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Identification of micro-organisms by dint of the electronic nose
and trilinear partial least squares regression
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Abstract

Ventilator-associated pneumonia is one of the most lethal infections occurring in intensive care units of hospitals. In order to obtain a faster
method of diagnosis, we proposed to apply the electronic nose to cultures of the relevant micro-organisms. This allowed to halve the time of
the analysis. In the current paper, we focus on the application of some chemometrical tools which enhance the performance of the method.
Trilinear partial least squares (tri-PLS) regression is used to perform calibration and is shown to produce satisfactory predictions. Sample
specific prediction intervals are produced for each predicted value, which allows us to eliminate erroneous predictions. The method is applied
to an external validation set and it is shown that only a single observation out of 22 is being wrongly classified, so that the method is acceptable
for inclusion in the clinical routine.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Pneumonia is one of the most severe diseases which
occur as secondary infections in hospitals. Moreover, the
risk of infection for patients increases significantly if the
latter are subject to insufflation, in which case the disease
is referred to as ventilator-associated pneumonia (VAP). In
contrast to infections of other organs, for which the mortal-
ity rates do only seldomly exceed 4[1]. It should be clear
that special care should be taken for both the detection
and treatment of ventilator-associated pneumonia in hospi-
tals. Whereas the latter is beyond the scope of the present
article, the need for a fast and accurate detection method
for several micro-organisms which may cause VAP is the
necessity which led to the work presented here.

It has been shown that ventilator-associated pneumonia
can be caused by about 15 different micro-organisms[1], all
of which can cause a serious inflammation if present in the
airways or the deeper lung tissue. Moreover, some of these
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micro-organisms may also cause serious inflammation of
other organs, such as the urinal tracts. A correct treatment
of the patient relies on the choice of the antibiotics, which
in the first stage of treatment, is purely based upon the
analysis of the symptoms. Treatment with wrong antibiotics
automatically leads to a significant increase in the probabil-
ity of mortality. Of course, the correct choice of antibiotics
can only be made if the pathogenic micro-organism has
been identified. Currently, this identification is carried out
as follows: a sample is taken from the patient, it is plated on
a nutrient, incubated and finally analysed by classical mi-
crobiological testing. The identification process takes about
36 h. During this time, the patient may be treated with the
wrong antibiotics.

The advantage of an electronic nose over the classical
microbiological technique resides in the fact that the time
needed for the analysis can be reduced by about 50%, i.e.
the analysis by dint of the electronic nose can be completed
in 17 h. Furthermore, the analysis itself only takes about
10 min; the vast majority of those 17 h are needed for the
incubation of the micro-organisms.

This application of the electronic nose is based on
the observation that each of the micro-organisms in-
volved produces different gaseous excrements; hence these
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gaseous excrements can be used as a “fingerprint” of the
micro-organism[2]. A well-configured electronic nose re-
acts differently to each of these “fingerprints” and should
hence be able to identify the micro-organism. For appli-
cation in clinical practice, the misclassification probability
should not exceed 5%. In practice, the electronic nose is cal-
ibrated by means of a set of calibration samples, for which
the corresponding species is known. For each sample, the
gaseous excrements are lead over 10 different resistors. For
each resistor, the resistance is measured during 60 s. Hence,
in the chemometrical sense, the calibration of the electronic
nose is a typical “three-way” problem, the calibration data
matrix being of dimensionsn × 60× 10.

Trilinear partial least squares regression, or tri-PLS[3],
has recently become one of the most popular techniques to
perform calibration for three-way data which are used to
predict a dependent variable. Its success is both based on the
sound statistical underpinning of the method and on various
successful applications[4]. The application of tri-PLS for
the calibration of the electronic nose is very appealing: once
the calibration stage has been completed, the prediction of
the dependent variable for a new sample (this would be a
real patient) only consists of a single (matrix) multiplication.
Moreover, very recently, Faber and Bro[5] have proposed a
method to compute sample specific prediction errors for the
predictions made by tri-PLS[5]. The relevance of prediction
errors on the predictions made by tri-PLS is obvious: it may
lead to the conclusion that the possible presence of (even-
tually a second) micro-organism can or cannot be excluded.
In earlier work [7], a combination of genetic algorithms,
neural networks and thek-nearest neighbour algorithm were
used to perform calibration and prediction. The emphasis
of the current paper is on the applcation of trilinear par-
tial least squares to the electronic nose, as it improves the
transparancy and practicability of the method, and above
all, allows to compute a sample-specific prediction error.

2. Trilinear partial least squares regression

Before we can proceed with the description of the appli-
cation of tri-PLS to data measured by the electronic nose,
we will first introduce the reader briefly to the methodology
of tri-PLS.

Let X andy denote the calibration data matrices. LetX ∈
R

n×p×q andy ∈ R
n×1, respectively, wheren is the number

of samples at hand andy is the vector to be predicted. Fur-
thermore,X ∈ R

n×pq denotes the so-called unfolded data
matrix, where each of the slabs ofX have been aligned next
to each other. Matrices will always be denoted be upper-case
letters. The columns of a matrix will be denoted by the cor-
responding lower-case bold-face letter. Three-way matrices
will always be denoted by bold-face upper-case letters. Let
vec(·) denote the vectorization operator, which vertically
stacks the colums of its argument underneath each other.
Hence, ifA is ap×q matrix, vec(A) will be apq×1-vector.

Let vec−1
p,q denote the operator which re-shapes apq-vector

into ap × q matrix, such that vec−1
p,q(vec(A)) = A.

Trilinear partial least squares regression is a natural ex-
tension of partial least squares regression[6] to three-way
data. Both univariate and multivariate tri-PLS algorithms ex-
ist (referred to as tri-PLS1 and tri-PLS2, respectively). In
the current article, we will limit ourselves to tri-PLS1 re-
gression.

The success of partial least squares regression for—often
multicollinear—two-way data is easily understood if
one considers the fact that PLS is a latent variable re-
gression technique, which first summarizes the often
high-dimensional data matrix into a small number of un-
correlated latent variables, upon which regression is carried
out. The benefits of PLS over other latent variable regres-
sion techniques for prediction are mainly caused by the
fact that in PLS latent variables are defined according to a
maximization criterion of the covariance betweenX andy.
Hence, the latent variables summarize the fraction of the to-
tal variance which is relevant for the prediction ofy which
is not the case for other latent variable techniques such as
principal component regression. The same maximization
criterion is maintained for three-way data in tri-PLS, care-
fully extending the PLS methodology to three-way data and
respecting this three-way structure of the data.

In PLS, the latent variables are computed as a linear com-
bination of the original predictor variables, i.e.ti = Xwi.
The wi are called the weighting vectors and are defined
respecting the aforementioned maximization criterion. In
tri-PLS, separate weightswp

i andw
q
i have to be computed

for the different dimensions ofX, which are afterwards com-
bined into overall weightswi. This is seen from the tri-PLS
algorithm, which is given by (i ∈ 1 . . . k, e0 = y):

Zi = vec−1
p,q(X

Tei−1) (1a)

w
p
i , w

q
i = dominant singular vectors ofZi (1b)

wi = w
q
i ⊗ w

p
i (1c)

ti = Xwi (1d)

bi = (T T
i Ti)

−1T T
i y (1e)

ei = [In − Ti(T
T
i Ti)

−1T T
i ]y (1f)

βi = Wib (1g)

In Eq. (1c), ⊗ denotes the Kronecker product.
The algorithm stated above was first introduced by de

Jong[8], who reported it to outperform previous versions in
terms of computational properties.

In theSection 1, we heeded that prediction for new sam-
ples is completed by a single matrix multiplication. Indeed,
the predicted responseυ for an unfolded new sampleξ is
given by:

υ = ξTβi (2)
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A sample specific estimate of the prediction error for the new
sample can now be computed as follows. A “score vector”
τ is defined for each new sample as:

τ = ξWi (3)

This score vector is used to compute the sample leverage:

h = τT(T T
i Ti)τ (4)

Let now ŷ denote the vector of predictions for the samples
in the training set, then the mean squared error of calibration
is defined as (k denotes the number of latent variables used):

MSEC= (ŷ − y)T(ŷ − y)

(n − k)
(5)

Finally, the sample-specific prediction error for the new sam-
ple is given by:

PE(ξ) = [(1 + h)MSEC]1/2 (6)

It has been reported that the estimates of prediction error ob-
tained byEq. (6)may be slightly pessimistic[9]. A correc-
tion is possible if some knowledge is available about what is
called the variance of the reference method, i.e. some knowl-
edge about the uncertainties of the elements ofy. However,
in our application in the next section this variance will be
negligible. Furthermore, note thatEq. (6) is identical to the
sample specific prediction error estimate that is used by the
American Society for Testing and Materials (ASTM) for
PLS [10] and in general it can be stated that the estimate
obtained byEq. (6)is satisfactory in many a practical appli-
cation.

The last important question to address is the correct num-
ber of latent variables to use for prediction (previously de-
noted k). In practice, it is most frequently estimated by
means of cross-validation. Briefly, cross-validation comes
down to randomly omitting an arbitrary number of observa-
tions from the calibration data set and then predicting these
observations from the remaining observations. This is re-
peated in an arbitrary number of iterations, whereafter an
overall root mean squared error of prediction can be com-
puted. Ideally, this number should be minimal at the optimal
number of latent variables. Different names are given to the
method of cross-validation depending on the number of ob-
servations left out at atime and their location in the original
data matrix. If one observation is being left out each time,
the method is called leave one out cross-validation. This
type of cross-validation has been reported to under-estimate
the true number of underlying components in the case of
partial least squares regression[11]. A better, frequently ap-
plied alternative is venetian blinds cross-validation, where
the pattern of observations being left out resembles venetian
blinds. This type of cross-validation has been used through-
out the application in the next Section.

3. Identification of micro-organisms

In the current paper, we will not focus on the experimental
set-up of the electronic nose, as this has been discussed in a
separate paper[7]. As stated in theSection 1, we will mainly
discuss the application of trilinear partial least squares to the
data generated by the electronic nose.

Ten types of micro-organisms need to be unambiguously
identified. For each micro-organism, a binary response vec-
tor was created. These different response vectors will be
referred to as classes of data. Furthermore, some samples
in the calibration data matrix correspond to the presence of
no organism at all. An 11th binary response vector corre-
sponds to this class of data. The different classes are sum-
marized inTable 1. It was decided that the calibration data
matrix should contain about 10 samples belonging to the
same class. Due to practical considerations, only 5 samples
corresponding to class nine were included, so that the final
calibration set consisted of 105 samples.

Tri-PLS1 regression was performed for each data class.
As the problem could be considered to be multivariate (11
response variables), one could consider tri-PLS2 regression
to be a viable alternative. However, application of tri-PLS2
would require a careful design of the calibration matrix,
inserting calibration samples in which several of the bacteria
are present at the same time. As it is more practicable to
prepare samples of a single culture of bacteria, we opted only
to insert samples of this type. Moreover, the tri-PLS1 routine
is more transparent and more efficient in the computational
sense and hence we decided to apply tri-PLS1 regression to
each of the classes separately. For each data class, a vector of
regression coefficientsβclassi is obtained using the tri-PLS1
algorithm (Eqs. (1)). A separate validation data set consisted
of 22 observations, two observations belonging to each class.
For each class, a vector of predicted responsesυ̂

classi is
computed (Eq. (2)). The micro-organisms were identified
as follows: if for the prediction of, e.g. class 10 a number
close to one is obtained, the corresponding micro-organism
is considered to belong to this class. If, on the contrary, a very
small or negative number is obtained, the micro-organism
is considered not to belong to this class. As the same type
of calculations has to be repeated for each class of data, we

Table 1
Micro-organisms to which the different data classes correspond

Data class Biological class Species

1 Gram negative Pseudomonas æruginosa
2 Gram negative Enterobacter ærogenes
3 Gram negative Proteus vulgaris
4 Gram positive Staphylococcus aureus
5 Gram negative Escherichia coli
6 Gram negative Klebsiella pneumoniæ
7 Mould Aspergillus fumigatus
8 Gram positive Streptococcus pneumoniæ
9 Gram positive Enterococcus fæcalis

10 Yeast Candida albicans
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Fig. 1. Cross-validated root mean-squared error of prediction for data
class 1.

will only go through the whole method for the first class,
whereafter the overall result will be stated.

Let us now analyze the method in detail taking the first
data class as an example. At first, the optimal number of
latent variables was determined using cross-validation. From
Fig. 1, it is clear that the optimal number of latent variables
is found at nine.

The predicted response of the observations of the valida-
tion set for the fist data class, based on nine latent variables,
is given inTable 2. Observations 10 and 15 belong to class
1; the predicted value for these observations is in both cases
close to one. For the other observations, the corresponding

Table 2
Predicted responses for class 1 and their sample specific prediction errors

True class υ̂
class 1 PE(υ̂

class 1
)

7 0.11 0.11
2 −0.17 0.11
4 0.17 0.11
3 −0.01 0.13

11 −0.01 0.11
10 0.21 0.10
6 −0.15 0.11
8 −0.02 0.11
5 0.07 0.11
1 1.37 0.12
9 0.01 0.11
4 0.31 0.11
6 −0.05 0.11
2 −0.11 0.11
1 1.00 0.11
7 0.05 0.11
3 0.02 0.12

11 −0.01 0.11
5 −0.03 0.11
9 0.04 0.11

10 0.19 0.11
8 −0.01 0.11

The classes to which the observations belong are given in the left column
for comparison.

elements of the vector of predicted responses for class 1
(column 2 inTable 2) are close to zero or even negative.

At this stage, the uncertainties start to play a rôle. Sup-
pose, for instance, that the values close to zero would have
prediction errors of about 0.01 and the two values close to
one would have prediction errors of about 2, than we would
not be able to draw any conclusion: there is an indication
that the two observations indeed belong to class 1, but due to
the immense uncertainties there might as well be no bacte-
ria at all in the validation set which belongs to class 1 (prior
knowledge will not be available in real clinical analyses).

Sample specific prediction errors were computed for the
vector of predicted responses for class 1 adopting the ap-
proach described in the previous section (Eqs. (3)through
(6)). The results are given in the third column ofTable 2.
The sample-specific prediction errors allow us in this case
to draw the final conclusion: the predicted responses corre-
sponding to observations 10 and 15 are close to one and their
uncertainties are roughly about 0.15, thus we conclude that
observations 10 and 15 are measurements of the excrements
of thePseudomonas æruginosi, which is correct.

Let us now investigate a more subtle example, where the
calibration data matrix does not as well fit the model. This
is the case for several of the classes. As an example, we
show the results for class 5. The optimal number of la-
tent variables was determined by means of venetian blinds
cross-validation; it equals 14. The predicted responses for
the validation set and their sample specific prediction errors
were computed as for class 1. The results are summarized
in Table 3.

Table 3
Predicted responses for class 5 and their sample specific prediction errors

True class υ̂
class 5 PE(υ̂

class 5
)

7 0.21 0.20
2 0.11 0.20
4 0.16 0.26
3 0.58 0.91

11 −0.07 0.16
10 0.26 0.21
6 0.39 0.23
8 0.18 0.17
5 0.77 0.22
1 0.10 0.40
9 0.12 0.16
4 0.17 0.23
6 0.21 0.22
2 0.13 0.21
1 −0.40 0.27
7 0.18 0.19
3 0.27 0.66

11 −0.10 0.16
5 0.65 0.24
9 0.14 0.16

10 0.22 0.24
8 0.17 0.18

The classes to which the observations belong are given in the left column
for comparison
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Table 4
Predicted value of the forth observation in the validation set for class 5
for the forth sample based on 5, 14 and 25 latent variables, respectively

υ̂class 5
5 (ξ4) υ̂class 5

14 (ξ4) υ̂class 5
25 (ξ4)

−0.07 0.58 3.64

From the predicted values for class 5 (the middle column
of Table 3) one would draw the incautious conclusion that
three samples appertain to the class, i.e. samples 4, 9 and 19.
However, the sample specific prediction errors distinguish
the prediction for sample 4 from the other two: the PE is
close to 1, indicating that the true value for sample 4 might as
well be equal to zero. Some further investigation is required
for this sample.

The leverage of an observation is an indication for the ob-
servation to be considered as good or outlying with respect
to the majority of the data. Recall that the leverages are the
only contribution to the prediction error which reflects the
individual differences among the samples (Eq. (6)). So in-
deed, if one sample has a large sample specific prediction
error compared to the other samples, this sample can with-
out doubt be classified as outlying. In order to illustrate this,
we will briefly state the values of the leverages for the sam-
ples for prediction of class 5. For all samples these are ap-
proximately equal to 0.5, whereas the leverage of sample 4
equals 33, which clearly indicates that observation 4 should
be considered outlying with respect to the others for the
prediction of class 5, and that it should certainly not be at-
tributed to this class. Furthermore, a computation of the pre-
dicted value for a varying number of latent variables clearly
illustrates the high uncertainty on the prediction. InTable 4
the predicted values for the 4th observation in the validation
set are given for 4, 14 and 25 latent variables. It is clear that
this predicted value varies from−1 to 4 depending on the
number of latent variables one chooses. This again is an in-
dication that the observation does not belong to class 4 at
all, but coincidentially gave such a prediction at the optimal
number of LV’s due to its high variability. Note that a high
degree of volatility in the prediction for several numbers of
latent variables cannot in se be considered as an argument
to disregard the prediction, but that it is a reinforcing argu-
ment when high leverages are encountered. The aforemen-
tioned arguments considered, we decided that samples 9 and
19 were generated by theEscherichia coli, which is again
correct. Furthermore, note that in general the prediction un-
certainties for class 5 are considerable higher than for class
1, indicating that the data in this case do not as well fit the
model.

As mentioned earlier, it would be tedious and unneces-
sary to report similar results for the other classes of bacteria
and funghi. We state that for the 22 samples to be assigned,

a diligent analysis of the tri-PLS results allowed us to iden-
tify all of the samples available in the calibration matrix,
with one sample identified twice. This amounts to 3.5% of
misclassification, which is, as heeded in theSection 1, ac-
ceptable for clinical analysis.

4. Summary and conclusions

In the current paper, we proposed a new method for the
analysis of data generated by the electronic nose. We pro-
posed to use trilinear partial least squares regression for
calibration. Prediction of samples belonging to an indepen-
dent validation set have been shown to be satisfactory. We
have been able to provide sample specific prediction errors
for the results obtained, allowing to differentiate between
seemingly similar predictions. The overall method allowed
us to obtain an acceptable misclassification rate. In this
case, the method was applied to identify different pathogenic
micro-organisms as a part of wider clinical research. How-
ever, the applicability of the method does not necessarily
restrict itself to identification of bacteria, as the electronic
nose itself can be used in various fields of interest.
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