
        

COMMENTS ON MULTILINEAR PLS

AGE K. SMILDE
Laboratory for Analytical Chemistry, University of Amsterdam, Nieuwe Achtergracht 166, NL-1018 WV Amsterdam,

Netherlands

SUMMARY

Recently, Bro published a paper on multilinear PLS (J. Chemometrics, 10, 47–61 (1996)) in which he proposed
a generalization of PLS to multiway situations, called multilinear PLS, which is a mixture of a trilinear model
(PARAFAC) and PLS. However, Bro does not give the equations for the prediction step. In this paper these
prediction equations are given in both their full and closed forms. The least squares properties of the proposed
multilinear PLS are established and a more comprehensive notation is given. Using this notation, it is clear that
some other multiway analysis methods such as PARAFAC and Tucker1 models can be combined with PLS.
Multiway methods such as Tucker2 and Tucker3 need a different approach. A framework is given for general two-
block multiway models. © 1997 John Wiley & Sons, Ltd.
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INTRODUCTION

The prediction of a y-value using a multivariate x-vector as a generic problem has attracted a lot of
attention in chemometrics. A very popular method to do this prediction is partial least squares
(PLS).1–3 In another area of chemometrics, multiway data analysis methods have gained attention.4,5

These methods deal with data that can be arranged meaningfully in a cube or a four-way data matrix,
etc. Most data analysis applications in chemometrics deal with two-way data, e.g. predicting a
univariate y with a matrix X. This is the two-block two-way case in the terminology of Smilde.5 Bro
has extended the PLS method to multiway data; that is, predicting a Y using an X, where both X and
Y can be three-way or even four-way, in general multiway.6

The extension of PLS to multiway data is fruitful, since many chemical problems generate data that
are essentially multiway. The combination of three-way analysis methods such as PARAFAC7 and
Tucker18 with the PLS method is logical and possible, as Bro has already shown for the PARAFAC/
PLS case. For other multiway methods (Tucker2 and Tucker3),8 different methods are needed to
obtain two-block solutions.

In the following, a brief review of Bro’s method is given. Another notation is introduced and some
properties of Bro’s algorithms are established. A general framework is given for two-block multiway
models.

In this paper, scalars are written as lowercase italic characters, vectors as boldface lowercase
characters, matrices as boldface uppercase characters and three-way (and in general multiway)
matrices as underlined boldface uppercase characters. The lowercase characters i, j and k will be used
as running indices, where i=1, . . . , I, j=1, . . . , J and k=1, . . . , K.
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MULTILINEAR PLS: ALGORITHM AND LEAST SQUARES PROPERTY

For convenience, two-way PLS (ordinary PLS) is repeated briefly, because details of PLS are needed
in what follows. For simplicity, only PLS1 is considered. Suppose X (I3J) and y (I31) are column-
centered (and scaled if necessary) matrices. The first PLS1 component which is calculated to predict
y from X solves

max
w

[cov(t, y) |Xw= t and iw i=1] (1)

Equation (1) can be written in summation form as

max
w FOI

i=1

tiyiU ti=OJ

j=1

xijwj and iw i=1G (2)

where ti, yi, xij and wj are the typical elements of t, y, X and w respectively. For convenience, without
changing the problem, the covariance is expressed in a summation without correction for the degrees
of freedom. This can be rewritten as

max
w FOI

i=1
OJ

j=1

yixijwjUiw i=1G (3)

and by defining z=XTy or, equivalently, zj=Si yixij, where z=(z1, . . . , zJ)
T, this is equivalent to

max
w FOJ

j=1

zjwjUiw i=1G (4)

This expression is clearly maximized if and only if

w=
z

iz i
=

XTy
iXTy i

(5)

or, stated differently, if w is the left singular vector of XTy which is equal to the first eigenvector of
XTyyTX. This is a well-known result.2

After finding the first component, y and X are deflated and the second component is found. Since
this will be used in the sequel, the basic PLS1 algorithm is repeated for convenience. Some extra
notation is needed: X(0) and y(0) are the original X and y respectively; X(a) and y(a) refer to the updated
X and y respectively after the ath PLS component. The subscript a in ta, wa and pa refers to the ath
component in the PLS1 model. Then PLS1 proceeds as follows:

1. t1 =X(0)w1

2. max cov (t1, y(0))⇒w1 =X(0)Ty(0)/iX(0)Ty(0) i
3. p1 =X(0)Tt1 /(tT

1t1)
4. X(1) =X(0) 2 t1p

T
1

5. y(1) =y(0) 2 t1b1; b1=(tT
1t1)

21tT
1y(0) (6)

6. t2 =X(1)w2

7. max cov (t2, y(1))⇒w2 =X(1)Ty(1)/iX(1)Ty(1) i
8. p2 =X(1)Tt2 /(tT

2t2)
9. X(2) =X(1) 2 t2p

T
2

10. y(2) =y(1) 2 t2b2; b2=(tT
2t2)

21tT
2y(1)

. . .
until A components
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and, by defining T=[t1, . . . , tA], W=[w1, . . . , wA] and P=[p1, . . . , pA], results in the model2,3

1. T=XW(PTW)21

2. X=TPT +Ex

3. y=Tb+y(A)
(7)

4. max cov (ta, y(a21)); a=1, . . . , A

where WTW=I, TTT is diagonal and wT
i pj=0 (i<j). It can be shown that P solves the problem of

minimizing iX2TPT i2 for given T using the orthogonality of the t-vectors. Note that P and T do not
solve the problem of mimimizing iX2TPT i2 for general P and T, hence the name partial least
squares. The above PLS1 model is Wold’s version of PLS1.

There is another formulation of the PLS1 model due to Martens and Naes.9 For convenience the
same notation as in Wold’s version is used, but the two versions generate different ts, bs and deflated
Xs. In Martens’ PLS1 the ts are not forced to be orthogonal. Martens’ PLS1 scheme is as follows:

1. t1 =X(0)w1

2. max cov (t1, y(0))⇒w1 =X(0)Ty(0)/iX(0)Ty(0) i
3. X(1) =X(0) 2 t1w

T
1

4. y(1) =y(0) 2 t1b1; b1=(tT
1t1)

21tT
1y(0)

5. t2 =X(1)w2

(8)

6. max cov (t2, y(1))⇒w2 =X(1)Ty(1)/iX(1)Ty(1) i
7. X(2) =X(1) 2 t2w

T
2

8. y(2) =y(0) 2Tb2; T=[t1 t2]; b2 =(TTT)21TTy(0)

. . .
until A components

where the extra regression step (calculating the p-vectors) is omitted, which makes the algorithm more
transparent. By defining again T=[t1, . . . , tA] and W=[w1, . . . , wA], Martens’ PLS1 model after A
components is

1. T=XW
2. X=TWT +Ex

3. y=TbA+y(A)
(9)

4. max cov (ta, y(a21)); a=1, . . . , A

where WTW=I and TTT is tridiagonal. Note that T=XW solves the problem of minimizing
iX2TWT i2 for given W owing to the property WTW=I. Nevertheless, T=XW does not solve the
problem of minimizing iX2TWT i2 for general T and W. Therefore Martens’ PLS1 is also a partial
least squares solution. It can be shown that both Martens’ and Wold’s PLS1 versions give the same
predictions for y.10

For the case of a univariate y (I31) and an X dimensioned I3J3K, with typical elements yi and
xijk respectively, Bro generalizes equation (2) to

max
(wJ, wK)

FOI

i=1

tiyiU ti=OJ

j=1
OK

k=1

xijkw
J
jw

K
k and iwJ i= iwK i=1G (10)

where wJ (J31), with typical element wJ
j , and wK (K31), with typical element wK

k , are the weights for
the second and third modes, respectively and assuming that X (with typical element xijk) is centered
in the direction of I, i.e. SI

i=1 xijk =0. These weighing vectors serve exactly the same goal as w in two-
way PLS1. The vectors wJ and wK can be solved in a very elegant way be defining Z as the matrix
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with typical element zjk=Si yixijk and using the singular value decomposition of Z. It can be shown that
wJ and wK are equal to the first left and right singular vectors of Z respectively.

It is convenient to introduce another notation. Let Xi (J3K) be the ith slice of X (I3J3K),
corresponding to the ith sample, then Vec(Xi)=(xi11, xi21, xi31, . . . , xiJK)T, and define

X=

Vec(X1)
T

· · ·

Vec(XI)
T

which is an I3JK matrix. In this notation, Vec(Z)=XTy.
Problem (10) can be rewritten as

max
(wJ, wK)

[tTy | t=X(wK ^ wJ) and iwJ i=iwK i=1] (11)

where ^ is the Kronecker product.
The question arises of whether the vectors t, wJ and wK have least squares properties. Consider the

problem

min
t OI

i=1
OJ

j=1
OK

k=1

(xijk 2 tiw
J
jw

K
k )2 given wJ and wK; iwJ i=iwK i=1 (12)

Using the Vec and Kronecker notation, this can be rewritten as

min
t OI

i=1

[Vec(Xi)2 ti(w
K ^ wJ)]2 given wJ and wK; iwJ i=iwK i=1 (13)

or

min
t

iX2 t(wK ^ wJ)T i2 given wJ and wK; iwJ i=iwK i=1 (14)

The least squares solution of (14) is

t=Xw(wTw)21 where w=(wK ^ wJ) (15)

Now the following holds:

wTw=(wK ^ wJ)T(wK ^ wJ)=[(wK)T ^ (wJ)T](wK ^ wJ)=[(wK)T(wK) ^ (wJ)TwJ)=1 (16)

Therefore

t=X(wK ^ wJ) or ti=OJ

j=1
OK

k=1

xijkw
J
jw

K
k (17)

which shows that indeed, as in the two-way PLS case, the t-vector as defined in (11) solves the least
squares problem (12). Hence also multilinear PLS simultaneously gives a t-vector maximally
covarying with y and building a partial least squares model for X.

In order to show the behavior of multilinear PLS for more than one component, some extra notation
is needed. Define ta to be the ath score vector of X (a=1, . . . , A); wJ

a and wK
a the weight vectors of the

A. K. SMILDE370

© 1997 John Wiley & Sons, Ltd. Journal of Chemometrics, Vol. 11, 367–377 (1997)



ath dimension for mode J and mode K, respectively, wa=(wK
a ^ wJ

a); X(0) and y(0) the original X
(rearranged as

X=

Vec(X1)
T

· · ·

Vec(XI)
T

with Vec(Xi)=(xi11, xi21, xi31, . . . , xiJK)T; see above) and original y respectively; X(a) and y(a) the deflated
X and deflated y after the ath dimension respectively.

The first multilinear PLS step can be written as

t1 =X(0)w1

X(1) =X(0) 2 t1w
T
1

b1=(tT
1t1)

21tT
1y(0) (18)

y(1) =y(0) 2b1t1

where b1 is a scalar. The second step in multilinear PLS becomes

t2 =X(1)w2

X(2) =X(1) 2 t2w
T
2

b2 =(TTT)21TTy(0) (19)

y(2) =y(0) 2Tb2

where b2 is a 231 vector and T=[t1 t2]. Several comments are appropriate at this point: all these
comments are related to the property that the successive t-vectors calculated in the multilinear PLS
method are not orthogonal. First, in the second step the b-vector has to be calculated with all previous
t-vectors. Secondly, the deflating of y has to be done with all t-vectors and the appropriate b. Thirdly,
the third dimension is calculated analogously to the second one: t3 is calculated, a new T=[t1 t2 t3]
is formed, and so on. This is exactly equal to the steps in Marten’s PLS1.

After A components the multilinear PLS algorithm has generated T=[t1 . . . tA], bA, w1 to wA and
all the deflated y- and X-matrices. Examining equations (18) and (19) more closely, it can be seen that
after A components, multilinear PLS can be written formally as

1. T=XV
2. X=TWT +EX; W=[wK

1 ^ wJ
1| . . . |wK

A ^ wJ
A]

3. y=TbA+y(A) (20)

4. max cov(ta, y(a21)); a=1, . . . , A

where V is a matrix of weighing coefficients which can be written in terms of w1 to wA. This will be
shown in the next section.

Note that multilinear PLS in the formulation of equation (20) is very similar to Martens’ PLS1
version.9 There is, however, a noticeable difference: whereas Martens’ PLS1 gives orthogonal w-
vectors (WTW=I), Bro’s multilinear PLS does not have this property.11 Therefore, in multilinear PLS,
T=XW is not the solution of the problem of minimizing iX2TWT i2 for fixed W. Multilinear PLS
generates non-orthogonal ta-vectors, non-orthognal wa-vectors and componentwise least squares
solutions for fixed wa. The model for X (see the second line in (20)) is a trilinear model, hence the
name multilinear PLS.

In Bro’s paper, generalizations to four and higher orders are given. For a fourth-order array
X (I3J3K3L) a formula similar to equation (10) with an extra weight vector wL results in an
analogous formulation of the problem as in equation (11), after properly rearranging X using the Vec
notation. It can be shown along the same lines as above that for the fourth-order array a t-vector is
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found that maximally covaries with y. Moreover, t, wJ, wK and wL are a (partial) least squares
approximation of X. For proving this partial least squares property, an equation similar to (16) is
found via the multiplication and transposition properties of Kronecker products. This can easily be
extended to higher orders. Moreover, for generalizations to X-arrays of order four and higher,
multilinear PLS can be formulated equivalent to (20) and the comments following that equation are
also valid for this case.

Summarizing, the general scheme of Wold’s PLS1 Martens’ PLS1 and Bro’s multilinear PLS1 is

1. T=XV
2. X=TPT +EX

3. y=Tb+ey

(21)

4. max cov(ta, y(a21)) with ta=X(a21)wa and iwa i=1; a=1, . . . , A

where, depending on the nature of X (two-way or rearranged multiway) and restrictions put on T, V,
P and W=[w1, . . . , wA], the result is one of the three above-mentioned models. All three PLS1 models
clearly work in a componentwise fashion, as exemplified by step 4 in (21).

MULTILINEAR PLS: PREDICTION EQUATIONS

The prediction equations can be derived as follows. Suppose a new sample is available, denoted by
X(0)

I+1 (J3K). Then the full prediction becomes

tI+1, 1=Vec(X(0)
I+1)

Tw1

Vec(X(1)
I+1)=Vec(X(0)

I+1)2 tI+1, 1w1

tI+1, 2=Vec(X(1)
I+1)

Tw2

· · ·
tI+1, A =Vec(X(A21)

I+1 )TwA

(22)

Vec(X(A)
I+1)=Vec(X(A21)

I+1 )2 tI+1, AwA=Vec(EI+1)
tI+1=(tI+1, 1, . . . , tI+1, A)T

ˆyI+1=tT
I+1bA

and it is clear that with this full prediction scheme the residual matrix EI+1 (J3K) is available for
checking whether the new sample is typical or not.

The closed form of the prediction equations can be derived as follows. The general idea is to get
a direct relationship between X(0) and ŷ:

ŷ=TbA=X(0)bPLS (23)

Using the deflation equations for X (see (18) and (19)), it holds that

t1 =X(0)w1

t2 =X(1)w2 =(X(0) 2 t1w
T
1)w2 =(X(0) 2X(0)w1w

T
1)w2 =X(0)(I2w1w

T
1)w2

· · ·
(24)

tA=X(0)(I2w1w
T
1) . . . (I2wA21w

T
A21)wA

and using T=[t1, . . . , tA], it holds that

T=X(0)[w1 | (I2w1w
T
1)w2 | . . . |(I2w1w

T
1)(I2w2w

T
2) . . . (I2wA21w

T
A21)wA]=X(0)V (25)

Then

TbA =X(0)[w1 | (I2w1w
T
1)w2 | . . . |(I2w1w

T
1)(I2w2w

T
2) . . . (I2wA21w

T
A21)wA]bA (26)
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Combining (26) and (23) gives

bPLS =[w1 | (I2w1w
T
1)w2 | . . . |(I2w1w

T
1)(I2w2w

T
2) . . . (I2wA21w

T
A21)wA]bA (27)

and bPLS can be used for predicting a new sample using

ˆyI+1=Vec(X(0)
I+1)

TbPLS (28)

If wT
i wj=0 (i≠j), then (27) reduces to

bPLS =[w1 w2 . . . wA]bA=WbA (29)

This is, however, not the case for multilinear PLS. Note that wT
i wj=0 (i≠j) holds for Martens’ PLS

algorithm9 and (29) indeed coincides with the closed prediction equation for that algorithm.

GENERAL FRAMEWORK FOR TWO-BLOCK MULTIWAY METHODS

In this section a framework is given for two-block multiway methods. Such methods try to derive a
relationship between two blocks of data X and Y with at least one of them being multiway. These two
blocks have at least one mode in common: the object mode. That is, the same objects play a role in
both blocks of data. Therefore it is reasonable to build a relationship between the blocks. For the two-
block two-way case this is very often done with PLS models. For a more general description of
different multiblock multiway situations see Reference 5.

There are different ways to build models describing the relationship between two blocks of data.
This can be done in a componentwise or a simultaneous fashion. Traditionally, two-way PLS models
are built componentwise. There are, however, models available that build such relations
simultaneously, e.g. principal covariate regression.12 For describing the framework of two-block
multiway methods, it is useful to make a distinction between componentwise solutions and
simultaneous solutions. This section starts with a brief description of the multiway models considered.
Then the generalizations to componentwise and simultaneous solutions are given. For convenience
and without loss of generality it is assumed that X is a properly centered three-way array and y is a
centered vector which has to be predicted using X.

Multiway models

Define Define A=[a1, . . . , aR], B=[b1, . . . , bR] and C=[c1, . . . , cR], where ar (r=1, . . . , R) are I31
vectors, br (r=1, . . . , R) are J31 vectors and cr (r=1, . . . , R) are K31 vectors. Define Xk (I3J) as the
kth slice of X (I3J3K) and X=[X1 | . . . |XK] (I3JK), which is the same as before. Then PARAFAC
with R components models X (I3J3K) with A, B and C by solving the problem

min
(A, B, C)

iX2AD(I ^ BT) i2 where D=[D1 | . . . |DK]

(30)
and Dk is diagonal with diag(Dk)=kth row of C

When R=1, equation (30) reduces to

min
(a, b, c)

iX2a(b ^ c)T i2 (31)

which is very similar to equation (14), except that in (31) all loading vectors a, b and c can be chosen
freely. In other words, (14) is a restricted version of (31) and therefore the sum of squared residuals
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of (14) is never smaller than the sum of squared residuals of (31). This is a restatement of the partial
least squares property of Bro’s multilinear PLS.

The Tucker3 model of X (I3J3K) is found by solving the problem

min
(A, B, C, G)

iX2AG(CT ^ BT) i2 (32)

where A (I3R1), B (J3R2) and C (K3R3) are loading matrices, G is the properly concatenated three-
way core matrix G (R1 3R2 3R3) and X is as before.13 Note that A, B and C are not the same as for
PARAFAC; not only has the Tucker3 model a different number of factors in the three directions, but
even if R1=R2=R3, the PARAFAC and Tucker3 solutions differ. This is due to the core array in the
Tucker3 model, which makes the Tucker3 model more general than the PARAFAC model. In fact, if
the core array is chosen to have only non-zeros on the superdiagonal (assuming that R1=R2=R3), then
Tucker3 equals PARAFAC.

The Tucker2 model can be formalized as

min
(A, B. G)

iX2AG(I ^ BT) i2 (33)

where X is as before, I is the K3K identity matrix, G (R1 3KR2) is the properly concatenated extended
core array G (R1 3R2 3K) and A (I3R1) and B (J3R2) are loading matrices of the first and second
modes respectively.13 Note that the Tucker2 model is a special case of Tucker3 with R3=K, which
means that in the third mode no reduction to a small number of components is sought. Likewise, there
are Tucker2 models corresponding to R1=I and R2=J.

The Tucker1 model can formalized as

min
(A, G)

iX2AG i2 (34)

where X is the same as before, G is an R3JK matrix and A (I3R) is the loading matrix of the first
mode. Note that there are three different formulations of the Tucker1 model, depending on which
mode is being reduced.

The Tucker1 model is known in the chemometrics literature as ‘multiway PCA’.14 The popularity
of this method is mainly due to the easy way to solve problem (34): unfold X (I3J3K) to X (I3JK)
and use standard SVD routines. It is clear that there exist many more multiway PCA models than the
Tucker1 model.

Summarizing, all multiway models for a three-way array X can be written as

X=AW+E (35)

where X is the same as before, E is an error matrix of the same size as X of which the Frobenius norm
is minimized, A is an I3R1 loading matrix of the first mode and the structure of W (R1 3JK) depends
on the specific model which is superimposed on X. In the Tucker models, A can be chosen to be
column-orthogonal without loss of generality. This is due to the rotational freedom in those models.
For PARAFAC models this is not the case: there is no rotational freedom in a PARAFAC model and
hence constraining A to be column-orthogonal generates another model. Equation (35) is also
mentioned by Kiers.15

Componentwise two-block multiway models

The general scheme of a componentwise solution is as follows.

1. Calculate component 1.
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2. Deflate X and Y.
3. Calculate component 2.
4. Etc.

This holds both for two-way data and for multiway data. The two-block componentwise Tucker1
model can be formalized as

1. T=XV
2. X=TPT +EX

3. y=Tb+y(A)
(36)

4. max cov(ta, y(a21)) with ta=X(a21)wa and iwa i=1; a=1, . . . , A

where X (I3JK) is the properly rearranged three-way array X and the matrix T (I3A) has columns
ta (a=1, . . . , A) which are chosen in such a way that componentwise the covariance between ta and the
unexplained part of y is maximized (which is symbolized in line 4 of equation (36)). The residuals in
X (EX) and y (y(a)) are partially minimized in the sense described previously. Clearly, the model in (36)
can be estimated with Wold’s PLS1 if the restriction of orthogonal ts is imposed (Wold’s multiway
PLS14). If this restriction is not imposed, then Martens’ PLS1 algorithm can be used.

The two-block componentwise PARAFAC model can be formalized as

1. T=XV with V=[v1, . . . , vA]
2. X=TPT +EX with P=[p1, . . . , pA] and pa=pK

a ^ pJ
a

3. y=Tb+y(A)
(37)

4. max cov(ta, y(a21)) with ta=X(a21)wa and iwa i=1; a=1, . . . , A

where X (I3JK) is the properly rearranged three-way array X and the matrix T (I3A) has columns
ta (a=1, . . . , A) where the demand on P in line 2 of equation (37) assures that X is fitted with a
trilinear (PARAFAC-type) model. Problem (37) can be solved with Bro’s multilinear PLS1.

In order to obtain a trilinear (partial) least squares model for X, only the special structure of P (line
2 of equation (37)) has to be demanded. This points to the existence of alternatives for Bro’s
multilinear PLS1, depending on which restrictions are imposed. To point out some of these
alternatives, consider forcing the t-vectors to be orthogonal; then another algorithm is needed and
another model is estimated. Does this give the same results in terms of predicted y-values as
multilinear PLS (which was the case for Wold’s and Martens’ algorithms for two-way PLS)?

For two-block Tucker3 and Tucker 2 models no componentwise solutions are possible. To explain
this, consider a Tucker3 model with R1=2, R2=3 and R3=4. What is ‘a component’ in this context? Even
if R1=R2=R3=R, problems occur. Suppose R=2 and consider the (1, 2, 1)th element in the core array of
this specific Tucker3 model. This element estimates the interaction between the first component in the
first mode, the second component in the second mode and the first component in the third mode. How
should this be done componentwise? No clear solutions are available.

Note that equations (36) and (37) can be extended for multivariate Y and even multiway Y. Hence
componentwise Tucker1 and PARAFAC models can be built for the general problem of connecting
two blocks X and Y of any order.

Simultaneous two-block multiway models

Principal covariate regression (PCovR) provides a framework for discussing simultaneous two-block
multiway models and this will be taken as an example. The general formulation of PCovR for two-way
data (again for simplicity a univariate y is taken) is
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1. T=XW
2. X=TPT +EX

3. y=Tb+ey

(38)

4. min[a iX2XWPT i2 +(12a) iy2XWb i2]

where X (I3J) is a (centered) matrix, y (I31) is a (centered) vector, EX and ey are the residuals in X
and y respectively and a is a fixed number between zero and one accounting for the weight given on
modeling X or y in (38). Note that the first term in the minimization expression of line 4 in equation
(38) corresponds to the unexplained part of X and the second term corresponds to the unexplained part
of y. PCovR balances the explanation of X and y by the parameter a. As explained by de Jong and
Kiers,12 a can be selected by cross-validation. Note that (38) is easily generalized to multivariate Y.

The general two-block three-way PCovR problem is

1. T=XW
2. X=TPT +EX

3. y=Tb+ey

(39)

4. min[a iX2XWPT i2 +(12a) iy2XWb i2]

where X (I3JK) is the properly rearranged X (I3J3K) as in equation (35) and all other matrices/
vectors are defined as before. Depending on the structure imposed on P, the following models are
obtained.

1. Simultaneous two-block Tucker3: PT =G(CT ^ BT).
2. Simultaneous two-block Tucker2: PT =G(I ^ BT).
3. Simultaneous two-block Tucker1: P is general.
4. Simultaneous two-block PARAFAC: PT =D(I ^ BT), with D as in equation (30).

In the original PCovR formulation, T was restricted to have orthogonal columns. For the simultaneous
two-block Tucker models the restriction of column orthogonality of T can be imposed without loss of
generality because of the rotational freedom in the Tucker1, Tucker2 and Tucker3 models. For the
simultaneous two-block PARAFAC model, imposing a constraint on T changes the solution.

Simultaneous two-block Tucker1 models can be solved easily by unfolding X properly and using
PCovR on y and the unfolded X. For all other simultaneous two-block models mentioned, no
algorithms exist yet.

Several remarks are appropriate. First, the different versions of simultaneous two-block multiway
models are obtained by putting a special structure on P. It is not known what the consequences of this
imposed structure are for the properties of T and W. Secondly, principal covariates regression gives
a framework for simultaneous two-block multiway models, but there are others, e.g. joint continuum
regression.16 Thirdly, the generic problem as stated in (39) can be generalized to multivariate Y,
multiway Y (of any order) and multiway X (of order higher than three), which opens up possibilities
to have hybrid forms, e.g. imposing a Tucker3 structure on X and a PARAFAC structure on Y.
Fourthly, there are still other simultaneous two-block multiway models possible, e.g. those based on
restricted or constrained Tucker models,17,18 but these can be treated as special cases of the Tucker3-
type models.

Clearly, developing theory and algorithms to solve the problem of equation (39) with proper
constraints on T, P and W is a challenge in the area of multiway data analysis.
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