 
ill-behaved function whose value may be quite different from zero, thereby avoiding some 
degenerate solutions. Kruskal and Carroll state that, for MDS, the loss function becomes 
inflated as the denominator approaches zero. However, Sands [Note 9, Appendix B] 
shows that in cases where the numerator is also approaching zero the function may be in- 
flared or deflated. 

Considering these three points, ALSCOMP3 uses a loss function which is normalized 
within partitions by the variance of the optimally scaled data. This loss function is 

1 * -  ^ ' * -  (z~ zA'(z*- &), 
(17) ,2____ Np ~p (Z~*----~ Z~)-*'(Z~*- ~p*) 

where Np is the number of partitions, Z* is a column vector of the optimally scaled data in 
the p,h partition, Z~ is a column vector of the model estimates in the p,h partition, and Z* is 
the average of the optimally scaled data in the pth partition. 

Recall that we are solving the unnormalized problem expressed in (4) and desire to 
minimize the normalized loss function (17). To accomplish this it is necessary to adjust 
the optimally scaled data obtained from solving the unnormalized problem. The appro- 
priate adjustment [Appendix A] is to multiply the optimally scaled data for each partition 
by the constant 

(&- L)'(&- 
ap (z*- zV(z*- 2~' (18) 

and add the constant 

bp ---- (1 -- ap)~p, 

where ap is from (18), ~ is the average of the model estimates in the p,h partition, and the 
other terms are as previously defined. 

The normalized loss function (19) can be interpreted as the percent of the variance of 
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the optimally scaled data which is not accounted for by the model estimates obtained 
from (5). This implies that the normalized loss function should be bounded by 0 and 1. It 
is quite obvious that when Zp* = 2r, for allp, ~ = 0. However, it appears that when Z ' i s  a 
constant vector, which occurs when the observations, Zp, and the model estimates, Zp, are 
orthogonal, that ~ approaches infinity. In fact, this is not the case, as Z* approaches a 
vector of constants, ff~ approaches unity [Sands, Note 9, Appendix B]. 

Termination Phase 

The termination phase is extremely simple since an iteration of an ALS procedure 
never worsens the value of the loss function [de Leeuw et al., 1976; de Leeuw, Note 10]. 
This phase estimates the improvement in fit by comparing the value of the loss function 
for the current iteration to the value for the previous iteration. I f  this improvement is less 
than the specified criterion the iterations are terminated. The model parameters are nor- 
malized and the final solution printed. If  the improvement is greater than the criterion, 
the next phase is executed. 

M o d e l  Estimation Phase 

This phase successively estimates the three model parameter subsets F, W, and X. 
The estimation of each parameter subset is a subphase which solves a conditional least 
squares problem. This procedure is similar to canonical decomposition [Carroll & Chang, 
1970] and Jennrich's quick algorithm [Harshman, Note 1]. 

The solution to the conditional least squares problem in each subphase is most com- 
plicated for row conditional data. For this type of data it is necessary to estimate each row 
o f F a n d  Wseparately. Although this solution is the most general, and appropriate to both 
matrix and unconditional data, it is computationally inefficient. Therefore, the least 
squares equations for each subphase are presented for each of the three conditionality 
patterns. 

Estimation o f  F. The first subphase solves the conditional least squares problem 
MIN~|$2(F]X, IV, Z*)], where (h 2 is defined by (17). For the row conditional case (17) can 
be expressed by 

1 ,E d :,'(z;:- F,w,x')', (19) ¢:= Y. 

where Z* is the i "h row vector (t "h scale) of the Z* matrix, F, is the gh row vector of F, and 
d,k = (Z*  - Z* ) (Z*  - Z*)' .  Because the partitioning of the data involves the elements of 
both F and W it is necessary to solve for each row of F (i.e., F,) separately. That is, one 
must minimize each 

1 (20) = K. E - F,W Je)(Z* - F,  W k Y ) '  

with respect to F~. Expanding (20), taking the partial derivatives of  ~ with respect to Fj, 
and setting these partial derivatives to zero implies 

• Solving for F,. gives 

K K 

- i  
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When the data is matrix conditional or unconditional, d~' is constant for all i. Under 
these conditions the loss function (17) can be expressed as 

1 
(21) q,: = ~ ~ tr[d2'(Z*- FWkX')(Z*- FWkX')'], 

where d~ is the variance of  the optimally scaled data in the k 'h partition. Under these con- 
ditions it is not necessary to solve separately for each row of  F, The solution for F is 

Notice, in the unconditional case the dk are equal for all k. This allows the solution 
for F in (22) to be simplified to 

Estimation of X. The second subphase solves the conditional least squares problem 
MINx[q/(XIF, W, Z*)]. To solve this problem for all types of conditional data it is most 
convenient to express the loss function (17) as 

1 
(23) ~2 = ~ ~ t r (Z*-  FWkX')'D-['(Z*- FW~X'), 

where D~ is a diagonal matrix. The form of the D~ matrix depends on the type of condi- 
tionality. When the data is row conditional, the l ̀h diagonal element of the Dk matrix is the 
variance of the optimally scaled data for the t'" row of the k 'h subject. When the data is 
matrix conditional, D~ is a constant diagonal matrix having entries equal to the variance 
of the optimally scaled data for the k 'h subject. Finally, when the data is unconditional, D~ 
is a constant diagonal matrix equal for all k. In this case the diagonal elements of  all the 
Dk matrices are equal to the variance of the unpartitioned optimally scaled data. 

Expanding (23), taking the partial derivatives of ck 2, with respect to X, setting these to 
zero and solving for X gives 

Recall, when the data is unconditional, the D~ matrices are equal constant diagonal 
matrices for all k. This allows the simplification of the solution for X, as derived above, to 

Estimation of W. The third subphase solves the conditional least squares problem 
MINw[q~2(WIF, X,Z*)]. To solve this problem it is easiest to express the model as 

zj  = w r i t ;  

where Zj is a subject by object matrix for the j,h scale, Fj is a diagonal matrix formed from 
the j,h row vector of F, and W is a subject by dimensions matrix whose k ~" row vector is 
equal to the diagonal of W~. Using this notation the loss function (17) can be expressed as 

1 +2= 2 2 e;:(z;- 

where Z~ is the k 'h row vector (k ~h subject) of the Z* matrix, Wk is the k 'h row vector of  W, 
and dkj = (Z~ - 2~)(Z~ - 2g)'. Because the partitioning of the data involves elements of 
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both W and F, when the data is row conditional it is necessary to solve separately for each 
row of W (i.e., IV,). That is, one must minimize each 

(24) d~ = ~ d~,)(Zkj -- WkFjX')(Z; WkFjX')' 
J 

with respect to Wk. 
Expanding (24), taking the partial derivatives with respect to Wk, setting these to 

zero, and solving for Wk gives 

When the data is matrix conditional or unconditional dkj is equal for all Z Under 
these conditions the loss function (17) can be expressed as 

1 
(26) q~2= ~ 2 t r(Z*- WFtX')'D)-!(Z * -  WFjX'), 

J 

where Dj is a diagonal matrix equal for allj. For these types of conditionality it is not nec- 
essary to estimate each row of  W separately. Expanding (26), taking partial derivatives 
with respect to W, setting these to zero, and solving for W gives 

External analysis. If the analysis is external the subphases corresponding to the fixed 
parameter sets are skipped. If  the external analysis allows for arbitrary rotation of the 
known X, it is necessary to solve for this rotation matrix. The model underlying this anal- 
ysis is given in (14) and the solution for the rotation matrix is 

Non-negativity constraint. The solutions for the Wk matrices, from rearrangement of 
W in (27) or from Wk in (25), are independent for each individual. That is, the values of  
one row of W do not affect the values of  other rows. Given this independence between 
individuals' weights, a non-negativity constraint will only affect those individuals' weights 
which are negative. However, the weights for one individual on each dimension are not 
independent. This means that one cannot set negative weights equal to zero without hav- 
ing to re-estimate the other weights for that individual. The re-estimation, with the of- 
fending weight set to zero, is equivalent to estimating the other weights ignoring that par- 
ticular dimension. Re-estimation must be repeated in the same fashion until all weights 
are non-negative or have been set to zero. 

Although the above procedure for constraining weights to be positive is easily imple- 
mented, the constraint may not be desirable. Unlike distance models, in the ALSCOMP3 
weighted model there is a straightforward interpretation for a negative weight. This inter- 
pretation is that the subject reverses that dimension in making judgments. That is, a nega- 
tive weight means that the subject treats objects with high loadings on that dimension as 
low loadings and low loadings as high. 

Variance of the optimally scaled data equals zero. When the vector of optimally scaled 
data for any partition is a constant, its variance equals zero. This would appear to create a 
problem in the definition of squared stress (17), and for those expressions in the model 
estimation phase (19-26) which use the reciprocal of the variance. However, it is the case 
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that when the variance of the optimally scaled data for a partition is zero, stress equals 
one (for that partition) and the reciprocal of the variance used in the model estimation 
phase is zero. Under these conditions the data in that partition is totally ignored in the 
estimation of the model parameters. Although this is not intuitively obvious, it follows 
from the fact that the variance of the optimally scaled data which solves the unnormalized 
problem is also zero, and that the adjustment of this by ap (18) should theoretically make 
the variance of the optimally scaled data which solves the normalized problem infinite. 
Sands [Note 9, Appendix B] gives a proof that under these conditions both stress and the 
corresponding elements in the model estimation phase are defined to be one and zero, re- 
spectively. 

Evaluation 

The ALSCOMP3 algorithm was evaluated via a small Monte Carlo study and the 
analysis of empirical data. 

Monte Carlo Study 

The Monte Carlo study had three main purposes. The first purpose was to evaluate 
the efficacy of ALSCOMP3's recovery of information when the correct measurement level 
was assumed and there was no random error present in the data. The second purpose was 
to evaluate the robustness of the algorithm in the presence of varying degrees of random 
error. The final purpose was to determine the effects of assuming inappropriately strong 
measurement characteristics. 

Method The data sets analyzed in the Monte Carlo study were generated according 
to a 3 x 3 × 5 factorial design (Replications × Random Error × Systematic Distortion). 
First, three F, three IF, and three X matrices were generated randomly. Then from these 
three sets of parameters, which we call true parameter values, three sets of errorfree data 
were generated according to the weighted model (9). Thus, this first three level factor was 
considered a replication factor. 

Next, three levels of random error were added to each errorfree data set. These three 
levels of random error were 0%, 10%, and 25% of the standard deviation of the errorfree 
data set. At this point there were nine data sets. Five transformations were performed on 
each of the nine data sets in order to add systematic distortion. The five transformations 
and associated systematic distortion were (1) none, (2) monotonic distortion by a third 
power transformation, (3) monotonic distortion by a seventh power transformation, (4) 
non-monotonic distortion by a category preserving transformation [Young & Null, 1978], 
and (5) binary transformation. 

This resulted in three data sets for each of the 15 conditions formed by the factorial 
combination of random and systematic error, so there was a total of 45 data sets. Each of  
these 45 data sets was analyzed under the correct and stronger-than-warranted measure- 
ment assumptions. The correct measurement assumptions are a function of the measure- 
ment characteristics associated with each level of systematic distortion. The appropriate 
measurement characteristics for each level of systematic distortion is, respectively, (1) in- 
terval, (2) ordinal, (3) ordinal, (4) nominal continuous, and (5) nominal continuous. The 
characteristics and analysis of the 15 data sets generated from each of the three parameter 
sets are given in Table 1 along with the purpose of each analysis. 

Both the random error and systematic distortion were performed separately for each 
individual's data matrix. Therefore, all data sets were analyzed assuming partitions by 
subjects. 

To avoid local optimal solutions in the non-monotonic transformation condition, the 
categories were coded in sequence except for one pair of adjacent categories which were 
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TABLE 1 

Monte Carlo Study Conditions and Purposes 

51 

Error Transfor- Assumed Measurement Characteristics 
marion nominal nominal ordinal interval 

continuous discrete discrete discrete 

0% 

10% 

25% 

interval A* 
ordinal 1 A* B 
ordinal 2 A B 
nominal A* B B B 
binary A* B B B 

interval C* 
ordinal i C* D 
ordinal 2 C D 
nominal C* D D D 
binary C* D D D 

interval C* 
ordinal 1 C* D 
ordinal 2 C D 
nominal C* D D D 
binary C* D D D 

Purposes: 

A The recovery of information in data without random error when the 
correct measurement level is assumed 

B The effects of assuming an incorrect (strong) measurement level 
with no error in the data 

C Robustness to error when the correct measurement level is assumed 

D Robustness to error when an incorrect (strong) measurement level 
is assumed 

* Correct measurement characteristics for that transformation 

reversed. This gives a strong correlation between the "true" order of  the categories and 
the coded order as suggested by Young and Null [1978]. 

As stated previously, sets of  true parameter  values were generated randomly prior to 
adding random and systematic error. Each set of  true parameters had 2 components, l0 
scales, 15 objects, and 20 subjects. This made F a  10 × 2 matrix, X a  15 × 2 matrix, and W 
a 20 × 2 matrix. The elements of  F and X varied between 2 and - 2 ,  and the elements of  
W between 0 and I. This produced data between 8 and - 8 .  The elements of  F, W, and X 
were generated from uniform distributions within these intervals. After the data was gen- 
erated, the configurations were normalized according to the constraints appropriate to 
subject conditional data (see Normalization). These normalized configurations were used 
as the original configurations in the measure of  fit (see Results). After normalization the 
elements of  both F and X had an expected value of 0.0 and an expected variance of 1.0. 
The elements of  W h a d  an expected value of  .866 and an expected variance of  0.250. In all 
analyses iterations were continued until improvement  in stress, the square root of  the loss 
function (21), was less than .001. 
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Results. A measure of fit similar to those proposed by Carroll [cf., Shepard, 1966] and 
Lingoes and Schonemann [1974] was used to evaluate how well the configurations derived 
by ALSCOMP3 recovered the original structures. This measure of fit between the derived 
configuration A and the original configuration B is given by 

(1 - tr(A --tr--B-~B)'(A - B))  t/~ (28) rc 

where A is related to A by a central dilation and/or a permutation which maximizes re. 
The measure of fit proposed by Carroll is identical to (28) except that A is an affine trans- 
formation of A which maximizes r~. The measure proposed by Lingoes et al. allows a cen- 
tral dilation, a permutation, and an onhogonal rotation. Because the orientations of F, W, 
and X are fixed in the weighted model, neither measure is appropriate. However, the opti- 
mally scaled data, Z*, are invariant to central dilations and joint permutations of F, IV, 
and X. 

The left side of Table 2 presents the results for the correct measurement assumption- 
no error conditions. The table gives the value of r~ for F, IV, and X for each of the three 
replications. At first glance it appears that recovery of the original structure was poor ex- 
cept in the interval condition. However, these results are misleading. Closer inspection of 
Table 2 reveals that the variance of rc is quite high for many conditions. 

The cause for this condition-dependent degree of recovery is not immediately appar- 
ent. But, closer inspection of the data reveals that this results from poorly constructed ini- 
tial configurations obtained by the algebraic solution outlined above. In fact, when there 
is systematic distortion in the data, the algebraic initialization procedure is likely to yield 
parameter values which are close to a local minimum (see Sands, Note 9, for details). In 

TABLE 2 

A Comparison of the Fit Between the Derived and Original 
Configurations for Random and Algebraic Starting Configurations 

for Those Conditions Where the Algebraic Start Resulted in Poor Fit 

Transfor- 
mation 
(correct 
measurement 
assumption) 

Interval 
(Interval 
Discrete) 

Ordinal 1 
(Ordinal 
Discrete) 

Ordinal 2 
(Ordinal 
Discrete) 

Nominal 
(Nominal 
Continuous) 

Binary 
(Nominal 
Continuous) 

Case Start i n ~ C o n f ~  
Algebraic Random 

2 2 
~n (Iter) r F rw rx ~n (Iter) r F r W r X 

i .00 (i) 1.000 1.000 1.000 
2 .00 (i) 1.000 1.000 1.000 
3 .00 (i) 1.000 1.000 1.000 

i .01 (41) .999 1.000 .999 
2 .01 (67) .450 .954 .617 .01 (19) 1.000 1.000 1,000 
3 .01 (16) 1.000 1.000 1.000 

1 .02 (38) .576 .904 .534 .01 (18) 1.000 1.000 1.000 
2 .02 (17) .614 .995 .494 .01 (19) 1.000 1.000 .999 
3 .01 (24) 1.000 1.000 1.000 

1 .20 (14) .656 .820 .522 .01 (4) .995 .999 .994 
2 .24 (9) .684 .827 .615 .03 (49) .441 .668 .153 
3 .04 (69) .284 .924 .276 .01 (5) .997 .999 .998 

1 .02 (13) .935 .994 .947 
2 .07 (29) .643 .904 .500 .02 (ii) .983 .997 .919 
3 .01 (6) .946 .989 .952 
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addition, the presence of random error in the data had little effect on the initialization 
procedure and recovery of the original structures. 

Because of the high variability in the accuracy of  recovery of the original structures 
in numerous conditions, it is difficult to assess the effects of  making incorrect measure- 
ment assumptions and the presence of  random error. For this reason, and to further test 
the proposed explanation for the high variability, random initial configurations were used 
in the reanalysis of  those cases which produced poor results in the conditions with high 
variability and /or  large amounts of systematic distortion. Some of  these cases were reana- 
lyzed with random initial configurations in both the correct and incorrect measurement 
assumption conditions (three cases in the nominal condition and one case in the binary 
condition). The remaining cases were reanalyzed with random initial configurations only  

in the correct measurement assumption conditions (one case in the 3 ~ power ordinal con- 
dition and two cases in the 7 'h power ordinal condition). The ordinal data was not reana- 
lyzed using random initial configurations in the incorrect measurement assumptions con- 
ditions for two reasons: the variability in the incorrect measurement  assumption 
conditions was quite low; and preliminary analyses, using random initial configurations, 
resulted in recovery that was the same or worse than that found using the algebraic initial- 
ization procedure. 

While the design of the reanalyses is somewhat ad hoc, the results to be reported are 
based on analyses using random initial configurations where performed. Thus, the results 
are partly based on random and partly based on algebraic initial configurations. We re- 
port such results because it seems most reasonable to use the best initial configuration 
procedure for each condition. This is particularly true since the user has the option to use 
either initialization procedure. 

The results for the reanalyses in the correct measurement assumption-no error condi- 
tions are presented on the right side of  Table 2. It is evident that the results of  reanalyses 
based on random initial configurations are better than those based on the algebraic solu- 
tion. This result supports the proposed explanation for the poor recovery in conditions 
with large amounts of  systematic distortion. The same pattern of  results is found for the 
10% and 25% error conditions (reported in Sands, Note 9). In fact, on the basis of  these 
results the user of ALSCOMP3 is strongly urged to try both a random initial configura- 
tion and the algebraic procedure when the data is assumed to be anything but interval. 

Hopefully the two initialization procedures will result in the same final solutions. If  
not, it is recommended that the user use a number of random initial configurations as 
starting points. If the final solutions resulting from the different random initial configura- 
tions are similar, then one can assume that the solution associated with the algebraic start 
was in fact a local minimum. On the other hand, if the final solutions resulting from ran- 
dom starts are markedly different, the user should be cautious about any solution whose 
fit is markedly worse or better than the others. And in this case choice of  solutions is best 
determined by theory underlying the particular study, with some preference for better fit- 
ting solutions. 

Recall that the first purpose of  the Monte Carlo study was to assess the accuracy of  
the recovered configurations from the analysis of  error-free data with correct measure- 
ment assumptions. Table 3 presents the results of  the no-error conditions. The results of  
interest are those farthest to the left in each row. For  the interval and both ordinal data 
sets the recovered configurations were nearly identical to the originals. However, for nom- 
inal and binary data the recovery was less than perfect. 

For the nominal data the standard deviation of the squared fit was quite high (sd = 
.460). The reason for the high variability in accuracy is apparent from inspection of  the 
original data. In the analysis of  one of  the three cases the recovery of the original struc- 
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TABLE 3 

Root Mean Square and Standard Deviation of Squared Fit 
Between the Derived and Original Configurations in the 0% 
Error Condition Using Some Random Initial Configurations 

Config- Transfor- 
uration mation nominal 

continuous 
RMS sd 

Assumed Measurement Characteristics 
nominal ordinal interval 
discrete discrete discrete 

RMS sd RMS sd RMS sd 

F interval 1.0000 .000 
ordinal 1 .9995* .001 .8830 .i17 
ordinal 2 .9998** .000 .7190 .126 
nominal .8521"** .460 .8959*** .326 .6101 .082 .5984 .072 
binary .9549* .049 .9501" .055 .9501" .055 .9501" .055 

W interval 1.0000 .000 
ordinal i .9999* .000 .9690 .053 
ordinal 2 1.0000"* .000 .9563 .053 
nominal .9024*** .319 .9277*** .239 .7793 .074 .8054 .112 
binary .9932* .008 .9952* .008 .9952* .008 .9952* .008 

X interval 1.0000 .000 
ordinal i .9995* .000 .8850 .172 
ordinal 2 .9996** .000 .6971 .186 
nominal .8180"** .559 .8283*** .528 .5840 .034 .5806 .029 
binary .9395* .033 .9318" .040 .9318" .040 .9318" .030 

*Includes one case using a random initial configuration 
**Includes two cases using random initial configurations 

***Includes three cases using random initial configurations 

tures was very poor (r~ = .4412, r ,  = .6676, rx = .1526). For the other two cases the mea- 
sures of  fit between the derived configurations and the originals were always greater than 
.9900. 

Poor recovery for this one case of  nominal data is most probably a result of  the low 
ratio of  data points to model parameters for this condition. A nominal  discrete transfor- 
mation requires the estimation of  a model parameter  for each category for each data par- 
tition. Given that the data are matrix conditional and there are five categories, the estima- 
tion of 100 additional model parameters is required for the nominal  transformation. On 
the other hand, an interval transformation requires the estimation of  two model parame-  
ters for each data partition. This means that the data-parameter  ratio for nominal  as- 
sumptions was approximately 15:1, whereas the ratio for interval assumptions was ap- 
proximately 27 : 1. 

For binary data, the standard deviations of  squared fit were low. In fact, although re- 
covery was not perfect, recovery for the three cases was above .9300 (see Table 3). 

The second question addressed by the Monte Carlo study concerned the effect of  as- 
suming inappropriately strong measurement  characteristics with error-free data. A gen- 
eral inspection of  Table 3 strongly suggests that the accuracy of recovery of  the original 
configurations was considerably worse with inappropriately strong measurement  level as- 
sumptions. Also, from comparing different levels of  systematic distortion, it appears that 
the consequences of  incorrect measurement  level assumptions were more severe with in- 
creasing levels of  systematic distortion (interval-ordinal 1, ordinal 2). 

However, inspection of the results for both nominal  and binary data reveal a quite 
interesting finding. In both conditions incorrect process assumptions had little effect. 
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Whereas, for nominal  data, incorrect level assumptions produced considerable deteriora- 
tion in recovery of  the original configurations, for binary data incorrect level assumptions 
had no effect (see Table 3). This reflects the fact that binary data is a special case o f  nomi-  
nal, ordinal, and interval data. 

With the availability o f  a general procedure such as ALSCOMP3 it is unlikely that a 
researcher will have to assume inappropriately strong measurement characteristics. How-  
ever, real data always contains a certain amount  of  random error. This emphasizes the 
importance o f  the third question addressed by this study: How robust is the ALSCOMP3 
algorithm to the presence of  random error when the correct measurement characteristics 
are assumed? Tables 4 and 5 present the relevant results from the 10% and 25% random 
error conditions. 

The results from these conditions are quite encouraging. It appears that there was 
little, if any, effect o f  these levels o f  random error on the accuracy of  recovery o f  the origi- 
nal configurations (see Tables 3, 4, and 5). For nominal  data it appears that the presence 
o f  random error increased the accuracy o f  recovery. However,  inspection o f  the original 
data revealed that this was not a reliable effect. As mentioned previously, in the no-error 
condition recovery was poor for one of  the three replications. In the 10% error condition 
recovery for that case was nearly perfect (re > .9900), but recovery for a different case was 
quite poor (r r = .0467, r~ = .9573, rx = .2972). Even more interesting, in the 25% error con- 
dition recovery was nearly perfect for both of  the above mentioned cases (re > .9900). 
However, in this condition recovery o f  the original configurations for the third case was 
poor (r~ = .9052, rw = .9328, rx = .5432). These results provide further support for the con- 
tention that with a low data-parameter ratio (15 : 1) recovery of  the original configurations 

TABLE 4 

Root Mean Square and Standard Deviation of Squared Fit 
Between the Derived and Original Configurations in the 10% 
Error Condition Using Some Random Initial Configurations 

Config- 
uration 

F 

W 

X 

Transfor- 
mation nominal nominal ordinal 

continuous discrete discrete 
RMS sd RiMS sd RMS sd 

interval 
ordinal i .9992* .002 
ordinal 2 .9996** .000 
nominal .8156"** .574 .8160"** .569 .6148 .092 
binary .9601" .046 .9519" .053 .9519" .053 

interval 
ordinal i .9999* .000 
ordinal 2 .9999** .000 
nominal .9855*** .047 .9981"** .004 .7761 .071 
binary .9929* .009 .9892* .010 .9892* .010 

interval 
ordinal 1 .9992* .001 
ordinal 2 .9994** .001 
nominal .8325*** .524 .8407*** .491 .5845 .034 
binary .9508* .033 .9376* .044 .9376* .044 

Assumed Measurement Characteristics 
interval 
discrete 

RMS sd 

.9999 .000 

.9160 .117 

.7168 .157 

.6040 .082 

.9519" .053 

.9999 .000 

.9911 .014 

.9602 .036 

.8016 .108 

.9892* .010 

.9999 .000 

.8991 .129 
6963 .198 
.5788 .024 
.9376* .044 

*Includes 
**Includes 

***Includes 

one case using a random initial configuration 
two cases using random initial configurations 
three cases using random initial configurations 
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TABLE 5 

Root Mean Square and Standard Deviation of Squared Fit 
Between the Derived and Original Configurations in the 25% 
Error Condition Using Some Random Initial Configurations 

Config- Transfor- 
uration mation 

Assumed Measurement Characteristics 
nominal nominal ordinal 
continuous discrete discrete 

RMS sd RMS sd RMS 

F interval .9996 .000 
ordinal 1 .9984* .003 .9192 .076 
ordinal 2 .9987** .002 .7243 .168 
nominal .9685*** .103 .9664*** .109 .6188 .088 .6097 .078 
binary .9710" .035 .9610" .023 .9610" .023 .9610" .023 

W interval .9998 .000 
ordinal 1 .9996* .001 .9873 .017 
ordinal 2 .9996* .001 .9352 .045 
nominal .9777*** .074 .9815"** .061 .7613 .066 .7952 .119 
binary .8556* .452 .8823* .363 .8823* .363 .8823* .363 

X interval .9995 .001 
ordinal 1 .9984* .002 .9166 .121 
ordinal 2 .9989** .003 .7118 .200 
nominal .8736*** .405 .8707*** .413 .5933 .040 .5938 .025 
binary .9747* .027 .9586* .049 .9586* .049 .9586* .049 

sd RMS 

interval 
discrete 

sd 

*Includes one case using a random initial configuration 
**Includes two cases using random initial configurations 

***Includes three cases using random initial configurations 

underlying nominal  data is unreliable and dependent on unknown qualities o f  the partic- 
ular data set. 

In only one situation did the presence o f  random error seem to have a detrimental 
effect on the recovery o f  the original information. In the 25% error condition, for binary 
data, recovery o f  W was considerably worse than in the zero and 10% error conditions. 
However,  inspection o f  Table 5 shows a high standard deviation for the squared measure 
o f  fit over the three replications. This apparent deterioration in recovery resulted from 
poor recovery (r~ = .4386) in one o f  the three replications. Again, recovery for the other 
two was nearly perfect (re > .9950). 

The final question addressed by this Monte Carlo study concerned the worst possible 
situation, when one assumes inappropriately strong measurement characteristics and the 
data contains random error. From the results presented in Tables 3-5 it is apparent that 
there was no interaction between incorrect measurement assumptions and the presence o f  
random error. All inaccuracy in the recovery of  the original information could be ac- 
counted for by the incorrect measurement assumptions. Even in this situation the pres- 
ence o f  10% or 25% random error had no effect. 

The ALSCOMP3 algorithm appears to be robust to the presence of  random error o f  
these magnitudes. In fact, the algorithm seems to be so robust that one might suspect 
there was no random error in the data. However,  this possibility can be rejected by exam- 
ining the stress values for the various conditions of  the Monte Carlo study (see Table 6). 
Recall  that squared stress can be interpreted as the amount  o f  variance unaccounted for 
in the optimally scaled data. Thus, the value o f  stress indicates the standard deviation o f  
the estimated error. Notice  that for interval data with interval assumptions stress is quite 
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TABLE 6 

Root Mean Square and Standard Deviation of STRESS Over 
Three Replications Using Some Random Initial Configurations 
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Error Transfor- Assumed Measurement Characteristics 
mation nominal nominal ordinal 

continuous discrete discrete 
RMS sd RMS sd RMS sd 

interval 
discrete 

RMS sd 

0% interval .000 .000 
ordinal 1 .009* .000 .309 .032 
ordinal 2 .007** .000 .324 .090 
nominal .022"** .001 .375*** .127 .618 .005 .670 .027 
binary .018' .000 .485* .049 .485* .049 .485* .049 

10% interval .094 .000 
ordinal 1 .067* .000 .310 .027 
ordinal 2 .066** .001 .393 .158 
nominal .047*** .003 .408*** .104 .631 .011 .719 .015 
binary .032" .000 .502* .016 .502* .016 .502* .016 

25% interval .228 .002 
ordinal 1 .182" .001 .446 .046 
ordinal 2 .181"* .001 .596 .183 
nominal .143"** .027 .410.** .074 .673 .021 .766 .022 
binary .048* .000 .572* .006 .572* .006 .572* .006 

*Includes one case using a random initial configuration 
**Includes two cases using random initial configurations 

***Includes three cases using random initial configurations 

close to the standard deviation of the actual error in the data. This suggests that the 
ALSCOMP3 algorithm does not fit the model to the random error. 

Considering recent Monte Carlo studies of non-metric principal component al- 
gorithms for two-way data [Kruskal & Shepard, 1974; Sands, Note 9, footnote 21], it is 
quite surprising that ALSCOMP3 appears not to fit the model to random error. However, 
the data-parameter ratios in this Monte Carlo study are much higher than those in pre- 
vious studies. For example, for interval assumptions this ratio is approximately 27:1 as 
compared to 4:1 in the Kruskal and Shepard Monte Carlo study. Our highly over-deter- 
mined situation is obtained by the addition of the third way in the data with relatively few 
additional model parameters. 

Given the higher data-parameter ratios obtained with three-way models, it appears 
that random error of the levels employed in this study will have little effect on recovery. 
However, if higher levels of error were used or the data-parameter ratio reduced, we ex- 
pect that the recovery of the original structure would be detrimentally affected. This con- 
tention is supported by the error dependent variability in recovery for the nominal data 
sets. As previously mentioned, the data-parameter ratio under nominal assumptions is 
15 : 1. This reduction appeared to result in highly variable recovery for each of the three 
replications as a function of the level of random error. 

Summary. This small Monte Carlo evaluation revealed several important points. 
First, when there is systematic distortion in the data it is advisable to perform analyses 
using both the random and algebraic initial configurations. In fact, the results of this 
study suggest that more reliable results may be obtained with the random initial configu- 
rations. Second, ALSCOMP3 recovers known configurations for interval and ordinal data 
when the correct measurement characteristics are assumed. This is true for data with or 
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without random error. Third, when the data is nominal or binary, recovery of original in- 
formation is generally good, but less reliable than with interval or ordinal data. However, 
increasing the data-parameter ratio should remedy this problem. Fourth, assuming in- 
appropriately strong measurement characteristics has a detrimental effect on the recovery 
of the original configurations. This effect appears to be most prominent in the analysis of 
data containing large amounts of systematic distortion. Finally, ALSCOMP3 is robust to 
the presence of random error. This was true under all conditions. The presence of 10% or 
25% random error had little effect on the recovery of the original configurations for bi- 
nary, ordinal, or interval data analyzed with correct or incorrect measurement assump- 
tions. 

Real Data and the Weighted Model 

The data analyzed consisted of 28 subjects' ratings of 4 political roles (Ideal Presi- 
dent, Nixon, McGovern, Successful Lawyer) on 77 adjectives (see Sands, Note 9, for list 
of adjectives). This data is a subset of 93 subjects' ratings of 15 political roles on 77 adjec- 
tives (the data were collected at Rutgers University by Drs. Charles Schmidt and Andrea 
Sedlak). The subjects can be classified by two factors, time and presidential choice. Half 
the subjects completed the rating task in November, 1972; and half in August, 1973. The 
first time was prior to major publicity concerning the Watergate scandal; while the second 
was after the peak of this publicity. Both groups of subjects were asked to indicate their 
presidential choice between Nixon and McGovern. Each subject filled in the 77 × 4 trait 
by role matrix by placing a check when they felt a trait described a particular role. This 
gave a 28 × 77 x 4 three-way, binary data matrix. 

This particular data set was selected for a number of reasons. First, the relationship 
among traits used to describe others has been studied with factor analysis and MDS tech- 
niques. In general, the results of these studies are consistent. The structural representation 
of the trait associations have two or three dimensions. These are interpretable by some 
combination of evaluative, activity, and potency dimensions [Rosenberg & Sedlak, 1972]. 
This allows the comparison of the common trait space from the ALSCOMP3 analysis 
with those of previous studies. 

Second, there is reason to believe that there might be individual differences in the 
perception of the political roles. Sherman and Ross [1972] reported systematic individual 
differences in the perception of political figures. In addition, if there are individual differ- 
ences in role perception, they would likely be related to the Watergate publicity and indi- 
vidual political orientations. Furthermore, the weighted model can be interpreted as de- 
scribing how individuals differentially represent roles in a common trait space. This 
interpretation is consistent with previous research which indicates few systematic individ- 
ual differences in trait associations [Messick & Kogan, 1966; Pederson, 1965; Sherman, 
1972; Walters & Jackson, 1966]. 

Finally, data of this nature typically present problems for other algorithms. The data 
is binary, subject conditional, and three-way. The use of other multidimensional tech- 
niques would involve indirect similarity measures, overly stringent measurement assump- 
tions, and/or ignoring the conditional nature of the data. Any of these can cause dis- 
tortion and loss of information. On the other hand, the results of the Monte Carlo 
evaluation of ALSCOMP3 suggest that, with the correct measurement assumptions, re- 
covery of the structure underlying binary, subject conditional data is quite good. 

Results. Solutions, using continuous measurement process assumptions, were ob- 
tained for one to three dimensions. Both algebraic and random initial configurations were 
used. The derived configurations and stress values from both sets of analyses were nearly 
identical. The results presented are from the solutions using the algebraic initial configu- 
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ration. The squared stress for these solutions were 0.107 for the one dimensional, 0.078 for 
the two dimensional, and 0.041 for the three dimensional solution. These stress values do 
not help to decide on the dimensionality. However, informal inspection of the three solu- 
tions led us to select the two-dimensional solutions for further interpretation. In particu- 
lar, the weight space for this solution has a very simple interpretation (as will be seen), 
whereas the corresponding one- and three-dimensional spaces did not. 

Table 7 presents the average, standard deviations, and angle with respect to dimen- 
sion 1 of the subjects' weights for the four groups. (The averages are weighted averages. 
Each subject's loadings are weighted by the variance accounted for in that subject's data 
before averaging. This provides a least squares estimate for each group.) As with MDS 
models, for conditional data, weights for individuals are not directly comparable. For this 
reason, the following discussion is based on the relative weighting of the two dimensions 
by each group. The relative weighting of dimensions is indicated by the angle of the 
weight vectors given in Table 7 and Figure h It is evident from the angles of the weight 
vectors in Table 7 that there are systematic group differences in the relative weighting of 
the two dimensions. Inspection of the original configuration showed little overlap between 
the angles of the weight vectors of the subjects in the four groups (see Figure 1). It appears 
that McGovern subjects weighted Dimension 2 relative to Dimension 1 more heavily than 
Nixon subjects. Also, the subjects from 1973 weighted Dimension 2, relative to Dimen- 
sion 1, more heavily than those from 1972. In fact, the 1972 Nixon group did not use Di- 
mension 2 at all in their trait ascriptions (see Table 7). 

Figure 1 presents the loadings of the roles in the two dimensions. Dimension 1 differ- 
entiates McGovern from the other three roles. On this dimension, ideal president, Nixon, 
and successful lawyer are nearly identical (see Figure 1). On the other hand, all four roles 
are differentiated by Dimension 2. The order of the loadings on this dimension is Ideal 
president, McGovern, Successful lawyer, and Nixon (from high to low--see Figure 1). So 
Nixon is closest to ideal president on Dimension 1, and McGovern is closest to ideal presi- 
dent on Dimension 2; while Nixon is farthest from ideal president on Dimension 2, and 
McGovern is farthest from ideal president on Dimension 1. 

Interpretation of these dimensions requires locating axes corresponding to properties 
which most closely coincide with the two dimensions of the trait configuration. Because 
the dimensions were correlated (r = .535, a = 58°), multiple regression was employed to 
fit the ratings of the 77 traits on each of nine properties, used to interpret previous trait 
configurations [Rosenberg & Olshan, 1970; Rosenberg & Sedlak, 1972]. These ratings 

TABLE 7 

Weighted Average and Standard Deviations 
of Subjects' Weights by Groups 

Dimension 
1 

Mean 

Nixon 1972 1.411 

Nixon 1973 1.368 

McGovern 1972 1.300 

McGovern 1973 1.246 

Dimension Angle between 
2 i-~ 2 weight vector 

s.d. Mean s.do (VAF) and dimension 1 

.044 .098 ,122 .903 3.3 ° 

.178 .361 .177 .927 ii.i ° 

.047 .557 .091 .937 16.5 ° 

.065 .670 .148 .935 19.5 ° 
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FIGURE 1 
Group Differences in the Perception of Political Roles 

were obtained in 1975 by Dr. Andrea Sedlak and the first author. One hundred twenty- 
four subjects at the University of  North Carolina rated the 77 traits on one of  the nine 
properties. Median ratings on each property for all 77 traits are used in all subsequent 
analyses. These median ratings were based on no fewer than 13 subjects. Multiple correla- 
tions were obtained between each o f  the nine properties and the 2-dimensional trait con- 
figuration. The multiple correlations were not significant for the two properties in- 
troverted-extroverted and impulsive-inhibited. All the other multiple correlations were 
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highly significant (p < .001; except active-passive, p < .05). The direction of  the decided- 
undecided property coincided closely with Dimension 1. When this property was fit to the 
two-dimensional solution the angle between this property and Dimension 1 was less than 
1 o (multiple r = .600; univariate r = .596 with Dimension 1, and univariate r = .380 with 
Dimension 2). The direction of  the hard-soft property coincided most closely with Dimen- 
sion 2 (multiple r = .467). The angle between this property and Dimension 2 was 32 ° 
(univariate r = .429) and 90 ° to Dimension 1 (univariate r = .074). The fact that the direc- 
tions of  these two properties closely coincided with the dimensions of  the trait configura- 
tion supports the assertion that the orientation of  the dimensions of  the solution from the 
weighted model is meaningful. 

The interpretation of Dimension 1 in terms of the undecided-decided property and 
Dimension 2 in terms of hard-soft fits quite nicely with the group weights and the role 
loadings (see Table 7 and Figure 1). The 1972 Nixon group did not use the hard-soft di- 
mension. Their judgments were based on their perception of  McGovern as more unde- 
cided than an ideal president, Nixon, or a successful lawyer. On the other hand, the 
McGovern subjects used both dimensions. They perceived an ideal president to be deci- 
sive but not hard. They also perceived McGovern as less decisive than Nixon or an ideal 
president, but saw Nixon as being extremely hard. The Watergate publicity resulted in an 
increase in the salience of  the hard-soft dimension for both Nixon and McGovern sup- 
porters. One possible explanation for this finding is that the media's presentation of 
Nixon's actions which brought about Watergate and his public reactions to the uncov- 
ering of  the scandal accentuated his hardness. Thus, in 1973 this dimension became more 
salient to everyone in the country regardless of  their political orientation. 

Conclusions 

The results of  both the Monte Carlo evaluation and the analysis of  real data suggest 
that ALSCOMP3 may be a viable algorithm for nonmetric individual differences com- 
ponent analysis. 

ALSCOMP3 is flexible in numerous ways. First, it is flexible with regard to the types 
of  data which may be analyzed without violation of  measurement level, process, or condi- 
tionality assumptions. Second, it is flexible with regard to the models which can be real- 
ized within the present framework. By combining the replications and weighted models 
with the three types of  conditionality, three distinct individual differences models are pos- 
sible. Individual differences can be allowed only in the response process, only in the judg- 
mental process, or in both [cf. Takane et al., 1977]. And any of  these models can be incor- 
porated in external analyses. Furthermore, with minor modifications ALSCOMP3 can 
incorporate the other individual differences models discussed in the introductory sections, 
except Tucker's TMFA. That is, the generalized subjective metric model (1) would neces- 
sitate a stage in the ALS algorithm that found the LS oblique procrustean transformation 
for each individual [cf. Mulaik, 1972, pp. 293-321]. 

The generalized subjective metric model is also discussed by Kroonenberg and 
de Leeuw [1980]. Their approach compliments ours in a number of  respects. First, they 
discuss the general three mode component model [their Tucker 3 model, our TMFA in 
(1)] in detail, in addition to their consideration of  the generalized subjective metric model 
(Tucker 2 model). In contrast, we are concerned with further restrictions of  the general- 
ized subjective metric model which are not considered by Kroonenberg and de Leeuw. 
Second, the programs presented by Kroonenberg and de Leeuw are only appropriate for 
metric data, while our algorithm is appropriate for data with a wide variety of  measure- 
ment characteristics. Finally, while we concentrate on the structural details of  the 
ALSCOMP3 algorithm necessary to accomodate such a wide variety of  data, Kroonen- 
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berg and de Leeuw focus on the mathematical properties of the models and estimation 
procedures. 

ALSCOMP3 is robust to the presence of random error of the magnitude employed in 
the Monte Carlo study. In fact, under no circumstances in this study did the presence of 
random error have an appreciable effect on the recovery of the original configurations. 
With correct measurement assumptions the recovery of these configurations was excellent 
for interval and ordinal data, and quite good for nominal and binary data. As expected, 
incorrect (strong) measurement assumptions are detrimental to the recovery of the struc- 
ture underlying the data. 

The analysis of the role data suggests that the model does fit real world data. The 
analysis of the four roles revealed meaningful systematic individual differences. Also, this 
application of the ALSCOMP3 model demonstrates that the adjective check-list is a fea- 
sible data collection method. 

There does appear to be one problem with the ALSCOMP3 algorithm. That is, the 
algebraic initialization procedure may lead to non-optimal solutions when the data has se- 
vere monotonic distortion or is nominal. However, in all conditions where this occurred, 
the use of random initial configurations alleviated the problem. 

The present evaluations focused on subject conditional data. However, the most in- 
teresting applications may be to the row conditional case. In addition, row conditional as- 
sumptions appear to be the most realistic for much of the data collected in the behavioral 
sciences. The behavior of the ALSCOMP3 algorithm with this assumption is not known. 
Hopefully, ALSCOMP3 will not be prone to degeneracies similar to those which occur 
with the (unfolding) distance model. 

Appendix A: Proof of the Relation Between the Normalized and Unnormalized Loss 
Function 

The following proof of the relation between the values which minimize the normal- 
ized loss function (17) and those which minimize the unnormalized function (4) was sug- 
gested by Yoshio Takane. 

Define four different loss functions as 

+~(X) = ( X -  Y) ' (X-  D ,  

,/,~(x) = i x -  ( Y -  i ' ) ] ' [ x -  ( r -  e ) l ,  

+~(x) = [ x -  ( r -  iO] ' [ x -  ( r -  ~1 
x ' x  

( X -  I, ') '(X- I 3 
+,~(x) --- ( x -  x ) ' ( x -  x 3 '  

where X and Y are column vectors whose mean constant vectors are, respectively, X" and 
I 7-. Now define vectors X,, X:, X3, and X, such that each minimizes the loss function with 
the same subscript, while respecting the measurement characteristics of  the original obser- 
vations Xo. 

The vector X~ will be some transformation of Xo which is determined by the assumed 
measurement characteristics of Xo [Young, de Leeuw, & Takane, 1976]. For any assumed 
measurement characteristics of Xo and associated transformations we know that 

(A1) ~, = I7 

and 

(A2) )(2 = X, - l ~ . 
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Substituting (A1) into (A2) and averaging gives 

(A3) X2 = 0,  

where 0 is a vector of  zeros. Furthermore, de Leeuw [Note 10] and Kruskal and Carroll 
[1969] prove 

(A4) ( Y - ~ ' (  Y - I7") X3 = )(2 
x ; x 2  

Now if we define 

(A5) 

then 

(A6) ~4:(X*) = 

X* = X3+ e ,  

[X3 - ( Y - I7')]'[)(3 - ( Y - I7)] 
( X *  - R * ) ' ( X  . 2  ; i '*)  

From (A3) and (A4) we know X3 = 0, then from (A5) ,~* = Y, which implies 

(A7) X3 -- X* - .~'* 

and substituting (A7) into (A6) gives 

+~(X*) = [X~ - (Y 7 iO]'[X~ - ( Y -  I7)1 
X3'X~ = +~( X3) . 

By definition X3 minimizes ff~. However, because 4~](X3) = 4,~(X*), X* must minimize ~,4 2, 
hence 

(A8) )(4 = X* = X3 + I7". 

Now we must express X4 in terms of  X,. To do this, first substitute (A4) into (A8), 
which gives an equation expressing X4 in terms of X~. By substituting (A2) into this equa- 
tion we arrive at 

( r -  ~ ' ( Y -  
x ,  = ( x ,  - ~ ( x ,  - x , ) ' ( x ,  - x 3  + e .  

This completes the proof. 

Appendix B: Proof of the Maximum Value of Stress 

The following is a proof  that when the variance of the optimally scaled data is zero, 
stress (17) is unity and the corresponding elements of  D? ~ or dTd (19-25) are zero. 

The variance of  the adjusted optimally scaled data [Z* in (17)] for any partition can 
only be zero if it is a vector of  constants. This can only occur if the vector of  optimally 
scaled data which minimizes the unnormalized problem is also a vector of  constants. Un- 
der these conditions ap (18) is undefined and the appropriate adjustment cannot be per- 
formed. Therefore, it is necessary to express normalized stress (17) in terms of the unad- 
justed optimally scaled data which minimizes unnormalized stress. 

Definitions 

Define Y as a vector of  model estimates, X, as the vector of  optimally scaled data 
which minimizes the unnormalized loss function ~(X)  (defined in Appendix A), and X4 as 
the vector of  optimally scaled data which minimizes the normalized loss function ff](X) 
(defined in Appendix A). Appendix A proves that X4 = aX~ + B; where 
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and 

a --- 

P S Y C H O M E T R I K A  

(Y- ~),(Y- ~) 
( x ,  - x , ) ' ( x ,  - -  x l )  ' 

B - -  (1 - a ) / 7 .  

P r o o f  

First, define the normalized loss function ~(X4) in terms of  variances. Because ~'4 = 
~" (see Appendix A) 

(Bl)  +,~(X,) = ~ x . - ,  

But 

(B2) ~ x . - ,  = ~ .  - 2ox.r + o~r. 

where Ox, y is the covariance between X, and Y. Recall that X4 - aXf  + B. Thus 

(B3) o2x, = a2Cx, and o x :  = aox, r ; 

and substituting (B3) into (B2) gives 

(B4) ~ , _ ,  = a2Cx, - 2aox, r + o2v. 

Substituting (B3) and (B4) into (B l) gives 

(B5) the(X4) = a20~xj - -  2 a o x :  + a2r 
a 2 ~ x ,  

a2o2xl 2aoxlr dr 
(B6) ff](X,) = a2o2x,- a2~x ' + a2o , 

20x., a2~ 
(B7) +~(X,) = 1 - + a2a . 

However, a can be expressed as 

a ~ - -  

O~x, " 

Substituting this expression for a into (B5) gives 

2Ox, r 
+~(x , )  = l - o~r + o # "  

Finally, as o2x, --~ 0 so does ox, r --* O. Therefore, 

lim 2 " X  " (B8) o+-o~/'~( , ) = t - 0 - 0 =  1. 
o ~1 r ~ °  

This completes the proof. 

This proof  assumes the o2r is greater than zero. Under certain conditions o2r can be 
zero. In this case all terms in (B6) are undefined and the value of  the expression in the 
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limit is also undefined. This suggests that even with the use o f  the normalized loss func- 
tion certain degenerate solutions may occur. Whether or not a degenerate solution occurs 
will depend on the relative rates that Ox~ y, o2y, and Cr, approach zero. These determine 
whether the loss function is decreasing or increasing as @r approaches 0. 

To  prove the corresponding element o f / ) ?  ~ or ar~l is zero when  the variance o f  the 
unadjusted optimally scaled data is zero it is necessary to express d -I in terms o f  the vari- 
ance o f  X~. Recall that 

1 
d - l ~  - -  

and 

Combining these two expressions with the expression for a gives 

d - ' =  

and 

lim d -I = 0 .  

This completes the proof. 
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