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Abstract 

A general formulation of association models is introduced for the analysis of three-way contingency 
tables. The two-factor and three-factor interaction matrices are decomposed into matrices of lower 
rank. In particular, the three-factor interaction is decomposed by the PARAFAC model. Various 
restricted models can be used to validate special assumptions for the data such as departures from 
conditional independence in the context of sets of contingency tables. The problem of identification is 
discussed. Two sets of data are analyzed to illustrate the versatility in the interpretation and the 
advantages of the models and methods developed here. 

Keywords: Log-linear analysis; Log-trilinear decomposition; PARAFAC; Maximum likelihood 
estimation 

1. Introduction 

In the framework of multi-way cross-classifications, hierarchical log-linear 
modeling has proved to be a feasible and widely used method for validating specific 
assumptions concerning the relations among categorical variables (see for example 
Bishop et al. 1975; Haberman, 1978, 1979; Agresti, 1990). 

Nevertheless, this approach is no longer useful in two-way tables when the 
log-linear model with no interaction does not fit to the data and only the saturated 
model fits to the data. A fruitful attempt to define the somewhat “in between” 
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independence model and the saturated model has been given by the association 
models for two-way tables (Goodman, 1979, 1985,1986; Andersen, 1980). The main 
idea is to constrain the interaction parameters of a log-linear model to be equal to 
one or more bilinear terms and thus specifying the so-called RC(P)-association 
model. This model provides a meaningful description of the association in the data 
when the categories of the variables are ordered and the order is not necessarily 
known in advance. In fact, the order among the categories can be investigated by 
considering scores of the categories which are optimally found under the maximum 
likelihood criterion which is equivalent to the maximum information criterion 
(Gilula et al., 1988; Gilula and Haberman, 1988). 

Similarly, for analyzing three-way tables hierarchical log-linear modeling cannot 
be feasible in two cases. In the first case, the model with no three-factor interaction 
does not fit to the data and the saturated model is the only model that obviously fits 
to the data. In the second case, the model of conditional independence does not fit 
to the data and the model with no three-factor interaction which fits to the data is 
the most parsimonious model. In order to define suitable models which are “in 
between” such restricted models, Becker (1989, 1992) introduced a general family of 
association model for three-way contingency tables enabling to deal with several 
hypotheses on the three-factor interaction among the variables. When appropriate 
constraints are specified upon the parameters several restricted versions can be 
specified and some of them have been already considered in literature; see, for 
instance, Agresti and Kezouch (1983), Goodman (1986), Gilula and Haberman 
(1988) Becker and Clogg (1989), Lauro and Sicilian0 (1989), Sicilian0 et al. (1990), 
Mooijaart (1992), Mooijaart and van der Heijden (1992). The main idea of Becker’s 
approach consists of specifying conditional association between two variables 
given the level of the third variable which can be separated into unconditional 
two-way and three-way factor interactions. 

In this paper we deal with this general family of association models and we 
present some restricted versions in an alternative formulation. The idea is to specify 
bilinear decompositions of two-factor interactions and trilinear decompositions of 
three-factor interactions. In particular, we use the PARAFAC/CANDECOMP 
model (Harshman, 1970; Carroll and Chang, 1970) for specifying the three-factor 
interaction. The PARAFAC model has been considered also by Kroonenberg 
(1983) and D’Ambra and Kiers (1990) to analyze the residuals of a log-trilinear 
model by a least squares loss-function. 

We describe the estimation procedure by maximum likelihood method, the 
identification of the model parameters, the calculation of the degrees of freedom, 
the testing of various restricted models. 

An important restricted model is considered to analyze the conditional associ- 
ation between two variables given a stratifying variable in a set of two-way tables. 
This model will allow us to answer questions such as does the association between 
the two variables differ across the groups? Furthermore, if there are differences, 
what is the pattern of their association? Is it possible to rank the groups from the 
one in which the variables have the highest association to the one in which they 
have the lowest association? 
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We also discuss the relationships and the differences with other kinds of models 
for conditional association proposed in literature; see in particular Becker and 
Clogg (1989), Xie (1992), Wong (1995). 

In order to illustrate the versatility in the interpretation and the advantages of 
the models and methods developed here we present the results in two tables. 
Table 1 is a three-way table that concerns a sample of 16236 children in the 
Netherlands. This sample is part of the data that were published in Meester and de 
Leeuw (1983). The variables are the scores on a Test for Intellectual Capacity (TIC), 

Table 1 
Three cross-classifications of education, intelligence test score and sex 

Sex 

Boys Girls 

TIC 1 2 3 4 5 6 7 1 2 3 4 5 6 7 
Education 

DO 75 77 105 125 89 38 17 51 60 115 123 78 56 9 
LB0 216 305 495 522 389 168 34 144 223 382 370 290 107 26 
MAVO 67 144 267 368 339 194 54 60 134 288 424 442 266 72 
MB0 51 84 239 345 301 208 65 75 167 320 458 428 258 72 
HAVO 26 65 200 332 383 258 98 23 68 211 373 450 402 169 
VW0 12 27 104 216 325 321 178 5 9 77 183 307 326 209 

Table 2 
Four cross-classifications of housing, influence, satisfaction and contact 

Contact 

Satisfaction Low 

Low 

Medium High Low 

High 

Medium High 

Housing 
Tower blocks 

Influence 
Low 
Medim 
High 

21 21 28 14 19 37 
34 22 36 17 23 40 
10 11 36 3 5 23 

Apartments Low 61 23 17 78 46 43 
Medium 43 35 40 48 45 86 
High 26 18 54 15 25 62 

Atrium houses Low 13 9 
Medium 8 8 
High 6 7 

10 
12 
9 

Terraced houses Low 18 6 7 
Medim 15 13 13 
High 7 5 11 

20 
10 
7 

57 
31 

5 

23 20 
22 24 
10 21 

23 13 
21 13 

6 13 
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Sex and the Level of Education attained after four years of secondary education. 
The TIC scores were recorded in seven classes where each class corresponds to an 
interval number of correct answers. The levels of education are: (1) dropped out 
(DO), (2) junior level of education for professions (LBO), (3) medium level of general 
education (MAVO), (4) senior level of education for professions (MBO), (5) high 
level of general education (HAVO) and (6) general education preparing for univer- 
sity (VWO). This table has been already analyzed by van der Heijden et al., (1992) 
with constrained latent budget analysis, by Mooijaart and van der Heijden (1992) 
with log-trilinear models and by Sicilian0 and van der Heijden (1994) with simulta- 
neous latent budget analysis. Table 2 presents a four-way table concerning a sample 
of 1681 residents of 12 areas in Copenaghen. The table describes the interrelations 
among type of housing (tower blocks, apartments, atrium houses, terraced houses), 
degree of contact with other residents (low, high), feeling of influence on apartment 
management (low, medium, high) and satisfaction with housing conditions (low, 
medium, high). This table has been already considered by Agresti (1984) for 
logit-linear analysis. 

2. Three-factor association models 

2.1. Model dejnition 

Let nijk denote the observed frequency in the (i, j, k)-th cell of an I x J x K 
contingency table, with i = 1, . . . , I; J; k = 1, . . . , K. The corresponding expected 
frequency will be denoted by mijk. The (one-dimensional) marginals of the first, 
second and third variables of the table with proportions will be denoted as pi+ + , 
P+j+, and p+ +k, respectively. The model we assume for the logarithm of these 
expected frequencies is 

logmijk = p + pi(i) + p2(j) + p3(k) + plZ(ij) f p13(ik) + p23(jk) f pl23(ijk), (1) 

where the ,U parameters are the main effects or interaction parameters which satisfy 
the usual identifiability conditions as in log-linear analysis. Several restricted 
models can be specified, i.e., by setting one or more sets of parameters equal to zero. 

We are interested in special cases of model (1) where the two-factor and the 
three-factor interactions are decomposed into matrices of lower rank. In the 
following, we first discuss how to decompose the three-factor interactions and then 
how to decompose the two-factor interactions. 

2.2. Modeling the three-factor interactions 

There are several ways for decomposing the three-factor interactions. Becker 
(1989,1992) discussed a general approach for modeling the three-factor interaction 
by extending some results of Goodman (1986). This can be written as 
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where the parameters xils($ and y j’s’(“l, are the row and column scores of the 
conditional table I x J given a particular layer k of the third variable, and the 
parameters 1 tiJ3) are the intrinsic associations between variables 1 and 2 given the 
level of variable 3. 

We choose a special case of (2) that can be obtained by restricting the parameters 
x is(k) l(3) and yjzs($ to be homogeneous over the K tables, i.e., xilso) = xis and 
y j2s’$ = yj,, and rewriting ;1 i$j3’ into a multiplicative factor such as J,$j3) = &zks. 
So we can write 

pl23(ijk) = $1 123 (s) xis Yjs zks. (3) 
s= 1 

This decomposition is known in psychometrics as PARAFAC (parallel factor 
analysis) and it has been developed so far for continuous data, in particular for 
three-way matrices that include, observations of J numerical variables on I indi- 
viduals in K different occasions (Harshman, 1970; Kroonenberg, 1983; Harshman 
and Lundy, 1984a, b). However, the trilinear decomposition (3) has never been 
discussed in details and neither examples have been given in the literature when 
dealing with categorical data. The main problem that arises in case of categorical 
data is that ranks conditions are more crucial than in case of continuous data. 
Indeed, in continuous data we choose a rank that is (much) lower than the 
dimension of the three-way table. This problem will be discussed in Section 3. 

We impose the following centering and weighting restrictions upon the para- 
meters in (3): 

i Pi++Xis= 
i= 1 

i P+j+Yjs=kfI P++kZks=o, 
j=l 

and 

2 Pi++ ’ K 

Xi”, = C P+j+Y$ = C P++kZ&= 1. 
i=l j= 1 k=l 

Notice that we only fix the scales for the parameters Xis, Yj, and zks, we do not 
restrict parameters of Xis, yj, and/or zks to be orthogonal for different s. A problem 
of the PARAFAC model may be the existence of degenerate solutions, see Kruskal 
et al. (1989). A typical degeneracy is that subsequent solutions for s = 1,2, . . . , are 
very similar. To overcome such degeneracies one can assume orthogonality restric- 
tions for one or two sets of the parameters of Xis, Yj, and/or zks. 

Another special case of (2) is known in psychometrics as TUCKER3 model 
(Tucker, 1964, 1966; Kroonenberg, 1983) 

p123(ijk) = s:Lb 123 (au) xis Yjt zku 1 (4) 
s=l t=1 u=l 

A problem with this decomposition is that the identification of the parameters is 
not simple. Another problem is that many factors should be considered for the 



342 R. Siciliano. A. Mooijaartl Computational Statistics & Data Analysis 24 (1997) 337-356 

interpretation of the three-factor interactions. Note that the decompositions (3) and 
(4) are strictly related in the sense that for example we can derive (3) from (4) by 
imposing that all L’s are zero except for s = t = u. 

Other special cases of (2) can be considered to model the conditional association 
between two variables given the level of a stratifying variable; see for instance 
Becker and Clogg (1989), Xie (1992) and Wong (1994). A restricted version of model 
(2) for conditional association will be considered in Section 2.4. 

2.3. Modeling the two-factor interactions 

In three-dimensional tables there are three types of two-factor interactions. In the 
most general form we can write these interactions as 

P Q 

plz(ij) = 1 Alz(p) sip bjp) pl3(ik) = 1 213(q) Ciq djq 3 
p=l q=l 

R 

pZ3(jk) = c 123(r) ejr hr. 
r=l 

Pa+:) 

In order to identify the model we impose the following centering restrictions: 

2 Pi+ + sip = $ pi++ Ciq = i p+j+ bjp = i p+j+ ejr 
i=l i=l j=l j=l 

K K 

= 1 P++kdkq= 2 P++kfkr=o, 
k=l k=l 

and the following weighting restrictions: 

J 

Pi+ + aipaip, = C p+j+ bjp bjp’ = 6’P’, 
i=l j=l 

i Pi++CiqCiq’= 5 P++kdkqdky’=6qq’, 
i=l k=l 

i Pijiejrejf = kil P+ +k_fL_fb = drr’, 
i=l 

where 6”“’ = 1 if s = sl, and 6”’ = 0 otherwise. We have considered a weighting 
system given by the one dimensional marginals of the table with proportions. Other 
weights can also be assumed without changing the estimates of the expected 
frequencies (see, e.g., Becker and Clogg, 1989). 

The final model that we will consider in the following can be defined by (l), (3) 
and (5). This model is more general than the log-trilinear model discussed by 
Choulakian (1988) since we do not restrict the scores of the categories of a variable 
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to be the same in the two-factor decomposition and in the three-factor decomposi- 
tion. In fact, the parameters sip, bjp, ciq, dkq, ej,, fk,., Xis, Yj,, zks, can be conceived as 
scores of the categories of the three variables. Notice that in this way the category 
i may have three different scores: P times by the scores sip, Q times by the scores tip 
and S times by the scores xip. For a more restricted model we can impose, that the 
scores of a variable are equal in all two-factor and three-factor interactions: 
LZip = Cip = Xip, bjp = ejp = yjp and dkp = fkp = zkp . In this more restricted model 
the order for each of these matrices is equal, i.e., P = Q = R = S. A proposal for 
such a model was given by Choulakian (1988). In our approach we deal with the 
less restrictive model that the two-factor and three-factor interactions can have 
different decompositions specified by (5a-c) and (3), respectively, and thus they can 
have different orders. However, by imposing the restrictions that the categories 
have the same scores in all decompositions we can deal with more restricted models 
as well. 

2.4. Three-factor interaction model for a set of two-way tables 

A restricted version of the model (l), (3), (5) can also be fruitfully used to analyze 
the conditional association between two variables given a stratifying variable of 
a set of two-way tables. The model of conditional independence between the 
variables 2 and 3 given the variable 1 can be specified when prZ3 (ijk) = ~~~~~~~ = 0. 
We analyze the departure from conditional independence with the following model 

(6) 
s=l s=l 

In this model we specify that the scores of the categories of the second and third 
variables are equal in the two-factor and three-factor interaction terms. In this way, 
the parameters xiS in the three-factor term refer to the differences among the 
categories of the stratifying variable. The two-factor interactions plXcijj and,uljtikj 
can also be decomposed according to the Eqs. (5a) and (5b). 

Two important special cases can be considered. When 1223(Sj = 0 for all s, we 
obtain the model of conditional independence. When xis is equal to a constant for 
all s and i, the association is homogeneous over the I groups. 

The model (6) can also be written as 

l”gmijk = 1( + pi(i) + pZ(j) + p3(k) + plZ(ij) + pl3(ik) + 5 /223(s) txis + 1)ejs fks. 
s=l 

(7) 
Note that multiplying il23(s) with a constant and dividing (xis + 1) by the same 

constant, results in the same expected frequency mijk. Therefore, the scores xis of one 
category may be fixed to some constant values and this allows to simplify the 
interpretation of the intergroup differences. 
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Our approach deals with trilinear terms to specify the conditional association. 
A more general formulation is provided by Becker and Clogg (1989) through the 
definition of a multiple-group model for simultaneous analysis of a set of two-way 
contingency tables. As special case Xie (1992) has proposed a log-multiplicative 
model to compare mobility tables. 

In our formulation we provide the scores of the categories of the stratifying 
variable. This turns out to be particularly convenient for testing intergroup differ- 
ences. As an example, we can fix the restrictions xls = xzs for all s in order to test 
that the three-factor interaction due to the stratifying factor does not change in the 
first group with respect to the second group. 

Following the general formulation of Becker and Clogg (1989), Wong (1995) 
defined a special class of conditional association models with linear and quadratic 
constraints on the intrinsic association parameters for the particular case that the 
stratifying variable indexes temporal order. 

3. Identification of the parameters 

In this section we discuss the identification of the parameters. In addition we 
compute the maximum number of independent parameters. This number is impor- 
tant in computing the number of degrees of freedom which we need in testing the 
models. 

In Table 3 we show the number of independent parameters to be estimated in the 
unrestricted and restricted models as well as the maximum rank of the matrices of 
two-factor and three-factor interactions. 

First of all we collect all parameters in matrices. For instance, the parameters sip 
will be collected in the matrix A of order I x P, the parameters bj, will be collected 
in the matrix B of order J x P. Analogously, we define the matrices C, D, E, F, X, 
and 2. 

3.1. Two factor interactions 

As an example we investigate the identification of the parameters sip and bj,. 
Since I > P and J > P, matrices A and B are of rank P. Taking into account 
the centering restrictions, the number of free elements in A and B are 
P(I - 1) + P(J - 1) = P(I + J - 2). However, the product AB’ is equal to 
ASS-’ B’ for any nonsingular matrix S of order P x P. So matrix A, and so the 
elements sip, can be identified up to a nonsingular linear tranformation S. It follows 
that matrix B, and so the elements bjp, can be identified up to a nonsingular linear 
tranformation S- ‘. 

The total number of independent parameters is (I + J - 2)P - P2. Note that if 
P = min(l - 1, J - l), the number of parameters in the reduced case is equal to the 
number of parameters in the unrestricted case, namely (I - 1, J - 1). Obviously, 
analogous results hold for the parameters ciq, dkq, ej,, fkr. 
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Table 3 
Number of independent parameters to be estimated in three-factor association models 
(I < J 5 K) 

Parameter Number of independent parameters 

Unrestricted model Restricted model Maximum 
rank 

P 
PlCi) 

PZ(j) 
PXk) 
PlZ(ij) 

~13Cik) 

p23Uk) 

p123Cijk) 

(J- 1) 
(K - 1) 

t-1, 
(J - 1) 
(K - 1) 

(I - l)(J - 1) P(Z + J - 2) - P2 
(I - l)(K - 1) Q(I + K - 2) - Q2 
(J - l)(K - 1) R(J + K - 2) - R2 
(I - l)(J - l)(K - 1) For I = 2: 

(J + K - 2)s - S2 

For I > 2 and S < J: 
(I + J + K - 5)s 

;I-1) 
(J - 1) 
(K - 1) 
(I- 1) 
(I- 1) 
(I- 1) 
(I- 1) 

Unknown 

3.2. Three factor interactions 

In this paragraph we assume that the variables are ordered in such a way that 
I 5 J < K holds. Besides the definition of the matrices Y and Z, with orders (J x S) 
and (K x S), respectively, we define diagonal matrices where the diagonal of these 
matrices consist of row i of matrix X. So there are I different matrices Di. Now we 
can formulate I different three-factor interaction matrices as Ui = YDiZ’, of order 
(J x K), which has elements h!ijk, forj = 1, . . . , J and k = 1, . . . , K. By the centering 
restrictions for the elements xis, one matrix Di is redundant because it is just 
a simple function of the other D matrix. Therefore, we only investigate Ui, for 
i=l , ... > I - 1. Furthermore, we define Sy = min(S, J - l), which is the maximum 
rank of matrix Y. Two cases have to be distinguished, Case 1: I = 2, and Case 2: 
I > 2. 

Case 1: I = 2. 
The only matrix equation we have to investigate is U1 = YD1 Z’ (here that 

U, = YD2Z’ holds is redundant). Because of the fact that U1 consists of a product 
of three matrices, matrix D1 is arbitrary, so without any loss of generality we may 
fix matrix D1 to the identity matrix. So we have U1 = YZ. Now let Wbe a nonsingu- 
lar matrix of order Sy x Sr, then we also can write U1 = YW’W’Z. So matrix Y, 
and so the elements y, can be identified up to a nonsingular linear tranformation W. 
It follows that matrix 2, and so the elements z, can be identified up to a nonsingular 
linear tranformation W- I. 

The total number of independent parameters is (J - l)Sy + (K - l)Sy - Ss = 
(J + K - 2)Sy - SC. The maximum rank is (J - 1) which results in a total number 
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of independent parameters (J - l)(K - 1). This number is equal to the total 
number of independent parameters in the unrestricted case. 

Case 2: I > 2. 
Here we have to investigate the matrices Ui = YDiZ’, for i = 1, . . . ,I - 1. Obvi- 

ously, one matrix Di is arbitrary, and so may be fixed as, e.g., the identity matrix. 
Here we let D1 be the identity matrix. So we have the following equations: 
ui = YZ’, u, = Y&Z’, . . . ) UI_ 1 = YDI_ 1 Z’. If we define new matrices Y and 
Zas Y+ = YWand Z+ = Z( FV’- I, then we have U1 = Y+ W- 1 FEZ+‘. Furthermore, 
we have Ui = Y+ W-‘Di WZ+‘, SO a new matrix D, becomes 0: = 
W- ‘Di W. Because matrix 0: must be diagonal, it follows that matrix W is 
diagonal. (Note the difference with case 1, where such a restriction is not necessary.) 
So matrix Y, and so the elements y, can be identified up to a scaling of the columns. 
It follows that matrix Z, and so the elements z, can be identified up to the 
corresponding inverse scaling. 

The total number of independent parameters is (J - l)& + (K - l)& + (I - 2) 
Sy - Sy = (I + J + K - 5)Sy. 

In determining the maximum rank, which will yield a saturated model for the 
three factor interactions, we encounter a well known problem: the maximum rank 
of three dimensional tables is unknown. This means that in the case of I 2 3 we 
cannot determine a value of S which will give a saturated model for the three factor 
interactions. An analogous problem exists in latent class analysis where which 
number of latent classes will give a perfect model is also unknown i.e., a model 
which describes the data perfectly. In general, we can state that the concept of rank 
of a three or higher dimensional table is much more complicated than in two dimen- 
sional tables and the mathematical properties of these tables are still unresolved 
completely. This problem was discussed by, e.g., Kruskal (1977), ten Berge et al. 
(1988), Kruskal (1989) and ten Berge (1991). 

4. The maximum likelihood estimation and testing 

4.1. The estimation procedure 

The parameters of the model (1) (3) (5) will be estimated by the maximum 
likelihood method. Under Poisson sampling the kernel of the log likelihood 
function can be written as 

This likelihood function should be optimized with respect to the parameters. The 
two- and three-factor interactions in the equation above are functions of the 
unknown parameters, see Eqs. (3) and (5). Estimation of these parameters will be 
done by some alternating estimation procedure. 

But first, two remarks have to be made. 



R. Siciliano, A. Mooijaartl Computational Statistics & Data Analysis 24 (1997) 337-356 341 

First, the centering restrictions are not important in the algorithm. For instance, 
let the scores xis be shifted with a constant. Then (3) can be written as 

s s 
pl23(ijk) = c 1123(s) (xis + 6s)Yjs zks - 1 1123(s) 6s Yjs zks- (9) 

s= 1 s=l 

In the first term on the right-hand side of (9) the scores xis are shifted with 
a constant, whereas the second term on the right-hand side is in fact a two-factor 
interaction between the second and third variable. Depending on restrictions which 
hold for the two-factor interactions p23(jk) a simple correction may be applied 
without changing the expected frequencies mijk as given in (1). For instance, when 
the two-factor interaction parameters /i23(jk) are completely free, the two-factor 
interaction p23(jk) has to be corrected with the second term of (9). Similarly, the 
same correction has to be applied when the scores of variables 2 and 3 are equal in 
both the two and three-factor interactions, i.e., S = R, and furthermore ejs = yj,, 
and fks = zks. Obviously, analogous results hold for a shift of the scores Yj, and zks 
for each s. 

The second remark we make is that the estimation of the IL parameters is not 
necessary in the first part of the algorithm, because the 1 parameters are in fact just 
the result of some specific scaling of the scores. For instance, according to (2a) we 
can write /ilz(ij) = C A 12(p) sip bjp = c ~i”p bi*, where pimp = ai,//I i’;“(p). SO it is 
sufficient to estimatePa: and bj*, and lfterwards decomposing c a$ bTp to find 
sip and bjp which meet the centering and weighting restrictions m&tioned before. 
Such a decomposition of 1, a$, bj* can be carried out by a generalized singular 
value decomposition (see Greenacre, 1984). 

The basic algorithm now runs as follows: Fix all the parameters for the scores, 
except one set of parameters, for example xii. Find a better estimate of the elements 
of these parameters, and repeat the whole procedure but now by improving the 
elements of some other set of parameters. Repeat the whole procedure till no 
change of the elements occur. 

As an example we show how to estimate the elements xis. The method we use 
here is the unidimensional Newton-Raphson method, as was proposed by Good- 
man (1986); see also Becker (1990). 

The first and the second derivatives of the log likelihood function (see (8)) with 
respect to the parameters Xis, are 

(nijk - mijk) yjszks > 

j=l k=l 

W4 

(lob) 

According to the unidimensional Newton-Raphson method a new update of the 
scores xis can be obtained by 

(11) 
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where the superscript “ + ” denotes the updated score xis. So the updated score 
xis can be written as 

x .f _ x, + x3= 1 If= 1 (%jk - mijk) Yjs zks 
IS - IS 

CjJ= I C,“= 1 mijk Yj”s Z.L . 
(12) 

Analogous formulae can be derived for other parameters. Standard errors of 
parameter estimates can be calculated easily by resampling methods such as 
jackknife and bootstrap. 

The estimation method above can easily be generalized to models in which scores 
of categories of a variable are equal in different interactions. For instance, if 
Ui, = C& = Xisy some terms have to be added to the formulae for the first and second 
derivatives as given in (10a) and (lob). (These additional terms are very easy 
to derive.) Then applying (11) and (12) give update formulae which are analo- 
gous to the formulae given above. In order to deal with linear restrictions we refer 
to Sicilian0 et al. (1993). 

4.2. Testing the model 

Models can be tested by the likelihood ratio test, i.e., after the algorithm has been 
converged we compute 

G2 = - 2{ci cj c, nijk logmijk - xi cj c, nijk lognijk} . 

Under the assumption that we have the “correct” model the G2 value is chi- 
square distributed with the number of degrees of freedom depending on the given 
model. 

It is common practice to use differences of test statistics corresponding to 
different nested models in order to compare models. Such a method can be used to 
select a suitable model. However, generally it holds that such differences of (con- 
ditional) test statistics do not have a chi-square distribution. 

5. Examples 

5.1. Analysis of the data in Table I 

We analyze the data in Table 1. Table 4 gives a summary of some models with 
their corresponding test statistics. In Table 4 “u” means that the corresponding 
interactions are unrestricted. The numbers 0, 1 and 2 mean that the corresponding 
interaction marix has rank 0, 1 and 2, respectively. Note that the maximum rank of 
the interaction matrices (1,2) and (1,3) is 1. So for these interactions “unrestricted” is 
equal to rank 1. The sign “ *” means that some special restrictions are imposed. 

The table shows that Mi, the standard log-linear model with no three-factor 
interactions, does not fit. Thus, all models with restricted two-factor interactions 
and no three-factor interactions will not fit as well. We need to model the three- 
factor interaction and we start considering the most parsimonious model such as 
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Table 4 
Models and test statistics for the data in Table 1 

Interaction G2 d.f. Significance 

Model PlZCij) fl13 (ik) p23 Uk) p123lijk) 

Ml ll u u 0 61.62 30 S 

M2 u u u 1 19.91 20 ns 
M3 u u 1 1 45.71 40 ns 

M4 u u 1* 1* 73.46 50 S 

MS u u 2* 2” 42.02 40 ns 

the model M2, with unrestricted two-factor interactions and only one com- 
ponent for the three-factor interactions, i.e., S = 1; this model does fit. There- 
fore, we try to restrict further this model. Model M, can be restricted further by 
imposing restrictions on the interaction matrix of variables 2 and 3. The table 
shows that model MS, the model in which the rank of the interaction matrix of 
variables 2 and 3 is just 1 instead of the maximum rank 5, does fit the data 
adequately. 

An interesting question is the following: we find an interaction between Test for 
Intellectual Capacity (TIC) and Final Educational Level; however, are the patterns 
of this interaction equal for boys and girls, more specifically, does this pattern of 
interaction for boys and girls only differ in strength? 

For answering this question, we consider the model of conditional association 
(6), where it is specified that the scores of the categories of the second and third 
variable are equal in the two and three-factor interaction terms. The parameters xis 
in the three-factor interaction term refer to the differences between the sexes. From 
model Ml we know that these parameters cannot be 0, because a model in which 
the three-factor interactions vanish does not fit. In Table 3 model M4 and M5 refer 
to the model above with S = 1 and 2, respectively. From the test statistics we see 
that model M5 does fit the data and the two dimensions have a nice interpretation. 
The solutions of the parameters ejs, fkS and Xis are given in Table 5. The A para- 
meters are 0.403 and 0.028 for dimensions 1 and 2, respectively. 

Figs. 1 and 2 give the plots of the solutions for the category scores of the two 
variables. The first dimension gives the ordering of the categories of the variable 
Test for Intellectual Capacity illustrating the Intelligence, from low intelligence to 
high intelligence. This ordering is just in line with the ordering of the Educational 
levels of the different school types. The second dimension shows the extremes 
against the intermediate levels of intelligence as well as a difference between the 
Vocational Categories (in particular MBO) and ‘drop out’, the general education 
lying in between. The second dimension shows the well-known “intensity dimen- 
sion” as often is the case for the analysis of categorical data. The only exception 
seems to be category 6 of variable Intelligence that has a low value with respect to 
the second dimension. 
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Table 5 
Scores of the categories according to model M4 (data in Table 1) 

TIC Dimension 

- 2.231 0.455 
- 1.591 1.663 
- 0.682 - 1.422 
- 0.121 - 0.398 

0.398 0.924 
1.139 - 0.712 
1.851 1.197 

Education Dimension Sex Dimension 

DO - 1.502 1.322 Boys 0.000 0.000 
LB0 - 1.180 - 0.242 Girls 0.239 - 1.444 
MAVO - 0.313 0.646 
MB0 0.301 - 1.880 
HAVO 0.613 0.702 
VW0 1.757 0.502 
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Fig. 1. TIC scores. 
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Fig. 2. Final educational level. 

In Table 6 we give the three-factor interaction scores of the variables for the first 
dimension. Because the interaction parameters for the boys are set equal to zero, we 
give the interaction scores for the girls only. 
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Table 6 
Three-factor interactions for dimension 1: girls only 

TIC 1 2 3 4 5 6 7 
Education 

DO 0.32 0.23 0.10 0.02 - 0.06 - 0.17 - 0.27 
LB0 0.25 0.18 0.08 0.01 - 0.05 - 0.13 - 0.21 
MAVO 0.07 0.05 0.02 0.00 - 0.01 - 0.03 - 0.06 
MB0 - 0.07 - 0.05 - 0.02 0.00 0.01 0.03 0.05 
HAVO - 0.13 - 0.09 - 0.04 - 0.01 0.02 0.07 0.11 
VW0 - 0.38 - 0.27 - 0.12 - 0.02 0.07 0.19 0.31 

The scores in this table should be interpreted as follows: a positive score means 
that relatively more girls than boys fall in the specific combination of row and 
column category. Remember that the scores of boys are zero. On the other hand 
a negative score means just the opposite. The most interesting property of the table 
is the nice ordering of the scores over the columns and the rows. This can be 
interpreted as follows. 

In the lowest intelligence categories we see that relatively more girls than boys 
fall in the categories Drop Out, LB0 and MAVO, and on the other hand we see, for 
this intelligence group, that relatively less girls than boys fall in the categories 
MBO, HAVO and VWO. 

In the highest intelligence categories we see that relatively less girls than boys fall 
in the categories Drop Out, LB0 and MAVO, and on the other hand we see, for 
this intelligence group, that relatively more girls than boys fall in the categories 
MBO, HAVO and VWO. 

In Table 7 we give the three-factor interaction scores of the variables for the 
second dimension. Also here we give the interaction scores for the girls only. 

Obviously, because the second dimension is less important than the first dimen- 
sion, the scores in Table 7 are closer to zero than the scores in Table 6. From 
Table 7 we see a less nice pattern of the scores over the columns and rows. The 
interpretation should be based here on specific combination of categories of the two 
variables Intelligence and Final Educational Level. For instance, in category 2 of 
Intelligence, more girls than boys fall in the category MBO, whereas in category 
3 of Intelligence, more boys than girls fall in the category MBO. 

By our analysis we have shown that a simple model, in which the three-factor 
interactions differ from the two-factor interactions by just one parameter for each 
dimension, results in a nice solution which fits the data well. 

5.2. Analysis of the data in Table 2 

We analyse the data in Table 2. As a matter of fact, this is a four-way contingency 
table. From the four-way contingency table we can pass to a three-way table either 
by adding up with respect to one variable or by cross-classifying the categories of 
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Table 7 
Three-factor interactions for dimension 2: girls only 

TIC 1 2 3 4 5 6 I 
Education 

DO - 0.02 - 0.09 0.08 0.02 - 0.05 0.04 - 0.06 
LB0 0.00 0.02 - 0.01 0.00 0.01 - 0.01 0.01 
MAVO - 0.01 - 0.04 0.04 0.01 - 0.02 0.02 - 0.03 
MB0 0.04 0.13 - 0.11 - 0.03 0.07 - 0.05 0.09 
HAVO - 0.01 - 0.05 0.04 0.01 - 0.03 0.02 - 0.03 
VW0 - 0.01 - 0.03 0.03 0.01 - 0.02 0.01 - 0.02 

two variables to form a “compound variable”. Alternatively, we can analyse 
separately three-way tables conditional to different levels of one variable. We have 
analysed the data in table 2 considering all these approaches. In Table 8 the first 
column denotes the table to be analysed with a capital letter, the remain- 
ing columns denote the different types of models with their corresponding test 
statistics. 

The contingency Table A describes the interrelations among type of housing, 
feeling of influence on apartment management and satisfaction with housing 
conditions. We have obtained Table A from the data in Table 2 by adding up with 
respect to the variable degree of contact with other residents. For this table both the 
standard log-linear model M1 of conditional independence and the model M2 with 
no-three-factor interaction do not fit to the data. Instead, the model M3 with 
unrestricted two-factor interactions and one component for the three-factor inter- 
actions, i.e. S = 1, does fit. Model M3 can be restricted further by imposing 
restrictions on the two-factor interactions. In particular, we consider the model of 
conditional association between variables 2 (Housing) and 3 (Influence) given 
variable 1 (Satisfaction). The model M4 that refers to the model of conditional 
association with S = 1 does fit to the data. The solutions of the parameters are 
given in Table 9. The 3, parameter is equal to 0.168. Note that the model M5 in 
which we consider a reduced-rank decomposition of the two-factor interactions 
does not fit to the data. As a result, the model M4 is the most parsimonious model 
that fits adequately to the data. Table 8 shows the ordering of the categories of both 
the variables Influence and Satisfaction from low to high. Table 8 also shows that 
there is a difference in living in tower blocks and atrium houses with respect to 
living in apartments and terraced houses. In Table 10 we give the three-factor 
interaction scores of the variables. Because the interaction parameters for the 
residents with low satisfaction with housing conditions are set equal to zero, we 
give the interaction scores for medium and high satisfaction only. 

The scores in this table should be interpreted as follows: a positive score means 
that relatively more residents with medium or high satisfaction fall in the specific 
combination of row and column category. On the other hand a negative score 
means just the opposite. As an example, among all residents with low influence on 
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Table 8 
Models and test statistics for the data in Table 2 

Contingency table Model Interaction G2 d.f. Signif. 

plZ(ij) p13fik) pZ3(jk) p123(ijk) 

A 
Housing x Influence x Satisfaction 
Dimensions: 4 x 3 x 3 

B 
Housing x Influence x Satisfaction 
Low contact 
Dimensions: 4 x 3 x 3 

Housing x Influence x Satisfaction 
High contact 
Dimensions: 4 x 3 x 3 

D : Housing x Influence x 
(Satisfaction * contact) 
Dimensions: 4 x 3 x 6 

Ml 
M2 

M3 

Mb 

M5 

Ml 

M2 

M3 

Mb 

MS 

Ml 

M2 

M3 

M4 

MS 

M2 

M6 

U U 0 0 
U U U 0 
U U U 1 
U U 1* 1* 
1 1 1* 1* 

U U 0 0 

U U U 0 
U U U 1 
U U 1* 1* 
1 1 1* 1* 

U U 0 0 

U U U 0 
U U U 1 
U U 1* 1* 
1 1 1* 1* 

U U 0 
U U ;* 2* 

34.10 
25.89 

8.64 
15.73 
31.34 

20.23 
14.04 
6.78 
9.97 

11.54 

29.22 
21.76 

6.62 
13.42 
34.28 

51.91 
29.95 

18 s 
12 s 
5 ns 

10 ns 
13 s 

18 ns 
12 ns 
5 ns 

10 ns 
13 ns 

18 s 
12 s 
5 ns 

10 ns 
13 s 

30 s 
23 ns 

Table 9 
Scores of the categories using model M4 for the contingency table A of Table 8 

Satisfaction Housing Influence 

Low 0.000 Tower blocks 1.606 Low - 1.269 
Medium - 0.550 Apartments - 0.780 Medium 0.745 
High - 1.507 Atrium houses 0.438 High 0.857 

Terraced houses - 0.661 

apartment management we see that relatively more resident with medium or high 
satisfaction live in tower blocks and atrium houses; on the other hand, we see, for 
residents with low influence, that relatively less residents with medium or high 
satisfaction live in apartments and terraced houses. Instead, among all residents 
with medium or high influence on apartment management we see that relatively 
more residents with medium or high satisfaction live in apartments and terraced 
houses; on the other hand, we see, for residents with medium or high influence that 
relatively less residents with medium or high satisfaction live in tower blocks and 
atrium houses. 
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Table 10 
Three-factor interactions using model M4 for the contingency table 
A of Table 8 

Influence 
Housing 

Low Medium High 

Satisfaction: medium 
Tower blocks 
Apartments 
Atrium houses 
Terraced houses 

Satisfaction: high 
Tower blocks 
Apartments 
Atrium houses 
Terraced houses 

0.188 
- 0.092 

0.051 
- 0.078 

0.516 
- 0.251 

0.141 
- 0.212 

- 0.111 
0.054 

- 0.030 
0.045 

- 0.303 
0.147 

- 0.083 
0.125 

- 0.127 
0.062 

- 0.035 
0.052 

- 0.348 
0.169 

- 0.095 
0.143 

We have also analysed the interrelations among the variables Housing, Influence 
and Satisfaction given the degree of contact, respectively, low and high degree, with 
other residents. In Table 8 we give the summary of some models fitted to such tables 
denoted by B and C. In particular, we see that for residents with low degree of 
contact all models fit to the data whereas for residents with high degree of contact 
only models M3 and M4 fit adequately to the data. This shows that the hypothesis 
of conditional independence between the variables Housing and Influence given the 
variable Satisfaction cannot be rejected for residents with both low and high degree 
of contact with other residents. 

The last way to analyse the data in Table 2 is to consider the three-way 
table that cross-classify the variables Housing, Influence and the compound 
variable formed with the variables Satisfaction and Contact. For this, denoted by 
C in Table 8 the model M6 that refers to the model of conditional association with 
S = 2 does fit to the data. Table C has a different dimension with respect to the 
previous tables, in particular the stratifying variable has now more categories; 
therefore we need at least two dimensions to explain the interrelations among the 
variables. We do not give the solutions of this model because the final interpreta- 
tion does not change with respect to the results that we have previously found for 
Table A. 
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