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SUMMARY

We generalize Kruskal’s fundamental result on the uniqueness of trilinear decomposition of three-way arrays to
the case of multilinear decomposition of four- and higher-way arrays. The result is surprisingly general and
simple and has several interesting ramifications. Copyright 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Consider anI � J matrixX and suppose that rank (X) = 3. Letxi,j denote the (i, j)th entry ofX. Then it
holds thatxi,j admits athree-component bilinear decomposition

xi;j �
X3

f�1

ai;f bj;f �1�

for all i = 1,…,I and j = 1,…,J. Equivalently, lettingaf := [a1,f,…,aI,f]
T and similarly forbf,

X � a1bT
1 � a2bT

2 � a3bT
3 �2�

i.e. X can be written as a sum of three outer products of the respective component vectors, which
constitute rank-1 matrices. LetA := [a1, a2, a3] and B := [b1, b2, b3], and X can be expressed as
X = ABT. Note the trivial fact thatATT 71BT = X for any invertibleT; hence, givenX, infinitely
many (A, B) pairs can potentially give rise toX. Unless some additional structure is assumed or
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imposed onA and/or B, it is impossible to uniquelyunravel thecomponentprofilesaf andbf from X.
Let us now consideran I � J� K three-wayarray X with typical element xi,j,k and the F-

componenttrilinear decomposition

xi;j;k �
XF

f�1

ai;f bj;f ck;f �3�

for all i = 1,…,I, j = 1,…,J andk = 1,…,K. Equation (3) expressesthethree-wayarrayX asasumof F
rank-1three-way factors. Analogous to the definition of matrix (two-way array)rank, the rank of a
three-way array X canbe defined[1,2] asthe minimum number of rank-1(three-way)components
needed to decompose X.

Define an I � F matrix A with typical elementA(i,f) := ai,f, J� F matrix B with typical element
B(j,f) := bj,f anda K� F matrix C with typical elementC(k,f) := ck,f. A distinguishing feature of the
trilinearmodel is its uniqueness.Undermild conditionsthetrilinear modelis essentially unique; that
is,givenX, A, B andC areuniqueupto permutation andscaling of columns—bothmostly trivial and
inherently unresolvableambiguities.

The first published uniquenessresults are due to Harshman [3,4], who actually developed
PARAFAC basedon aprincipleput forth by Cattell [5] (seealsoCarroll & Chang[6]). Otherresults
soonfollowed(e.g.Reference[7]), culminatingin Kruskal’s[1,2] result,which is thedeepest to date.
An unusualvariety of applicationsin diversedisciplines has always beenbehind the quest for
improvedunderstanding of the trilinear modelandextensions,generalizationsandevenrestrictions
(N. D. Sidiropoulos, X. Liu, submitted manuscript) thereof.

Any four-way arraycanbe‘unfolded’ into a three-way array,much like a matrix canbeunfolded
into a vector via the standard vec(⋅) operation;henceuniquenessof quadrilinear decomposition of
four-way arrays follows from uniqueness of trilinear decomposition of three-way arrays. This
simplistic view, however, does not shed light on the exact conditions under which a unique
quadrilineardecomposition canbeguaranteed,nordoesit provideanycluesasto therigidnessof the
required conditionsasonemovesto higherdimensions.In thispaperwegeneralizeKruskal’sresultto
thecaseof multil ineardecomposition of four- andhigher-wayarrays,providingapreciseandsimple
sufficient condition for uniquenesswhichbecomeslessrestrictiveasonemovesto higherdimensions.

Therestof thispaperis structured asfollows.Section 2 containsnecessarypreliminaries,including
Kruskal’suniqueness result(Theorem1) anda basic lemma (Lemma1) that is key in extendingit to
N-way arrays.Proofof thebasiclemma is included. Section3 containsthemainresultandits proof.
Conclusionsaredrawnin Section4.A compactproofof Kruskal’s uniquenessresultfor thethree-way
caseis included in the Appendix for completeness.

2. PRELIMINA RIES

Thek-rankof amatrix is a rank-likeconcept thatplaysakey role in multil inearalgebra. Theconcept
of k-rank is implicit in theseminal work of Kruskal [1], but the termwaslatercoinedby Harshman
andLundy [8] (k-rankstandsfor Kruskalrank).

Definition 1

Given A ∈ CI�F, rA := rank (A) = r iff it contains at least a collection of r linearly independent
columns, andthis fails for r � 1 columns.kA (the k-rank of A) = r iff everyr columnsare linearly
independent, andthis fails for at leastone setof r � 1 columns(kA � rA �min(I,F) for all A).

We arenow readyto state Kruskal’suniquenessresult [1].
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Theorem 1 (uniquenessof trilinear decomposition)

Consider the F-component trilinear model

xi;j;l;m �
XF

f�1

ai;f bj;f ck;f

for i = 1,…,I, j = 1,…,J andk = 1,…,K, with ai,f,bj,f,ck,f ∈ C. Definean I � F matrix A with typical
elementA(i,f) := ai,f and similarly J� F and K� F matricesB and C. Given xi,j,k for i = 1,…,I,
j = 1,…,J andk = 1,…,K, A, B andC areuniqueup to permutation andscalingof columnsprovided
that

kA � kB � kC � 2F � 2 �4�
NotethatTheorem 1 holdsfor real-or complex-valuedparametersandarrayelements. Theoriginal

proof of Kruskalwastargeted to the real-valuedcase(all matrix andarray elementsdrawnfrom R)
owing to somesubtleties involved in the definition of three-way arrayrank [1,2]. In an attemptto
investigateif theresult carriesover to thecomplexcase, acompactproof thatchecksfor thecomplex
casehasbeenderived in Reference[9]. That proof is also provided in the Appendix herein for
completeness.

The following lemma is key in extendingKruskal’s resultto N-way arrays.

Lemma1 (k-rankof Khatri–Rao product)

Consider A = [a1,…,aF] ∈ CI�F, B = [b1,…,bF] ∈ CJ�F and

B� A :�

AD1�B�
AD2�B�

..

.

ADJ�B�

266664
377775 � �b1 
 a1; � � � ; bF 
 aF �

where6 standsfor the Kronecker product, � standsfor the Khatri–Rao(column-wise Kronecker)
productandDj(B) is a diagonalmatrix containing the jth row of B on its diagonal. If kA � 1 and
kB� 1, thenit holdsthat

kB�A � min�kA � kB ÿ 1;F�

whereasif kA = 0 or kB = 0,

kB�A � 0

Lemma1 is dueto SidiropoulosandLiu (submittedmanuscript) which buildson anearlierresult
by Sidiropouloset al.[10] on therankof theKhatri–Raoproduct. We includeamorecompactstand-
aloneproof below, both for the sakeof completenessandbecauseLemma1 is key in proving our
main result.

Proof

Theproof is by contradiction. Let Sbethesmallestnumberof linearly dependentcolumnsthatcanbe
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drawnfrom B � A, denotedby bf1 6 af1,…,bfS 6 afS (if a collection of linearly dependentcolumns
cannotbefound,then,by convention, S= F� 1; with this convention, kB�A = S71). Thenit holds
that there exist�1 ∈ C,…,�S ∈ C, with �1 = 0,…,�S= 0, suchthat

�1bf1 
 af1 � � � � � �SbfS 
 afS � 0IJ�1

or, equivalently,

eAdiag���1; � � � ; �S��eBT � 0I�J �5�

with

eA :� �af1; � � � ; afS�; eB :� �bf1; � � � ; bfS�

Invoking Sylvester’s inequality,

r :� rank eAdiag���1; � � � ; �S��eBT
� �

� rank�eA� � rank�eB� ÿ S

However,by definition of k-rank,

rank�eA� � min�kA ;S�; rank�eB� � min�kB;S�

andthus

r � min�kA ;S� �min�kB;S� ÿ S �6�

Notice that min(kA � kB 7 1,F)�max(kA, kB), because:

* if kA � kB 7 1> F, thenmin(kA � kB 7 1,F) = F�max(kA, kB);
* else if kA � kB 7 1� F, then min(kA � kB 7 1,F) = kA � kB71 = max(kA, kB)�min(kA,

kB)71�max(kA, kB), sincekA, kB andhencealsomin(kA, kB)� 1.

Now considerthe following cases for (6):

* if 1� S�min(kA, kB), then(6) gives r � S� 1;
* else if min(kA, kB)< S<max(kA, kB), then inequality (6) gives r �min(kA, kB)� S

7S= min(kA, kB)� 1;
* else if max(kA, kB)� S�min(kA � kB 7 1,F), then (6) gives r � kA � kB 7S; but

S�min(kA � kB 7 1,F) implies that kA � kB 7 1� S, i.e. kA � kB 7S� 1, andhencer � 1.

The conclusion is that r � 1 for S�min(kA�kB71,F); but r is the rank of Ã diag ([�1,…,�S]) B̃T,
which according to Equation (5) is a zero matrix, henceits rank should be 0. We havetherefore
arrived at a contradiction, which shows that thesmallest numberof linearly dependentcolumnsthat
canbedrawnfrom B � A muststrictly exceed min(kA � kB 7 1,F). It remainsto patchtheproof for
the casewhereone or both of kA, kB is 0. Note that kA = 0 if and only if A contains at leastone
identically zero column, in which casethe column-wise Kroneckerproduct will haveat least one
identically zerocolumn,henceits k-rank will be0. This completesthe proof of the lemma. &

We arenow readyto extend Theorem1 to higher-way arrays.
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3. MAIN RESULT

Let usfirst consideruniquenessof quadrilinear decomposition of four-way arrays.

Theorem 2 (uniquenessof quadrilinear decomposition)

Consider the F-component quadrilinear model

xi;j;l;m �
XF

f�1

ai;f bj;f gl;f hm;f

for i = 1,…,I, j = 1,…,J, l = 1,…,L and m= 1,…,M, with ai,f,bj,f,gl,f,hm,f ∈ C, and suppose that the
model is irreducible in the sensethat xi,j,l,m cannotbe representedusingfewer thanF components
(this is equivalentto sayingthatthefour-wayarraywith typicalelement xi,j,l,m is of rankF). Definean
I � F matrixA with typicalelementA(i,f) := ai,f andsimilarly J� F, L� F andM� F matricesB, G
andH. Givenxi,j,l,m for i = 1,…,I, j = 1,…,J, l = 1,…,L andm= 1,…,M, A, B, G andH areuniqueup
to permutation andcomplex scalingof columnsprovidedthat

kA � kB � kG � kH � 2F � 3

Proof

Definea three-way array with typical element

yi;j;k :� xi;j;d k
Me;kÿ�d k

Meÿ1�M

for i = 1,…,I, j = 1,…,J and k = 1,…,ML, where d⋅e stands for the ceiling operator (smallest
integer� its argument).yi,j,k is simplythefour-wayarrayxi,j,l,m rearrangedinto anordinary three-way
arrayby concatenatingthethird andfourthmodessuchthatthefourthmodeis nestedwithin thethird
mode.Furtherdefinean ML� F matrix C with typical element

ck;f :� gd k
Me;f hkÿ�d k

Meÿ1�M ;f

It is theneasyto seethat

C �

HD1�G�
HD2�G�

..

.

HDL�G�

266664
377775 � G� H

Note that the assumedirreducibility of the quadrilinear model for xi,j,l,m (equivalently, rank of the
four-wayarray)impliesthatkA,kB,kG,kH areall� 1. In orderto seethis,supposethatkA = 0, in which
caseA containsat leastonecolumnthat is identically zero. Let af bethis column.Thenthe fth factor
hasidentically zerocontribution to thedataxi,j,l,m, andthusthemodel canberepresented usingF 71
components, which contradicts irreducibility. Then, invoking Lemma1 regarding the k-rank of a
Khatri–Raoproduct,andTheorem 1 applied to yi,j,k, weconcludethatA, B, C = G� H (andhenceG
andH) areunique up to permutation andscalingof columnsprovidedthat
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kA � kB �min�kG � kH ÿ 1;F� � 2F � 2 �7�

We may assumewithout loss of generality that kA � kB� kG� kH. If kG� kH > F� 1, then
kA � kB� kG� kH > F� 1) kA � kB� F� 2, andhence

kA � kB �min�kG � kH ÿ 1;F� � F � 2� F � 2F � 2

in whichcaseinequality (7) is alwayssatisfied. If, ontheother hand,kG� kH � F� 1, thencondition
(7) becomes

kA � kB � kG � kH � 2F � 3

andthe proof is complete. &

Remark 1

Onemay wonderif the sufficient condition derivedherein is any betterthan the obviousone, i.e.
applying Kruskal’s condition to individual three-way subarrays.Consider the following situation:
kA = kB = kG = 2, kH = 3 and F = 3. None of the individual three-way subarrays satisfiesKruskal’s
condition, because 2� 2� 3 = 7< 2� 3� 2 = 8; however, 2� 2� 2� 3 = 9 = 2� 3� 3, and
hencethe sufficient conditionderivedhereinindicatesthat the model is unique.

The resultfurther generalizesasfollows.

Theorem 3 (uniquenessof multilinear decomposition)

Consider the F-componentN-linear model

xi1;...;iN �
XF

f�1

YN
��1

a���i�;f

for i� = 1, …, I� and� = 1, …, N, with a���i�;f
2 C, andsuppose that it is irreducible (, therankof the

N-wayarraywith typicalelementxi1,…,iN is F). Then,with obviousnotation, givenxi1,…,iN for i� = 1,
…, I� and� = 1, …, N, A(�) for � = 1, …, N areuniqueup to permutation andscalingof columns
providedthat

XN

��1

kA��� � 2F � �N ÿ 1�

Proof

Startingfrom theN = 5 case,assumewithout lossof generality thatkA(1)� kA(2) …� kA(5), concatenate
modes4 and5, andapply Lemma 1 andTheorem2 to concludethatA(1), …, A(5) areunique up to
permutation andscaling of columnsprovidedthat

kA�1� � kA�2� � kA�3� �min�kA�4� � kA�5� ÿ 1;F� � 2F � 3 �8�

If kA(4)� kA(5) > F� 1, thenkA(2)� kA(3)� kA(4)� kA(5) > F� 1, hencekA(2)� kA(3)� F� 2, andthus
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kA�1� � kA�2� � kA�3� �min�kA�4� � kA�5� ÿ 1;F� � kA�1� � F � 2� F � 2F � 3

since irreducibility implies that kA(1)� 1. Therefore inequality (8) is always satisfied for
kA(4)� kA(5) > F� 1. If, on the other hand,kA(4)� kA(5)� F� 1, thencondition (8) becomes

kA�1� � kA�2� � kA�3� � kA�4� � kA�5� � 2F � 4

andtheproof for N = 5 is complete. Similarly, for N = 6 oneusestheconditionfor N = 5, andsoon
andso forth &

Remark 2

Noticehowthebilinearcase(N = 2) is generically excluded:thek-rankof anymatrixwith F columns
is at mostF, hencethe left-handsideof the inequality is at most 2F, while the right-handside is
2F� 1 for N = 2. Also note that ‘extra’ modes of k-rank 1 (containing collinear profiles) neither
contributeto nortakeawayfrom uniqueness.As aspecialcase, it is well known thatathree-wayarray
where one way is made up of replicates will not provide sufficient variation for a unique
decomposition, becausethek-rankof thereplicateloadingswill be1. This, however, is not thecase
for four- and higher-way arrays. Even if the loadings in one way are of k-rank 1, unique
decomposition is still possible by virtue of Theorem 2, hencereplicatesmay be unproblematically
treatedasan additionalway if sodesired.

Remark 3

If all matrices involved are full k-rank (a matrix whose columnsare drawn independently from
absolutely continuousdistributionsis full k-rank with probability one),then

XN

��1

min�I�;F� � 2F � �N ÿ 1�

is sufficient. Notice how going to higher dimensions improvesthings: for true N-dimensionaldata
sets,min�=1,…,N(I�) = 2,meaningthatoneextradimensionincreasestheleft-handsideby at least2 but
theright-handsideby only 1. It follows that for 2N� 2F� (N 71) (, in N� 2F 71 dimensions),
F-component multil inearmodelsaregenerically unique by sheerdimensionality alone.

4. CONCLUSIONS

Giventhecomplexity in theline of argument behind theproofof Theorem 1, theextension to N-way
arraysis refreshinglysimple.A posteriori thereasonis clear:thethree-way caseis thefirst instanceof
multilinearity for which uniquenessholds, and from which uniquenesspropagates by virtue of
Khatri–Raostructure(inducedby unfolding/matricizing a multil inearmodel) andLemma1.
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APPENDIX: Proofof Theorem1

In provingTheorem1, an importantlemmais first needed.This lemmais interesting in itself andis
statedand proved separately by Kruskal [1] without reference to uniquenessof triple product
decomposition. Kruskalproves it assumingreal-valuedmatrices,but, in contrast to theuniquenessof
triple product decompositionresults, it only involvesrank(insteadof k-rank)andspanarguments for
a pair of matrices. It therefore readily generalizesto the complex case.

Lemma2 (permutation lemma)

Let W (v) denotethenumberof non-zeroelementsof v ∈ CK. Giventwo matricesC andC with the
samenumber of columns(F), suppose that C hasno identically zerocolumns,andassumethat the
following implication holdsfor all v:

W�vTC� � F ÿ rank�C� � 1 ) W�vTF� � W�vTC�

We thenhavethat C = CPL, whereP is a permutation matrix andL is a non-singular complex
diagonalscaling matrix.

With this lemma we arereadyto give the main proof.

Main proof

Consider initial ly uniquenessof C. Uniquenessof A andB will follow automatically from uniqueness
of C by the symmetry of both the complex trilinear modelandthe k-rank condition. Supposethere
existA ∈ CI�F, C ∈ CK�F andB ∈ CJ�F suchthatXk = ADk (C)BT = ADk(C)BT for k = 1,2,…,K.
We wish to showthat

IF W�vTC� � F ÿ rank�C� � 1

THEN W�vTC� � W�vTC�

for all v ∈ CK. Thusweareconcernedin thefollowing with thosev ∈ CK for which W(vTC)� F 7
rank(C)� 1. We wish to showthat for these v ∈ CK it alwaysholdsthat W(vTC)� WvTC). This is
investigatedunderthepremiseof thek-rankcondition(4), andtheproofwill beaccomplishedby first
deriving an inequality for W(vTC) with respect to propertiesof the model Xk = ADk(C)BT. This
inequality will thenbe proven to imply the above.

Taking linear combinations
PK

k�1 vkXk, it follows that

Adiag�vTC�BT � Adiag�vTC�BT 8v :� ��1; � � � ; �K �T 2 CK �9�

The rankof a matrix product is alwaysless thanor equalto the rank of any factor,andthus

W�vTC� � rank�diag�vTC�� � rank�Adiag�vTC�BT� � rank�Adiag�vTC�BT� �10�

Let 
 := W(vTC) bethenumberof non-zeroelementsin vTC andexcludethosecolumnsof A andB
correspondingto thezerosof vTC. TheresultingtruncatedmatricesÃ andB̃ have
 columns.Define t
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∈ C
�1 asthe correspondingnon-zeropart of vTC. Sylvester’sinequality resultsin

rank�Adiag�vTC�BT� � rank�eAdiag�t�eBT� � rank�eA� � rank�eBdiag�t�� ÿ 
 �11�

As all elementsof t arenon-zero, it follows that

rank�eA� � rank�eBdiag�t�� ÿ 
 � rank�eA� � rank�eB� ÿ 
 �12�

The matrix Ã has
 columnsof the original A andsimilarly B̃ has
 columnsof B, and from the
definition of k-rank it holds that

rank�eA� � min�
; kA�; rank�eB� � min�
; kB� �13�

Thus,from (10)–(13),

W�vTC� � min�
; kA� �min�
; kB� ÿ 
 �14�

For differentvaluesof 
 = W(vTC), this implies that

W�vTC� �
W�vTC�; W�vTC� � min�kA ; kB� �i�
min�kA ; kB�; min�kA ; kB� � W�vTC� � max�kA ; kB� �ii �
kA � kB ÿ W�vTC�; W�vTC� � max�kA ; kB� �iii �

8><>: �15�

Observethat in order to establishthe implicationrequired by the permutation lemma, it sufficesto
showthat thek-rankcondition (4) andtheconditionthat W(vTC)� F7rankC)� 1 jointly exclude
the latter two ((ii) and(iii)) possibilities. This will beproven by contradiction.

First we needto provethat (4) impliesrank(C)� rank(C). From(9) it follows that

vTC � 0T
1�F ) Adiag�vTC�BT � 0I�J

Consider W(vTC), the number of non-zero elementsin vTC. We will show that W(vTC) = 0.
Supposetheopposite,namelythat1� W(vTC)� F. As partof thederivation leadingto (15),wehave
shownthat

rank�Adiag�vTC�BT� �
W�vTC�; W�vTC� � min�kA ; kB�
min�kA ; kB�; min�kA ; kB� � W�vTC� � max�kA ; kB�
kA � kB ÿ W�vTC�; W�vTC� � max�kA ; kB�

8><>: �16�

SincekB� F, condition(4) leadsto

kA � kB � kC � 2�F � 1� ) kA � kB � F � 2> F � 1

min�kA ; kB� � 2

�
Equation (16) therefore shows that rank(Adiag(vTC)BT)� 1 if 1� W(vTC)� F. However,

Adiag(vTC)BT = 0I�J, so its rank shouldbe 0. Thereforeit holdsthat

vTC � 01�F ) vTC � 01�F ) rank(C) � rank�C�
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Recall the assumption of the permutation lemmaandwork leftwards:

F ÿ kC � 1� F ÿ rank�C� � 1� F ÿ rank�C� � 1� W�vTC� �17�

wheretheleftmostinequality follows from thefact thatk-rank� rank.Fromthek-rankcondition(4)
it follows that

kA � kB � kC � 2�F � 1� ) kA � kB ÿ F ÿ 1� F ÿ kC � 1 �18�

The inequalities (17) and(18) arecombined to give the second key inequality

kA � kB ÿ F ÿ 1� W�vTC� �19�

Considernowinequalities (15)and(19) jointly. Supposethatthethird leg (iii) of (15) is in effect, i.e.
W(vTC)�max(kA, kB); then

kA � kB ÿ F ÿ 1� W�vTC� � kA � kB ÿ W�vTC�

which is not possible, becauseW(vTC)� F. Similarly, suppose that the secondleg (ii) of (15) is in
effect, i.e. min(kA, kB)� W(vTC)�max(kA, kB); thenwe obtain

kA � kB ÿ F ÿ 1� W�vTC� � min�kA ; kB�

which is impossible,as

kA � kB ÿ F ÿ 1� min�kA ; kB� �max�kA ; kB� ÿ F ÿ 1� min�kA ; kB� ÿ 1

becausemax(kA, kB)� F. Theonly remaining option is leg (i), i.e. W(vTC)�min(kA, kB), andthus

W�vTC� � W�vTC�

which is exactly what is required by the permutation lemma (note the trivial fact that
kA � kB� kC� 2(F� 1) ) min(kA, kB, kC)� 2, which implies that no one of A, B, C has all-
zerocolumns).Thusit hasbeenshown thatC = CPL, where P is a permutationmatrix andL is a
non-singular complexdiagonalscaling matrix. The trilinear model is completely symmetric in the
sensethat any oneof the threematrices canbe put in the middle of the decomposition.The k-rank
conditionis alsosymmetric (sumof k-ranks).It thereforefollows thatA andB arealso unique up to
permutation andscale.This completesthe proof. &

Remark 4

It canbeshownthatthepermutationis commonto all threematrices,andtheproductof therespective
scalesis identity; however, we skip this for spaceconsiderations.
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